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TP2 : KNN, DECISION TREES AND STOCK MARKET RETURNS

Prédicteur kNN et validation croisée

Le but de cette partie est d’apprendre à utiliser le classifieur kNN avec le logiciel R. Pour cela, on chargera
la librairie knnflex :

install.packages("knnflex")
library(knnflex)

On va considérer le jeu de données iris, devenu classique en statistique et apprentissage :

library(class)
data(iris)
head(iris)
summary(iris)

On séparera ces données en 2 partie : un échantillon d’apprentissage et un échantillon d’évaluation (ou
de test) :

train = iris[c(1:30,51:80,101:130),1:5]
test = iris[c(31:50,81:100,131:150),1:5]

On veut donc déterminer l’espèce d’iris à partir des mesures prises sur le pétale et le sépale. Pour obtenir
les prédictions, on utilisera la fonction knn() :

pred = knn(train[,1:4], test[,1:4], train[,5], k = 2)
# display the confusion matrix
table(pred,test[,5])

Ces résultat montrent que le clasifieur kNN avec k = 2 conduit vers une erreur de classification très faible
(3.33%) dans ce problème.

Afin de choisir k, il est récommandé d’effectuer une validation croisée, comme montré ci-dessous :

# 5-fold cross-validation to select k
# from the set {1,...,10}
fold = sample(rep(1:5,each=18)) # creation des groupes B_v
cvpred = matrix(NA,nrow=90,ncol=10) # initialisation de la matrice

# des prédicteurs
for (k in 1:10)

for (v in 1:5)
{
sample1 = train[which(fold!=v),1:4]
sample2 = train[which(fold==v),1:4]
class1 = train[which(fold!=v),5]
cvpred[which(fold==v),k] = knn(sample1,sample2,class1,k=k)
}

class = as.numeric(train[,5])
# display misclassification rates for k=1:10
apply(cvpred,2,function(x) sum(class!=x)) # calcule l’erreur de classif.
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Predicting stock market returns 1

1. Problem Description and Objectives

Stock market trading is an application domain with a large potential for data mining. In effect, the
existence of an enormous amount of historical data suggests that data mining can provide a com-
petitive advantage over human inspection of these data. On the other hand, there are researchers
claiming that the markets adapt so rapidly in terms of price adjustments that there is no space to
obtain profits in a consistent way. This is usually known as the efficient markets hypothesis. This
theory has been successively replaced by more relaxed versions that leave some space for trading
opportunities due to temporary market inefficiencies.
The general goal of stock trading is to maintain a portfolio of assets based on buy and sell orders.
The long-term objective is to achieve as much profit as possible from these trading actions. In the
context of the present work, we will only “trade” a single security, actually a market index. Given
this security and an initial capital, we will try to maximize our profit over a future testing period
by means of trading actions (Buy, Sell, Hold). Our trading strategy will use as a basis for decision
making the indications provided by the result of a data mining process. This process will consist of
trying to predict the future evolution of the index based on a model obtained with historical quotes
data. Thus our prediction model will be incorporated in a trading system that generates its decisions
based on the predictions of the model. Our overall evaluation criteria will be the performance of
this trading system, that is, the profit/loss resulting from the actions of the system as well as some
other statistics that are of interest to investors. This means that our main evaluation criteria will be
the operational results of applying the knowledge discovered by our data mining process and not
the predictive accuracy of the models developed during this process.

2. The Available Data

In our case study we will concentrate on trading the S&P 500 market index. Daily data concerning
the quotes of this security are freely available in many places, for example, the Yahoo finance site
(http://finance.yahoo.com).
The data we will use is available in the package DMwR. In order to get the data, it is enough to issue

library(DMwR)
data(GSPC)

The first statement is only required if you have not issued it before in your R session. The second
instruction will load an object, GSPC, of class xts. For now you can manipulate it as if it were a
matrix or a data frame (try, for example, head(GSPC)).
The daily stock quotes data includes information regarding the following properties :
• Date of the stock exchange session
• Open price at the beginning of the session
• Highest price during the session
• Lowest price
• Closing price of the session
• Volume of transactions
• Adjusted close price : this is basically the closing price adjusted for stock splits, dividends/distributions,

and rights offerings.
The data available for this case study depends on time. This means that each observation of our
dataset has a time tag attached to it. This type of data is frequently known as time series data. The
main distinguishing feature of this kind of data is that order between cases matters, due to their
attached time tags.

1. This part is borrowed from the excellent book by Luis Torgo “Data Mining with R : Learning with Case Studies.” Chapman
& Hall/CRC Data Mining and Knowledge Discovery Series 2010.
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In the case of our stocks data, we have what is usually known as a multivariate time series, because
we measure several variables at the same time tags, namely the Open, High, Low, Close, Volume,
and AdjClose.
R has several packages devoted to the analysis of this type of data, and in effect it has special classes
of objects that are used to store type-dependent data. Moreover, R has many functions tuned for this
type of objects, like special plotting functions, etc.

3. Defining the Prediction Tasks

Generally speaking, our goal is to have good forecasts of the future price of the S&P 500 index so
that profitable orders can be placed on time. This general goal should allow us to easily define what
to predict with our models – it should resort to forecast the future values of the price time series.
However, it is easy to see that even with this simple task we immediately face several questions, na-
mely, (1) which of the daily quotes ? or (2) for which time in the future ? Answering these questions
may not be easy and usually depends on how the predictions will be used for generating trading
orders.
3.1 What to Predict ?
The trading strategies we will describe assume that we obtain a prediction of the tendency of the
market in the next few days. Based on this prediction, we will place orders that will be profitable if
the tendency is confirmed in the future.
Let us assume that if the prices vary more than p%, we consider this worthwhile in terms of trading
(e.g., covering transaction costs). In this context, we want our prediction models to forecast whether
this margin is attainable in the next k days. Please note that within these k days we can actually ob-
serve prices both above and below this percentage. This means that predicting a particular quote for
a specific future time t + k might not be the best idea. In effect, what we want is to have a prediction
of the overall dynamics of the price in the next k days, and this is not captured by a particular price
at a specific time. For instance, the closing price at time t + k may represent a variation much lower
than p%, but it could have been preceded by a period of prices representing variations much higher
than p% within the window t . . . t + k. So, what we want in effect is to have a good prediction of the
overall tendency of the prices in the next k days.
We will describe a variable, calculated with the quotes data, that can be seen as an indicator (a value)
of the tendency in the next k days. The value of this indicator should be related to the confidence
we have that the target margin p will be attainable in the next k days. At this stage it is important to
note that when we mention a variation in p%, we mean above or below the current price. The idea
is that positive variations will lead us to buy, while negative variations will trigger sell actions. The
indicator we are proposing resumes the tendency as a single value, positive for upward tendencies,
and negative for downward price tendencies.
Let the daily average price be approximated by

P̄i =
Ci + Hi + Li
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(1)

where Ci, Hi and Li are the close, high, and low quotes for day i, respectively.
Let Vi be the set of k percentage variations of today’s close to the following k days average prices
(often called arithmetic returns) :

Vi =

(
P̄i+1 − Ci

Ci
,

P̄i+2 − Ci

Ci
, . . . ,

P̄i+k − Ci

Ci

)
. (2)

Our indicator variable is the total sum of the variations whose absolute value is above our target
margin p% :

Ti =
k

∑
j=1

V j
i 1l(|V j

i | > p%). (3)
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The general idea of the variable T is to signal k-days periods that have several days with average
daily prices clearly above the target variation. High positive values of T mean that there are several
average daily prices that are p% higher than today’s close. Such situations are good indications of
potential opportunities to issue a buy order, as we have good expectations that the prices will rise.
On the other hand, highly negative values of T suggest sell actions, given the prices will probably
decline. Values around zero can be caused by periods with “flat” prices or by conflicting positive
and negative variations that cancel each other.
The following function implements this simple indicator :

T.ind = function(quotes, tgt.margin = 0.025, n.days = 10) {
v = apply(HLC(quotes), 1, mean)
r = matrix(NA, ncol = n.days, nrow = NROW(quotes))
for (x in 1:n.days) r[, x] = Next(Delt(v, k = x), x)
x = apply(r, 1, function(x) sum(x[x > tgt.margin | x <
-tgt.margin]))
if (is.xts(quotes))
xts(x, time(quotes))
else x
}

The function starts by obtaining the average price calculated according to Equation (1). The function
HLC() extracts the High, Low, and Close quotes from a quotes object. We then obtain the returns of
the next n.days days with respect to the current close price. The Next() function allows one to shift
the values of a time series in time (both forward or backward). The Delt() function can be used
to calculate percentage or log returns of a series of prices. Finally, the T.ind() function sums up
the large absolute returns, that is, returns above the target variation margin, which we have set by
default to 2.5%.
We can get a better idea of the behavior of this indicator by looking at the figure produced with the
following code :

candleChart(last(GSPC, "3 months"), theme = "white", TA = NULL)
avgPrice = function(p) apply(HLC(p), 1, mean)
addAvgPrice = newTA(FUN = avgPrice, col = 1, legend = "AvgPrice")
addT.ind = newTA(FUN = T.ind, col = "red", legend = "tgtRet")
addAvgPrice(on = 1)
addT.ind()

The function candleChart() draws candlestick graphs (Chandeliers japonais) of stock quotes. We
have added to the candlestick graph two indicators : the average price (on the same graph as the
candlesticks) and our T indicator (below). The function newTA() can be used to create new plotting
functions for indicators that we wish to include in candlestick graphs.

/ Question 1 Ecrire un code qui permet d’ajouter aux chandeliers japonais la courbe des valeurs mé-
dianes de (Ci, , Hi, Li). Que se passe-t-il si l’on supprime l’argument on=1 de la fonction addAvgPrice ?
In our approach to this problem we will assume that the correct trading action at time t is related to
what our expectations are concerning the evolution of prices in the next k days. Moreover, we will
describe this future evolution of the prices by our indicator T. The correct trading signal at time t
will be “buy” if the T score is higher than a certain threshold, and will be “sell” if the score is below
another threshold. In all other cases, the correct signal will be do nothing (i.e., “hold”). In summary,
we want to be able to predict the correct signal for time t. On historical data we will fill in the correct
signal for each day by calculating the respective T scores and using the thresholding method just
outlined above.
3.2 Which Predictors ?
We are assuming that if in the past a certain behavior p was followed by another behavior f , and if
that causal chain happened frequently, then it is plausible to assume that this will occur again in the
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future. Thus if we observe p now, we predict that we will observe f next. We are approximating the
future behavior ( f ), by our indicator T. We now have to decide on how we will describe the recent
prices pattern (p in the description above).
The simplest type of information we can use to describe the past are the recent observed prices.
That is the type of approach followed in several standard time series modeling approaches. These
approaches develop models that describe the relationship between future values of a time series
and a window of past q observations of this time series. We will try to enrich our description of the
current dynamics of the time series by adding further features to this window of recent prices.
Technical indicators are numeric summaries that reflect some properties of the price time series.
The amount of technical indicators available can be overwhelming. In R we can find a very good
sample of them, thanks to package TTR.
We will use a simple approach to select the features (feature = technical indicator) to include in our
model. The idea is to illustrate this process with a concrete example and not to find the best possible
solution to this problem. We will define an initial set of features and then use a technique to estimate
the importance of each of these features. Based on these estimates we will select the most relevant
features.
We will center our analysis on the Close quote, as our buy/sell decisions will be made at the end
of each daily session. The initial set of features will be formed by several past returns on the Close
price. The h-days (arithmetic) returns, or percentage variations, can be calculated as

Ri−h =
Ci − Ci−h

Ci−h
. (4)

We have included in the set of candidate features ten of these returns by varying h from 1 to 10.
Next, we have selected a representative set of technical indicators, from those available in package
TTR – namely, the Average True Range (ATR), which is an indicator of the volatility of the series ; the
Stochastic Momentum Index (SMI), which is a momentum indicator ; the Welles Wilder’s Directio-
nal Movement Index (ADX) ; the Aroon indicator that tries to identify starting trends ; the Bollinger
Bands that compare the volatility over a period of time ; the Chaikin Volatility ; the Close Location
Value (CLV) that relates the session Close to its trading range ; the Arms’ Ease of Movement Value
(EMV) ; the MACD oscillator ; the Money Flow Index (MFI) ; the Parabolic Stop-and-Reverse ; and
the Volatility indicator.
The following functions implement this process :

myATR = function(x) ATR(HLC(x))[, "atr"]
mySMI = function(x) SMI(HLC(x))[, "SMI"]
myADX = function(x) ADX(HLC(x))[, "ADX"]
myAroon = function(x) aroon(x[, c("High", "Low")])$oscillator
myBB = function(x) BBands(HLC(x))[, "pctB"]
myChaikinVol = function(x) Delt(chaikinVolatility(x[, c("High","Low")]))[, 1]
myCLV = function(x) EMA(CLV(HLC(x)))[, 1]
myEMV = function(x) EMV(x[, c("High", "Low")], x[, "Volume"])[,2]
myMACD = function(x) MACD(Cl(x))[, 2]
myMFI = function(x) MFI(x[, c("High", "Low", "Close")],x[, "Volume"])
mySAR = function(x) SAR(x[, c("High", "Close")])[, 1]
myVolat = function(x) volatility(OHLC(x), calc = "garman")[,1]

The variables we have just described form our initial set of predictors for the task of forecasting the
future value of the T indicator. We will try to reduce this set of 22 variables using a feature selection
method. Random forests can be used to estimate the importance of the variables involved in a
prediction task. Informally, this importance can be estimated by calculating the percentage increase
in the error of the random forest if we remove each variable in turn.
In our approach to this application, we will split the available data into two separate sets : (1) one
used for constructing the trading system ; and (2) other to test it. The first set will be formed by
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the first 30 years of quotes of S&P 500. We will leave the remaining data (around 9 years) for the
final test of our trading system. In this context, we must leave this final test set out of this feature
selection process to ensure unbiased results.
We first build a random forest using the data available for training :

data(GSPC)
library(randomForest)
data.model = specifyModel(T.ind(GSPC) ~ Delt(Cl(GSPC),k=1:10) +
myATR(GSPC) + mySMI(GSPC) + myADX(GSPC) + myAroon(GSPC) +
myBB(GSPC) + myChaikinVol(GSPC) + myCLV(GSPC) +
CMO(Cl(GSPC)) + EMA(Delt(Cl(GSPC))) + myEMV(GSPC) +
myVolat(GSPC) + myMACD(GSPC) + myMFI(GSPC) + RSI(Cl(GSPC)) +
mySAR(GSPC) + runMean(Cl(GSPC)) + runSD(Cl(GSPC)))
set.seed(1234)
rf = buildModel(data.model,method="randomForest",
training.per=c(start(GSPC),index(GSPC["1999-12-31"])),
ntree=50, importance=T)

/ Question 2 A quoi l’option training.per de la fonction buildModel correspond-t-elle ? et l’option
importance ?
After obtaining the model, we can check the importance of the variables as follows :

varImpPlot(rf@fitted.model, type = 1)
/ Question 3 Sachant que le graphique tracé représente le pourcentage d’augmentation de l’erreur qua-

dratique due à la suppression d’une variable explicative, déterminer les 8 variables les plus perti-
nentes.

/ Question 4 En utilisant la fonction specifyModel, définir le nouveau modèle data.model qui a pour
variable à expliquer T.ind(GSPC) et comme variables explicatives les 8 variables les plus pertinentes
trouvées dans la question précédente.
The following code creates all the data structures that we will use in what follows for obtaining
predictive models for the two tasks.

Tdata.train = as.data.frame(modelData(data.model,
data.window=c("1970-01-02","1999-12-31")))

Tdata.eval = na.omit(as.data.frame(modelData(data.model,
data.window=c("2000-01-01","2009-09-15"))))

/ Question 5 Que fait la fonction na.omit utilisée ci-dessus. Pourquoi son utilisation est plus impor-
tante (voir indispensable) dans la définition de l’échantillon de test, alors que l’on s’en passe dans
la définition de l’échantillon d’entrainement.
Instead of predicting T, we will focus our attention on the prediction of

signal =


sell, if T < −0.1,

hold, if |T| ≤ 0.1,

buy, if T > 0.1.

The selection of the values 0.1 and −0.1 is purely heuristic and we can also use other thresholds.
Still, these values mean that during the 10 day-period used to generate the T values, there were at
least four average daily prices that are 2.5% above the current close (4× 0.025 = 0.1).
Function trading.signals(), available in the book package, can carry out this transformation of
the numeric T values into a factor with three possible values : “s”, “h”, and “b”, for sell, hold and
buy actions.

Tdata.train[,1] = trading.signals(Tdata.train[,1],0.1,-0.1)
names(Tdata.train)[1] = "signal"
summary(Tdata.train)
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A faire pour le compte-rendu du TP2
Utilisez votre éditeur de texte préféré (Word, LaTeX, Open Office) pour rédiger le compte-rendu.
Convertissez le fichier final en pdf avant de me l’envoyer à l’adresse

arnak.dalalyan@ensae.fr

1. Expliquer la commande apply(cvpred,2,function(x) sum(class!=x)) utilisée à la page
2.

2. Pourquoi si l’on relance deux fois les commandes de la page 2, les résultats obtenus ne sont
pas les mêmes ? Imaginons que nous avons lancé ces commandes 100 fois. Proposez une
stratégie pour choisir k en combinant ces 100 résultats obtenus.

3. Répondre aux questions 1-5 ci-dessus an insérant le code le cas échéant.

4. Utiliser l’algorithme kNN pour prédire la variable signal sur l’échantillon de test Tdata.eval,
en utilisant Tdata.train comme échantillon d’entraînement. Evaluer l’erreur de la prédic-
tion. Inclure le code.

5. La même chose pour l’algorithme d’arbre de décision (cf. la commande rpart() vue en
TP1). Est-il meilleur que kNN ? Afficher l’arbre de décision obtenu.

La date limite pour l’envoi du compte-rendu est le 8 mars.
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