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pour l’obtention du diplôme de
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Résumé. Cette thèse a pour objet l’étude et la conception d’algorithmes d’apprentissage,
notamment pour la classification de données et la régression aux moindres carrés. Elle
regroupe quatre articles. Le premier fournit une borne PAC-bayésienne sur l’erreur de
régression aux moindres carrés qui est valable pour toute procédure d’agrégation. La
minimisation de cette borne, qui est numériquement réalisable, conduit à un estimateur
ayant la vitesse de convergence optimale au sens minimax.

Le deuxième article est le cœur de la thèse. Il présente de nouvelles bornes PAC-
bayésiennes en classification et déduit de ces bornes des algorithmes originaux reposant,
d’une part, sur les schémas de compression et, d’autre part, sur les lois de Gibbs.

La troisième partie illustre les bornes introduites dans la deuxième et montre l’influence
de la distribution a priori sur la qualité des estimateurs de Gibbs. Ce travail discute
également de manière approfondie les hypothèses de complexité et de marge proposées par
Mammen et Tsybakov (E. Mammen and A.B. Tsybakov, Smooth discrimination analysis,
Ann. Stat., 27, 1808–1829, 1999).

Enfin, le dernier article a pour but d’unifier les bornes existantes sur l’erreur de
généralisation en classification. La borne proposée permet notamment d’établir un lien
entre les complexités PAC-bayésiennes et les nombres de Rademacher.

Mots-clés. Théorie statistique de l’apprentissage, borne PAC-bayésienne, classification,
régression aux moindres carrés, mesure empirique de complexité, mélange, combinai-
son convexe, estimateur randomisé, loi de Gibbs, schéma de compression, estimation
adaptative, estimation non-paramétrique, inégalité de déviation, borne sur l’erreur de
généralisation, théorie de Vapnik-Chervonenkis, hypothèse entropique, hypothèse de marge,
borne sur le risque, châınage, inégalité oracle, algorithme de “boosting”.

Abstract. This PhD thesis is a mathematical study of the learning task – specifically
classification and least square regression – in order to better understand why an algo-
rithm works and to propose more efficient procedures. The thesis consists in four papers.
The first one provides a PAC bound for the L

2 generalization error of methods based on
combining regression procedures. This bound is tight to the extent that, for an appro-
priate aggregation procedure, we recover known optimal convergence rates. Besides, it is
numerically tractable to derive an optimal aggregating procedure from the bound.

The second paper is the core of the thesis. It provides new PAC-Bayesian bounds in
classification and put forward original algorithms based on compression schemes and Gibbs
distributions.

The third paper illustrates the bounds developed in the second one and shows the
influence of the prior distribution on the efficiency of Gibbs classifiers. It also discusses the
complexity and margin assumptions proposed by Mammen and Tsybakov (E. Mammen
and A.B. Tsybakov, Smooth discrimination analysis, Ann. Stat., 27, 1808–1829, 1999).

The fourth paper aims to unify the numerous generalization error bounds which have
appeared these last decades. It makes in particular the link between Rademacher and
PAC-Bayesian bounds.

Key words and phrases. Statistical learning theory, PAC-Bayesian bound, classification,
least square regression, empirical complexity, mixture, convex aggregation, randomized
estimator, Gibbs classifier, compression scheme, adaptive estimation, nonparametric esti-
mation, deviation inequality, generalization error bound, VC theory, entropy assumption,
margin assumption, risk bound, chaining, model selection, oracle inequality, boosting al-
gorithm.
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chard, Stéphane Boucheron and Nicolas Vayatis.

I am very grateful to the Direction du Personnel et des Services of the Ministère
de l’Equipement, du Transport et du Logement for having accepted to support this
work.

I am also very indebted to Professor Bernhard Schölkopf for inviting me at Max
Planck Institute and to Olivier Bousquet for numerous discussions and hours of
work together.

I would also like to thank my friends Ashkan Nikeghbali and Fulvio Pegoraro
for both the time we have spent together and the thrilling discussions we have had.
Finally, I thank my family, and in particular my parents, for their nonstop support.



5

Table of Contents

Abstract 3

Acknowledgements 4

Table of Contents 5

Introduction 8

AGGREGATED ESTIMATORS AND EMPIRICAL COMPLEXITY

FOR LEAST SQUARE REGRESSION 15

1. Introduction 16
2. Framework 17
3. Randomization 19
3.1. PAC-Bayesian expected risk bound 19
3.2. Optimal randomizing procedure 20
4. Aggregated estimators 22
4.1. PAC-Bayesian expected risk bound 22
4.2. Optimal aggregating procedure 24
4.2.1. Comparison with minimax bounds 24
4.2.2. Aggregating procedure 29
4.3. Expected risk bound for any aggregating procedure 33
4.4. Application to binary classification 34
5. Numerical examples : binary classification 35
5.1. Setup and notations 35
5.1.1. Data sets generators 37
5.1.2. Prior distribution 37
5.2. Computation of the bound and of the classifier 38
5.3. Experiments 42
5.3.1. Our algorithm: KL-Boost 42
5.3.2. AdaBoost using domain-partitioning functions 43
5.4. Numerical results and comments 46
6. Conclusion 57
7. Proofs 57
Appendix. Model selection and Remark 4.3 70
References 71

A BETTER VARIANCE CONTROL FOR PAC-BAYESIAN

CLASSIFICATION 73

1. Setup and notations 75
2. The different types of generalization error bounds 77
2.1. First PAC-bounds 77
2.2. First improvements 79
2.3. Relative PAC-bounds 80
3. Classification using relative data-dependent bounds 81
3.1. Compression schemes complexity 81
3.2. PAC-Bayesian complexity 83
3.2.1. Kullback-Leibler complexity 83



6

3.2.2. Localized complexity 86
3.3. Mixing both complexities 87
3.4. Similar algorithms in the inductive setting 88
3.4.1. Mixed complexities 88
3.4.2. PAC-Bayesian complexities 90
4. Relative error between any two randomized estimators 90
4.1. Basic result 91
4.2. Optimizing the result wrt the parameter λ 91
4.3. Localization 92
4.3.1. Localizing both KL-divergences 92
4.3.2. Localizing one KL-divergence 93
4.4. In the inductive setting 94
5. Compression schemes 95
5.1. In the transductive setting 95
5.2. In the inductive setting 95
6. Some properties of Gibbs estimators 96
6.1. Concentration of Gibbs estimators 96
6.2. Bracketing on the efficiency of standard Gibbs estimators 97
7. Vapnik’s type bounds 98
7.1. Basic bound 98
7.2. Localized VC-bound 99
7.3. Empirical VC-bound taking into account the variance term 100
7.4. In the inductive learning 100
7.4.1. Complexity term 100
7.4.2. Variance term 101
7.4.3. Conclusion 102
8. General PAC-Bayesian bounds 102
8.1. A basic PAC-Bayesian bound 102
8.2. Concentration of partition functions 104
8.3. PAC-Bayesian bounds with almost exchangeable prior 105
8.3.1. Basic bound 105
8.3.2. Concentration of partition functions 107
8.3.3. Comparison between Theorem 8.4 and Theorem 8.1 108
8.4. Compression schemes in the inductive learning 108
9. Proofs 109
Appendix A. Optimal coupling 121
Appendix B. Optimality of Algorithm 3.2 under (CM) assumptions 122
References 123

CLASSIFICATION UNDER POLYNOMIAL ENTROPY AND

MARGIN ASSUMPTIONS 125

1. Setup and notations 126
1.1. Measurability 128
1.2. Covering, packing and bracketing nets and entropies 128
2. Known PAC-Bayesian bounds 129
3. Classification under complexity and margin assumptions 130
3.1. Complexity and margin assumptions 130
3.1.1. Complexity assumptions 130



7

3.1.2. Margin assumptions 130
3.2. Gibbs classifier 131
3.2.1. Under Assumptions (MA4) and (CA3) for q > 0 131
3.2.2. Under Assumptions (MA2) and (CA3) for q = 0 132
3.2.3. Under Assumption (MA2) and a local complexity assumption 133
3.2.4. Adaptive choice of the temperature 134
3.3. Empirical risk minimization on nets 134
3.3.1. Under Assumptions (MA3) and (CA1) for q > 0 134
3.3.2. Under Assumptions (MA2) and (CA1) for q = 0 135
3.4. Chaining 135
3.5. Bracketing entropy 138
4. Classification under empirical complexity assumptions 140
4.1. Concentration of the empirical entropies 140
4.2. Chaining empirical quantities... 141
4.2.1. ...in the transductive learning 141
4.2.2. ...in the inductive learning 142
4.3. Application to VC-classes 143
5. Assouad’s lemma 144
6. Proofs 145
References 168

PAC-BAYESIAN GENERIC CHAINING 171

1. Introduction 171
2. Previous results 172
3. Main results 174
4. Discussion 175
5. Proofs 176
6. Conclusion 178
References 178



8

Introduction

Statistical Learning Theory is a research field devoted to the statistical analysis
of algorithms for making predictions about the future based on past experiences.
Since the pioneering work of Vapnik and Chervonenkis, the number of researchers
working on this problem have known an exponential growth. A key reason for this
development is that, with the computer revolution, we are able to collect huge
complex data sets in many domains: bioinformatics, insurance, finance and so on,
and many different tasks such as image processing, speech recognition, pattern
recognition, requires efficient feasable algorithms.

Another reason for the development of the field is that the initial theoretical pro-
blem is ill-posed. Namely, we know that there is no uniformly consistent algorithm:
without any knowledge of the probability generating the data (even when the data
are assumed to be independent and identically distributed), there is no algorithm
that guarantees to tend to the best possible prediction function with a given rate.
This “no-free-lunch” theorem implies that we need to make assumptions (such as
the unknown probability distribution is in some known large set of distributions)
and/or to be less ambitious and to change the initial target into attempting to do as
well as the best function in a given subset of prediction functions -called the model.
So the underlying question is: what are these sets? Both sets depends intimately
on the nature of the prediction task and on the way the data are represented. In
other words, there is no general theory which will suit for any sets of data.

For a decade, several almost off-the-shelf efficient algorithms have arisen. The
favourite ones are Support Vector Machines and Boosting algorithms. A less recent
algorithm, the Neural Networks, is still much used by practitioners but requires
much more knowledge to be properly implemented. For “reasonable” sets of data,
these three classifiers predict rather accurately. However there is still often a gain
to preprocess complex data having a peculiar form. This preprocessing step, as
the selection of a limited number of features, is a common way to embody a prior
knowledge on the underlying phenomenon.

This thesis provides a mathematical study of learning tasks – particularly, clas-
sification – in order to better understand algorithms and derive more efficient esti-
mators. In supervised learning, we dispose of a set of training examples

ZN
1 ,

{

Zi , (Xi,Yi) : Xi ∈ X ,Yi ∈ Y ,i = 1, . . . ,N
}

,

where X is some set of inputs (also called patterns, cases, instances or observations)
and Y is some set of outputs (or targets). When Y is finite, the learning task is
called classification (or pattern recognition). When Y is the real line, it is called
regression.

In Statistical Learning Theory, we assume that the examples are generated inde-
pendently from some unknown but fixed probability distribution P. The goal is to
construct a prediction function f : X → Y (also called decision function, hypothe-
sis, estimator, procedure or algorithm 1) based on the training set that minimizes

1. The last three terms refer more to the way the prediction function is chosen.
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the expected risk (or generalization error) defined as

R(f) , EP(dX,dY )L[Y,f(X)],

where L : Y × Y is a dissimilarity measure on Y . The classification task uses the
Hamming distance L(y,y′) , 1y 6=y′ , whereas L2 regression looks at the square of the

difference: L(y,y′) , (y− y′)2. Since the probability distribution P is unknown, we
need to estimate the expected risk R in order to assess the efficiency of a prediction
function. This is done through the empirical risk (or empirical error)

r(f) , EP̄(dX,dY )L[Y,f(X)],

where P̄ , 1
N

∑N
i=1 δ(Xi,Yi) is the empirical distribution.

We can very easily choose the prediction function such that it fits perfectly all
training points (provided that the inputs in the training set are pairwise distinct).
However this is not sufficient to guarantee a small generalization error. This phe-
nomenon is called overfitting. To avoid it, we need to restrict the class of functions
on which the empirical error is minimized in order to have some guarantee on the
efficiency of the algorithm.

This restriction to a prescribed set of functions – called the model – can lead to
underfitting, i.e. to an estimator which has high empirical and expected risks. The-
refore, to choose the adequate size (also called capacity or complexity) of the model
is a key problem to build consistently efficient estimators. Vapnik-Chervonenkis
theory considers that a huge model can be seen as the limit set of a nested se-
quence of subsets (or submodels) having increasing complexities. This sequence
gives a structure on the model (and to some extent we expect that small submo-
dels contain the best function in the model). Here again, it is a hidden way of
incorporating prior knowledge.

This thesis collects four papers. A common point of these works is the way the
model is structured. Unlike Vapnik-Chervonenkis work and its model selection ap-
proach through Structural Risk Minimization, the PAC-Bayesian approach proposes
to structure the model by putting a prior distribution on it. We believe that viewing
the model through the prior distribution is finer. This prior distribution has not
the same meaning as in Bayesian learning since it does not represent the frequency
according to which we expect to observe data produced by different probability
distributions. It is a way of representing the model which is tightly related to the
Minimum Description Length approach of Rissanen.

This thesis mainly concentrates on classification. However the first 2 of the four
papers forming this thesis also concerns least square regression. It has been inspired
by the success of boosting and by questions about convex aggregation of d regression
functions. The main result of this work is to provide a tight PAC bound for the L2

generalization error of methods based on combining regression procedures and to
show how this bound can be used to build an adaptive estimator.

Specifically, let R be a class of regression functions indexed by a parameter
θ ∈ Θ

(

i.e. R ,
{

fθ : X → Y ; θ ∈ Θ
})

. Let M1
+(Θ) denote the set of probability

distributions on the parameter set and π ∈M1
+(Θ) be a prior distribution. In this

2. It is a slightly revised version of the paper accepted by the Annales de l’Institut Henri
Poincaré.
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work, the model is the set of mixtures 3

C(R) ,
{

Eρ(dθ)fθ : ρ ∈M1
+(Θ)

}

.

When the set Θ is finite, C(R) is just the set of all possible convex combinations of
functions in R.

In L2 regression, the best prediction function is the conditional expectation f∗P :
x 7→ EP(Y/X = x). Let us assume that

– for any functions f , g in R∪ {f∗P}, for any x ∈ X ,

|f(x)− g(x)| ≤ B.
– there exists α > 0, M > 0 such that for any x ∈ X ,

EP(dY ) exp
(

α|Y − f∗P(X)|/X = x
)

≤M.

The constants α, B and M are assumed to be known by the statistician. Let
f̃ , argminf∈C(R)R(f) denote the best mixture and let ρ̃ ∈ M1

+(Θ) be such that

f̃ = Eρ̃(dθ)fθ. The complexity of a mixture ρ is defined as the Kullbach-Leibler

divergence K(ρ,π) , Eρ(dθ) log ρ
π (θ) when ρ is absolutely continuous wrt π and

K(ρ,π) , +∞ otherwise. The main result is:

Theorem 1. There exist positive constants C1 and C2 (which can be explicited in
terms of α, B and M) such that for any ǫ > 0 and 0 < λ ≤ C1, with P⊗N -probability
at least 1− ǫ, for any probability distribution ρ ∈M1

+(Θ), we have

R
(

Eρ(dθ)fθ

)

−R(f̃) ≤ (1 + λ)
[

r
(

Eρ(dθ)fθ

)

− r(f̃)
]

+2λEP̄(dX)Varρ(dθ)fθ(dX) + C2
K(ρ,π)+log(ǫ−1)

Nλ
.

Define ρ̂λ as the minimizer of

Bλ(ρ) , (1 + λ)r
(

Eρ(dθ)fθ

)

+ 2λEP̄(dX)Varρ(dθ)fθ(dX) + C2
K(ρ̃,π)

Nλ
.

Let Λ be a geometric grid of
[

C1√
N

;C1

]

, K ,
K(ρ,π)+log[log(C3N)ǫ−1]

N for an appro-

priate constant C3 (depending on C1 and the radius of the grid) and let C denote
a constant (possibly depending on α, B and M). From the previous result, we have

– For any ǫ > 0, taking λ̂ minimizing

Bλ(ρλ)− (1 + λ) min
C(R)

r + C2
log[log(C3N)ǫ−1]

Nλ

over the grid Λ, with P⊗N -probability at least 1− ǫ, we have

R(Eρ̂λ̂(dθ)fθ)−R(f̃) ≤ C
√
K,

– by cutting the training set into two pieces, building ρ̂λ on the first sample
only, and taking λ̂ as the minimizer of the empirical error on the second
sample of Eρ̂λ(dθ)fθ over the grid Λ, for any ǫ > 0, with P⊗N -probability
at least 1− ǫ,

R(Eρ̂λ̂(dθ)fθ)−R(f̃) ≤ C
(√

KEP(dX)Varρ̃(dθ)fθ(X) ∨ K
)

.

3. Here, the prior distribution is not put on the model but on the underlying set of functions R.
In the other papers of the thesis, the prior will effectively be on the model.
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In particular, when Θ is finite with cardinal d, by taking a uniform prior distribu-
tion, we obtain:

Corollary 2. The two-step procedure is adaptive to the extent that when the best
convex combination belongs to the d initial functions, the convergence rate has the
order of log d

N (which is the model selection rate). In the worst case, the procedure

has the convergence rate
√

log d
N , which is known to be optimal when d >

√
N .

In the binary classification setting, we implemented the one-step (but non adap-
tive) procedure to classify input data in Rd by aggregating stumps and plugging in
the regression function to obtain a decision rule. The accuracy of the prediction of
the resulting algorithm competes with Adaboost in practice (in particular in noisy
classification tasks). Since it is regularized (with the KL-divergence), the algorithm
does not overfit unlike AdaBoost. However, for other basis functions than stumps,
KL-Boost is not as computationally simple as Adaboost.

The second work presented in this thesis provides a better variance control in
PAC-Bayesian bounds for classification and derive original algorithms from these
bounds. The main idea of these classification procedures is to start with the function
having the smallest complexity, and at each step take the function of smallest
complexity having a smaller generalization error with high probability. To compare
the efficiency of successive estimators leads to a better variance estimation.

We consider two types of complexity : a PAC-Bayesian one and a compression
schemes one. The latter gives a simple way of adapting any overfitting estimator 4

into a well-regularized procedure, and also gives a simple criterion to pick the right
algorithm into a family of algorithms.

Specifically, let Z be the product of the input space X and the label space Y ,
and let F̂ : ∪+∞

n=0Zn × Θ × X → Y denote the family of algorithms indexed by

the parameter θ ∈ Θ. The associated model
{

F̂zn
1 ,θ : n ∈ N,zn

1 ∈ Zn,θ ∈ Θ
}

is
huge. Compression schemes consider the small data-dependent subsets of the form:
{

F̂zn
1 ,θ : n ≤ k,zn

1 ∈ ZN
1 ,θ ∈ Θ

}

, k being small wrt the integer N .

For any subset I ⊂ {1, . . . ,N}, define Ic , {1, . . . ,N} − I and ZI , (Zi)i∈I .

Let P̄I be the associated empirical distribution P̄I , 1
|I|
∑

i∈I δZi
. The law of the

random variable ZI will be denoted PI .
For any I,I ′ ⊂ {1, . . . ,N}, introduce



































θI ∈ argminθ∈ΘP̄
I [Y 6= F̂ZI ,θ(X)]

F̂I , F̂ZI ,θI

R(I) , P[Y 6= F̂I(X)]

r(I) , P̄Ic

[Y 6= F̂I(X)]

P(I,I ′) , P[F̂I(X) 6= F̂I′(X)]

P̄(I,I ′) , P̄(I∪I′)c

[F̂I(X) 6= F̂I′(X)]

Let ǫ > 0 be the desired confidence level (see the following theorem). Finally, for

any I,I ′ ⊂ {1, . . . ,N}, define CI,I′ ,
(|I|+|I′|) log(2N)+log[(2ǫ)−1]

|(I∪I′)c| and

S(I,I ′) ,
√

2CI,I′ P̄(I,I ′) +
7CI,I′

3
.

4. For instance, the 1-Nearest Neighbor algorithm, non pruned trees, kernel machines as SVM
with heavily penalized errors.
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The following algorithm appropriately chooses the primary algorithm θ ∈ Θ and
the compression set I.

Algorithm 1. Let I0 ⊂ {1, . . . ,N} of cardinal 2. For any k ≥ 1, define Ik as the
smallest subset of {1, . . . ,N} of cardinal greater or equal to |Ik−1| such that

r(Ik)− r(Ik−1) + S(Ik,Ik−1) ≤ 0.

Classify using the function F̂IK
, where IK is the compression set obtained at the

last iteration.

The following theorem guarantees the efficiency of this procedure.

Theorem 3. With P⊗N -probability 1− ǫ, we have

– for any k ∈ {1, . . . ,K}, R(Ik) ≤ R(Ik−1),

– R(IK) ≤ inf
I,ξ≥0

sup
I′:|I′|≤|I|

{

(1 + ξ)R(I)− ξR(I ′) + 2(1 + ξ)S(I,I ′)
}

.

This procedure can be useful to choose the similarity measure on the input data,
and in particular to choose the kernel (its type and its parameter) of a SVM. It
is an alternative to the commonly used cross-validation procedure which has the
benefit to be theoretically justified.

PAC-Bayesian theorems and the study of randomized estimators lead to consider
another measure of complexity based on the Kullbach-Leibler divergence. Let π
denote the prior distribution on a given model indexed by the parameter set Θ.
For any measurable real function h such that exp(h) is π-integrable, we define

πh(dθ) ,
exp[h(θ)]

Eπ(dθ′) exp[h(θ′)] · π(dθ).

We propose an efficient way of choosing the temperature of the Gibbs estimator
which classifies by drawing a function according to the posterior distribution π−λr.

Besides, we give the following bracketing of the efficiency of Gibbs classifiers.

Theorem 4. For any λ > 0 and 0 < χ ≤ 1, we have

Eπ−(1+χ)λR
R− K(π−λr,π−λR)

χλ
≤ Eπ−λr

R ≤ Eπ−(1−χ)λR
R+

K(π−λr,π−λR)

χλ
,

and for any ǫ > 0, 0 < γ < 1
2

and 0 < λ ≤ 0.39 γN , with P⊗N -probability at least
1− ǫ, we have

K(π−λr,π−λR) ≤ 4
1−γ logEπ−λR(dθ) exp

(

4.1λ2

γN Eπ−λR(dθ′)P
[

fθ(X) 6= fθ′(X)
]

)

+ 5γ
1−γ log(4ǫ−1).

The third paper in this thesis studies Gibbs classifiers, and other estimators
linked to the empirical risk minimization, under variants of the complexity and
margin assumptions introduced by Mammen and Tsybakov (E. Mammen and A.B.
Tsybakov, Smooth discrimination analysis, Ann. Stat., 27, 1808–1829, 1999).

These assumptions assert that

– the entropy of the model wrt the pseudo-distance (f1,f2) 7→ P[f1(X) 6=
f2(X)] is bounded by a polynomial function of the inverse of the radius,
i.e. for some C′ > 0 and q > 0, for any u > 0, H(u) ≤ C′u−q

– the expected pseudo-distance between a function and the best function
in the model is bounded by a polynomial function of the excess risk, i.e.
for some C′′ > 0 and 1 ≤ κ ≤ +∞, for any function f in the model,
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P[f(X) 6= f̃(X)] ≤ C′′[R − R(f̃)]
1
κ , where f̃ minimizes the expected risk

over the model.

Under these assumptions, we have

Theorem 5. Let

(vN ,aN ) ,



















(

N−
κ

2κ−1+q ,Č1N
− κ−1+q

q(2κ−1+q)

)

for 0 < q < 1
(

(logN)N−
1
2 ,Č1(logN)−

1
2N−

1
2

)

for q = 1
(

N−
1

1+q ,Č1N
− 1

1+q

)

for q > 1

For any classifier minimizing the empirical risk among a uN -covering net NuN

of the model such that aN ≤ uN ≤ Č2vN and log
∣

∣NuN

∣

∣ ≤ Č3u
−q
N for some positive

constants Či,i = 1, . . . ,3, we have

EP⊗NR(f̂)−R(f̃) ≤ CvN

for some constant C > 0
(

depending on C′′, Či,i = 1, . . . ,3
)

.

Let λN ≥ Č4
hq(uN )

vN
for some constant Č4, and let π be the uniform distribution

on the net NuN
. Then we have

EP⊗NEπ−λN r
R −R(f̃) ≤ C̆vN

for some constant C̆ > 0
(

depending on C′′, Či,i = 1, . . . ,4
)

.

The previous convergence rates are optimal to the extent that we prove associated
lower bounds. The proof of this theorem requires the chaining trick introduced by
Dudley (R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.,
6, 899–929, 1978). This trick appears to be the only tool to properly take into
account a polynomial entropy assumption, which holds for any radius. For complex
classes (i.e. q ≥ 1), we note that the optimal convergence rate is obtained since we
upper bound the excess risk with an integral entropy which does not start from 0,
but from the radius of the net we consider.

Consider the stronger margin assumption: for some c′′,C′′ > 0 and 1 ≤ κ ≤ +∞,
for any functions f in the model,

c′′[R−R(f̃)]
1
κ ≤ P[f(X) 6= f̃(X)] ≤ C′′[R −R(f̃)]

1
κ .

Under this assumption, two phenomenons occur

– we can prove that some particular estimators has the optimal convergence
rate without having recourse to chaining.

– we no longer have discontinuities in results concerning q < 1 and q ≥ 1.

Specifically, let Č1N
− κ−1+q

q(2κ−1+q) ≤ uN ≤ Č2N
− 1

2κ−1+q . For any classifier mi-
nimizing the empirical risk among a uN -covering net NuN

with log
∣

∣NuN

∣

∣ ≤
Č3u

−q
N , we have EP⊗NR(f̂)−R(f̃) ≤ CN− κ

2κ−1+q .

We also consider bracketing polynomial entropy assumptions. These are much
more restrictive than covering ones. For instance, under these assumptions,

– with high probability, the empirical covering nets are “similar” to the ex-
pected ones,

– the ERM-classifier 5 is optimal whereas it was not even necessarily consistent
under polynomial covering entropy assumptions.

5. Empirical Risk Minimizer.
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We deal also with the case of logarithmic entropy assumptions: without surprise 6,
we find the same convergence rates as for VC classes. Once more, chaining was
the key tool to get rid of the logarithmic factor appearing in classical Vapnik-
Chervonenkis bounds.

At last, we show that the efficiency of a Gibbs classifier essentially relies on the
weight given by the prior distribution to the balls centered at the best function in
the model and associated with the pseudo-distance (f1,f2) 7→ P[f1(X) 6= f2(X)].

The last part of this thesis is a joint work with Olivier Bousquet 7 presented
at the Neural Information Processing Systems conference in December 2003. The
literature is abundant in generalization error bounds in classification, each one
containing an improvement over the others for certain situations. The goal of this
work is to combine these gains into a single bound.

The third work in this thesis had stressed on the usefulness of the chaining trick.
In stochastic processes theory, it is well-known that the integral entropy, which is
tight in many situations, does not capture exactly the expectation of the supremum
of a sub-Gaussian process. A refinement of Dudley’s chaining due to Fernique and
Talagrand allows to be more precise and leads to the introduction of majorizing
measures (M. Talagrand, Majorizing measures: the generic chaining, Ann. Probab.,
24, (3), 1049–1103, 1996).

Our bound combines the generic chaining trick and the PAC-Bayesian bounds
developed in the second paper in this thesis. We see that these two approachs are
linked to the extent that majorizing measures can be seen as prior distributions on
the model.

This paper gives a quick survey of generalization error bounds in classification
and presents our bound from which we can deduce the previous ones up to some
variations. Due to the complexity of the bound (which is inherent to the chaining
technique), its practical use to design new algorithms is still a subject of future
research.

6. since VC classes have logarithmic empirical entropies.
7. Max Planck Institute for Biological Cybernetics – Spemannstrasse 38 – D-72076 Tübingen

– Germany.
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Abstract. Numerous empirical results have shown that combining regression

procedures can be a very efficient method. This work provides PAC bounds

for the L2 generalization error of such methods. The interest of these bounds
are twofold.

First, it gives for any aggregating procedure a bound for the expected risk
depending on the empirical risk and the empirical complexity measured by

the Kullback-Leibler divergence between the aggregating distribution ρ̂ and a

prior distribution π and by the empirical mean of the variance of the regression
functions under the probability ρ̂.

Secondly, by structural risk minimization, we derive an aggregating pro-

cedure which takes advantage of the unknown properties of the best mixture
f̃ : when the best convex combination f̃ of d regression functions belongs to

the d initial functions (i.e. when combining does not make the bias decrease),

the convergence rate is of order (log d)/N . In the worst case, our combining

procedure achieves a convergence rate of order
√

(log d)/N which is known to

be optimal in a uniform sense when d >
√

N (see [10, 15]).
As in AdaBoost, our aggregating distribution tends to favor functions which

disagree with the mixture on mispredicted points. Our algorithm is tested
on artificial classification data (which have been also used for testing other

boosting methods, such as AdaBoost).
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1. Introduction

Boosting algorithms (AdaBoost introduced by Freund and Schapire in [5], Bag-
ging and Arcing introduced by Breiman in [2], [3]) have been successful in practical
classification applications. With support vector machines, boosting is known to be
one of the best off-the-shelf classification procedure. As a consequence, numerous
researchers have studied the reasons of their efficiency and have looked for means
to extend their application domain to regression problems.

Friedman, Hastie and Tibshirani have proved ([6]) that AdaBoost is a stage-
wise estimation procedure for fitting an additive logistic regression model. From
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this idea, Friedman derive a “gradient boosting machine” to estimate a function
for some specified loss criteria.

Rätsch et al. ([11]) have shown that boosting is similar to an iterative strat-
egy which maximizes the minimum margin of the aggregated classifier using an
exponential barrier. They also use their view to obtain a boosting technique for
regression.

In [15], Yang has studied minimax properties of aggregating regression proce-
dures. In particular, he has proved that when the number d of aggregated proce-
dures is less than

√
N (where N is the size of the training set), the order of the

convergence rate of the best mixture (in the minimax sense) is the same as the

one of the best linear combination (i.e. d/N). When d is greater than
√
N , the

convergence rate of the best convex combination attains
√

(log d)/N (see also [10]).
In this paper, we will obtain new bounds for any aggregating procedure (Section

4) and derive from these bounds a procedure which achieves the optimal minimax
convergence rate. Before proving these bounds, we will review Catoni results ([4])
on randomization procedures (Section 3). The estimators obtained by minimization
of the bound are tested on classification using common artificial data: Twonorm,
Threenorm and Ringnorm (Section 5).

2. Framework

We assume that we observe an i.i.d. sample ZN
1 , (Xi, Yi)

N
i=1 of random vari-

ables distributed according to a product probability measure P⊗N , where P is a
probability distribution on (Z,BZ) , (X ⊗ Y ,BX ⊗ BY), (X ,BX ) is a measurable
space, Y = R and BY is the Borel sigma algebra. Let P(dY |X) denote a regular
version of the conditional probabilities (which we will use in the following without
further mention).

We assume that we have no prior information about the distribution P of (X, Y ),
and that we have to guess it entirely from the training sample. We have to work
with a prescribed set of regression functions since it is well known that there is

generally no estimator f̂ : ZN → F(X ,Y) such that

lim
N→+∞

sup
P∈M1

+(Z)

{

EP⊗(N+1)L
[

YN+1, f̂(ZN
1 )(XN+1)

]

− inf
f∈F(X ,Y)

EPL[Y, f(X)]
}

= 0,

where F(X ,Y) denotes the set of all the measurable functions from X to Y and L

is a loss function. However, replacing F(X ,Y) by the set of mixtures R̃ of a set
of functions R in the previous equality makes the problem feasible (provided the
model R is not too big) with a speed of convergence depending on the capacity (or
complexity) of R. So we are interested in a particular non-parametric regression
problem. For convenience of notation, we will index the functions in the model by
the parameter θ:

R , {fθ ∈ F(X ,Y); θ ∈ Θ}.
Note that the set R (or equivalently the parameter set Θ) is not necessarily finite.
Let π(dθ) denote a prior distribution on the measurable space (Θ, T ), where T
is a σ-field on the parameter space Θ. In practice, the probability distribution π
will be chosen according to our preferences (and to our prior knowledge had we
some). For instance, if the model R is the set of decision trees of depth lower than
a certain limit and if we do not have any prior knowledge, we would like to favour
small trees with respect to big ones since they are simpler and therefore more easily



18 J.-Y. AUDIBERT

interpretable. To favour these trees, it suffices to give them a bigger π-probability.
On the contrary, if a subset S of R has a π-probability equal to one, then the
functions in the π-negligible set R \ S are eliminated from the model.

We assume that the map (θ, x) 7→ fθ(x) is (BX ⊗ T )-measurable. The set of
mixtures of the set R is written as

R̃ , {Eρ(dθ)fθ; ρ ∈M1
+(Θ)}.

The best possible guess is defined as the one minimizing the expected risk

R(f̂) , EPL(Y, f̂(X)),

where L is the square loss : L(Y, Y ′) = (Y − Y ′)2. The mean square loss has
the distinguished property of being minimized by the conditional expectation of Y
given X . More precisely, it decomposes into

R(f̂) = EP

{

[Y −EP(Y/X)]2
}

+ EP

{

[EP(Y/X)− f̂(X)]2
}

.

Therefore, minimizing the mean square loss is equivalent to minimizing the qua-
dratic distance to the conditional expectation.

Since the expected risk is not observable, we will have to use the empirical risk

r(f̂) ,
1

N

N
∑

i=1

L(Yi, f̂(Xi)) = EP̄L(Y, f̂(X)),

where P̄ denotes the empirical distribution

P̄ ,
1

N

N
∑

i=1

δ(Xi,Yi).

Let Θ1, ...,ΘM be subsets of Θ such that their union is Θ. Consider a regression
procedure which estimate the best θ among a subset of Θ. Using this procedure,

we get θ̂1 ∈ Θ1, ..., θ̂M ∈ ΘM .

• Deterministic model selection consists in choosing one of the θ̂i to estimate
EP(Y/X).

• In stochastic model selection (or randomized estimation), the choice of θ̂i is
randomized. This two-steps procedure (estimating the best θ in each sub-
model Θi and choosing randomly the sub-model) can be seen as a one-step

procedure if we allow f̂ to be drawn from R according to some posterior
distribution ρ(dθ) on the parameter set (Θ, T ) (see [9, 4]).

• In model averaging (or aggregated estimation), the idea is to use a weight-
ing average of the fθ̂i

, in other words to combine the different estimators.
This could also be done in a one-step procedure searching for the posterior

distribution ρ on (Θ, T ) such that f̂ = Eρ(dθ)fθ is close to EP(Y/X).

In this paper, we give results concerning these last two estimation problems. Our
assumptions are the two following ones. First the conditional expectation EP(Y/X)
and the regression function in the models are relatively bounded in L∞-norm, i.e.
for any f , g in R∪ {E(Y/X = ·)}, for any x ∈ X ,

(2.1) |f(x)− g(x)| ≤ B.
Secondly, we assume that the noise has a uniform exponential moment conditionally
to the explanatory variable, i.e. there exists α > 0, M > 0 such that for any x ∈ X ,

(2.2) EP(dY ) exp(α|Y − f∗(X)|/X = x) ≤M,
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where f∗ , EP(Y/X = ·) is the regression function associated with the distribu-
tion P. Note that this second assumption is sufficiently weak to deal with the case
in which the output is equal to a function of the input plus a gaussian noise.

Let f̃ denote the best mixture (for the square loss) of the regression functions in
the model R:

(2.3) f̃ , argminf∈R̃R(f).

Finally, introduce a mixture distribution ρ̃ ∈ M1
+(Θ) defined as Eρ̃(dθ)fθ = f̃ (the

probability distribution ρ̃ is not necessarily unique).

3. Randomization

3.1. PAC-Bayesian expected risk bound. The following theorems bound the
expected risk of a randomized procedure in terms of the empirical risk and a term
of empirical complexity relying on the Kullback-Leibler divergence between the
randomizing distribution ρ and the prior distribution π. Introduce the functions

G(λ) , 8M
(αB−2λ)2e2 + e2λ−1−2λ

λ2 and H(λ) , 1
1−λG(λ) .

Theorem 3.1. For any ǫ > 0 and 0 < λ < αB
2

such that λG(λ) < 1, with P⊗N -

probability at least 1 − ǫ, for any randomizing procedure ρ̂ : ZN →M1
+(Θ), we

have

(3.1) Eρ̂(dθ)R(fθ)−R(f̃) ≤ H(λ)

(

Eρ̂(dθ)r(fθ)− r(f̃)+
B2

λN

[

K(ρ̂, π)+ log(ǫ−1)
]

)

.

Proof. See Section 7.1. �

To use this bound, one has to choose arbitrarily the parameter λ. To avoid this
choice, one can use a union bound.

Theorem 3.2. Introduce countable families (λi)i∈I and (ηi)i∈I such that
0 < λi <

αB
2 , λiG(λi) < 1, ηi > 0 and

∑

i∈I ηi = 1. For any ǫ > 0, with

P⊗N -probability at least 1 − ǫ, for any randomizing procedure ρ̂ : ZN →M1
+(Θ),

for any i ∈ I, we have
(3.2)

Eρ̂(dθ)R(fθ)−R(f̃) ≤ H(λi)

(

Eρ̂(dθ)r(fθ)− r(f̃) +
B2

Nλi

{

K(ρ̂, π) + log[(ηiǫ)
−1]
}

)

.

Proof. Introduce the event

Ai ,

{

Eρ̂(dθ)R(fθ)−R(f̃)

H(λi)
> Eρ̂(dθ)r(fθ)− r(f̃) +

B2

Nλi

{

K(ρ̂, π) + log[(ηiǫ)
−1]
}

}

.

From Theorem 3.1, for any i ∈ I, we have P⊗N (Ai) < ηiǫ. Hence we have

P⊗N
(

∪
i∈I

Ai

)

≤
∑

i∈I

P⊗N (Ai) <
∑

i∈I

ηiǫ = ǫ.

�

The problem is then to choose appropriately the parameter families (λi)i∈I and
(ηi)i∈I .
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3.2. Optimal randomizing procedure. In this section we use Theorem 3.2 to
define a randomizing procedure. The bounds in the previous theorems cannot be
computed from the data only. However they can be upper bounded by replacing
the empirical risk of the unknown best mixture r(f̃) by the infimum over the set

R̃ of the empirical risk infR̃ r.
Introduce






















Q(ρ, λ, η) ,
Eρ̂(dθ)r(fθ)−infR̃ r

1−λG(λ) + B2

N
K(ρ̂,π)+log[(ηǫ)−1]

λ[1−λG(λ)]

Q
(

ρ, (λi)i∈I , (ηi)i∈I

)

, inf
i∈I
Q(ρ, λi, ηi)

Q(ρ) , inf
(λi)i∈I∈Pλ

(ηi)i∈I∈Pη

Q
(

ρ, (λi)i∈I , (ηi)i∈I

)

,

where Pλ and Pη are respectively the set of parameter families (λi)i∈I and (ηi)i∈I

such that 0 < λi <
αB
2 , λiG(λi) < 1, ηi > 0 and

∑

i∈I ηi = 1. Then the quantities
Q(ρ, λ, 1) and Q(ρ, λi, ηi) are respectively slightly weakened version of the RHS of
Inequalities (3.1) and (3.2).

The quantity Q(ρ) can also be written as

Q(ρ) = inf
0<λ< αB

2 such that λG(λ)<1
Q(ρ, λ, 1).

Let us define the optimal posterior distribution ρ̂opt as

ρ̂opt = argmin
ρ∈M1

+(Θ)

Q(ρ).

For any 0 < ǫ < 1, one may prove the existence of the “argmin” and that ρ̂opt is a
Gibbs distribution which can be written as

ρ̂opt =
e−

Nλopt

B2 r(f)

Eπ(dθ)e
−Nλopt

B2 r(fθ)
· π,

for an appropriate parameter 0 < λopt <
αB
2 satisfying λoptG(λopt) < 1. Then the

inverse temperature parameter of the Gibbs distribution is β ,
Nλopt

B2 .
We would like to choose the parameter families such that the infimum

infρQ
(

ρ, (λi)i∈I , (ηi)i∈I

)

is not “too far” from the optimal quantity Q(ρ̂opt). The

bound in Theorem 3.2 is appropriate when its order is 1√
N

. Therefore relevant

values of λ are greater than 1√
N

. Let us define 0 < Λ < αB
2

such that ΛG(Λ) = 1.

Consider the family (λi)i=1,...,p, where λi , Λ
2i and p is such that Λ

2p+1 <
1√
N
≤ Λ

2p .

When the parameter λopt belongs to [ 1√
N

; Λ[ (which is the case we are interested

in), for any ρ ∈M1
+(Θ), we have

inf
i=1,...,p

Q(ρ, λi, 1) ≤ 2Q(ρ, λopt, 1).

So we just lose in the worst case a factor 2. It remains to choose the parameters ηi

such that for any ρ ∈ M1
+(Θ), the quantity Q(ρ, λi, ηi) is not “too far” from the

quantity Q(ρ, λi, 1). By taking ηi = 1
p , i = 1, . . . , p, we lose an additive log logN

factor in front of the Kullback-Leibler divergence K(ρ, π) which, in general, would
be for the optimal distribution at least of the same order as the Kullback-Leibler
divergence (in practice, log logN never exceeds 3).
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Since the minimum over M1
+(Θ) of the quantity Q(ρ, λ, 1) (achieved for the

probability distribution ρ ∝ e−Nλ
B2 r(f) · π) is

B2

Nλ[1− λG(λ)]
log

[

(

ǫEπ(dθ)e
−Nλ

B2 [r(fθ)−infR̃ r]
)−1

]

,

let us introduce for any i = 1, . . . , p,

Qi ,
1

λi[1− λiG(λi)]
log

(

p

ǫEπ(dθ)e
−Nλi

B2 [r(fθ)−infR̃ r]

)

,

where λi = Λ
2i . Finally, we obtain the following randomizing procedure

1. Compute

iopt , argmin
i=1,...,p

Qi.

2. Randomize using the probability distribution

e
− NΛ

B22
iopt

r(f)

Eπ(dθ)e
− NΛ

B22
iopt

r(fθ)
· π.

Remark 3.1. Note that since our optimal randomizing procedure comes from a de-
viation inequality, the inverse temperature parameter β depends on the probability
ǫ. Indeed, to get a higher confidence level, we need to have a bigger λ and there-
fore to take a bigger β (i.e. to be more selective). However in practice ǫ has little
influence on the temperature.

Remark 3.2. Our optimal randomizing distribution is a Gibbs distribution. We
find it in a minimax context. One may notice that the randomizing distribution
minimizing the Bayesian risk in a gaussian noise context is also a Gibbs distribution.
More precisely, consider that the output is given by

Y = fθ(X) + η,

where the random variable η is a centered gaussian with variance σ2 independent
of the input X . The Bayesian risk is

RBay(f̂) , Eπ(dθ/ZN
1 )EPθ(dZN+1)

[

(

YN+1 − f̂(XN+1)
)2
]

= σ2 + Eπ(dθ/ZN
1 )EP(dXN+1)

[

(

fθ(XN+1)− f̂(XN+1)
)2
]

= σ2 + EP(dXN+1)Eπ(dθ/ZN
1 )

[

(

fθ(XN+1)− f̂(XN+1)
)2
]

.

Hence the optimal estimator is f̂ = Eπ(dθ/ZN
1 )fθ. It is associated with the posterior

distribution

ρ̂(dθ) = π(dθ/ZN
1 ) =

e−
N

2σ2 r(fθ)

Eπe
− N

2σ2 r(f)
· π(dθ),

which is a Gibbs distribution with inverse temperature parameter N
2σ2 .
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4. Aggregated estimators

4.1. PAC-Bayesian expected risk bound. In the least square regression frame-
work, there exists a simple relation between the risk of an aggregated estimator and
the one of the associated randomized estimator which is

(4.1) R(Eρ(dθ)fθ) = Eρ(dθ)R(fθ)−EPVarρ(dθ)fθ(X)

This equality shows that aggregated regression procedures are more efficient than
randomized ones and that the difference is measured by EPVarρ(dθ)fθ(X). The first
term of the RHS has already been bounded (see Theorem 3.1). So, to bound the
expected risk of the aggregated estimator, it remains to bound the deviations of the
variance term and this is done with similar techniques to those used for randomized
estimators.

We obtain the following theorems which bound the expected risk of any aggre-
gated estimator in terms of

• the empirical risk
• the empirical complexity measured by the Kullback-Leibler divergence be-

tween the aggregating distribution ρ̂ and the prior distribution π and by
the empirical mean of the variance of the regression functions under the
posterior distribution.

We still denote G(λ) , 8M
(αB−2λ)2e2 + e2λ−1−2λ

λ2 and H(λ) , 1
1−λG(λ)

, and we

define g(β) ,
eβ−1−β

β2 and h(β) , 1
1+βg(β) .

Theorem 4.1. For any ǫ > 0, β > 0 and 0 < λ < αB
2 such that λG(λ) < 1, with

P⊗N -probability at least 1− 2ǫ, for any aggregating procedure ρ̂ : ZN →M1
+(Θ),

(4.2)

R(Eρ̂(dθ)fθ)−R(f̃)

≤ H(λ)
(

Eρ̂(dθ)r(fθ)− r(f̃) + B2

Nλ

[

K(ρ̂, π) + log(ǫ−1)
]

)

+h(β)
(

− V̄ + B2

2Nβ

[

2K(ρ̂, π) + log(ǫ−1)
]

)

= H(λ)
[

r(Eρ̂(dθ)fθ)− r(f̃)
]

+
[

H(λ)− h(β)
]

V̄

+B2H(λ)
Nλ

[

K(ρ̂, π) + log(ǫ−1)
]

+ B2h(β)
2Nβ

[

2K(ρ̂, π) + log(ǫ−1)
]

where V̄ , EP̄Varρ̂(dθ)fθ.

Proof. See Section 7.2. �

Using a union bound, we get

Theorem 4.2. Introduce countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that 0 < λi <
αB
2

, λiG(λi) < 1, ηi > 0,
∑

i∈I ηi = 1, βj > 0, ζj > 0

and
∑

j∈J ζj = 1. For any ǫ > 0, with P⊗N -probability at least 1 − 2ǫ, for any

aggregating procedure ρ̂ : ZN →M1
+(Θ), for any i ∈ I and for any j ∈ J , we have

(4.3)

R(Eρ̂(dθ)fθ)−R(f̃) ≤ H(λi)
[

r(Eρ̂(dθ)fθ)− r(f̃)
]

+
[

H(λi)− h(βj)
]

V̄

+B2H(λi)
Nλi

{

K(ρ̂, π) + log[(ηiǫ)
−1]
}

+
B2h(βj)
2Nβj

{

2K(ρ̂, π) + log[(ζjǫ)
−1]
}

.
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Proof. In the proof of Theorem 4.1 (see Section 7.2), we have obtained that with
P⊗N -probability at least 1− ǫ, for any ρ ∈M1

+(Θ),

−EPVarρ(dθ)fθ ≤ h(β)
(

− EP̄Varρ(dθ)fθ +
B2

2Nβ

[

2K(ρ, π) + log(ǫ−1)
]

)

Instead of using a union bound directly on inequality (4.2), we use it on this in-
equation. We get that with P⊗N -probability at least 1− ǫ, for any ρ ∈M1

+(Θ) and
for any j ∈ J ,

−EPVarρ(dθ)fθ ≤ h(βj)
(

− EP̄Varρ(dθ)fθ +
B2

2Nβj

{

2K(ρ, π) + log[(ζjǫ)
−1]
}

)

where (βj)j∈J and (ζj)j∈J are parameter families such that βj > 0, ζj > 0 and
∑

j∈J ζj = 1. It remains to add this inequation to inequality (3.2) to get the
result. �

Now let us introduce
(4.4)






















B(ρ, λ, η, β, ζ) , H(λ)
(

Eρ(dθ)r(fθ)− r(f̃) + B2

Nλ

{

K(ρ, π) + log[(ηǫ)−1]
}

)

+h(β)
(

− V̄ + B2

2Nβ

{

2K(ρ, π) + log[(ζǫ)−1]
}

)

B
(

ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)

, κB2 ∧ inf
i∈I
j∈J

B(ρ, λi, ηi, βj , ζj)

,

where κ , 1 + 4M
e2(αB)2 .

By bounding the expected risk using Assumptions (2.1) and (2.2), and from the
previous theorem, we obtain

Corollary 4.3. For any ǫ > 0, with P⊗N -probability at least 1 − 2ǫ, for any
aggregating procedure ρ̂ : ZN →M1

+(Θ), we have

R(Eρ̂(dθ)fθ)−R(f̃) ≤ B
(

ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)

Proof. From Theorem 4.1, with P⊗N -probability at least 1−2ǫ, for any aggregating
procedure ρ̂ : ZN →M1

+(Θ), we have

(4.5) R(Eρ̂(dθ)fθ)−R(f̃) ≤ inf
i∈I
j∈J

B(ρ, λi, ηi, βj, ζj)

Since the noise has a conditional uniform exponential moment
(

Assumption (2.2)
)

,
the expected risk is bounded. Specifically, we can write

(4.6)

R(Eρf) = EP

(

Y − E(Y/X)
)2

+ EP

(

E(Y/X)− Eρf
)2

≤ EP

(

eα|Y−E(Y/X)| sup
u∈R+

{u2e−αu}
)

+B2

≤
(

2
αe

)2
M +B2

≤ κB2,

where κ , 4M
e2(αB)2 +1. Since the quadratic risk R(f̃) is positive, for any probability

distribution ρ, we have

(4.7) Eρ(dθ)R(θ)−R(f̃) ≤ κB2.

The result follows from Equalities (4.5) and (4.7). �

This corollary is the keystone of this work since
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• by appropriately choosing the parameter families, one can deduce a parame-
ter-free theorem which has the optimal minimax convergence rate except
for a logarithmic factor (see Section 4.2.1),

• there exists an efficient procedure calculating one of the probability distri-
butions minimizing the bound B

(

ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)

, when
the sets I and J are finite (see Section 4.2.2).

4.2. Optimal aggregating procedure.

4.2.1. Comparison with minimax bounds. In this section, we derive from Corollary
4.3 an aggregating procedure which is optimal in a minimax sense according to
lower bounds established by Juditsky and Nemirovski ([7]) and by Yang ([15]). We
still denote ρ̃ a posterior distribution such that R(Eρ̃(dθ)fθ) = minR̃R.

Lemma 4.4. For a well chosen finite parameter families independent from ǫ, for
any 0 < ǫ ≤ 1

2 , we have

B
(

ρ̃, (λi)i∈I , (ηi)i∈I , (βj)j∈J , (ζj)j∈J

)

≤ γ(ǫ),

where


















γ(ǫ) , 2
√

C1V̄ (ρ̃) + 6
√

C2V̄ (ρ̃) + 2C1 + 2C2
V̄ (ρ̃) , EP̄Varρ̃(dθ)fθ

C1 , C1(ǫ) , B2

N
K(ρ̃,π)+log(L1ǫ−1)

κ1

C2 , C2(ǫ) , B2

8N
2K(ρ̃,π)+log(L2ǫ−1)

κ2

,

and κ1 and κ2, by definition, respectively satisfy 2κ1G(κ1) = 1 and κ2g(κ2) = 1
and finally







L1 ,
log
(

4κ1N
log 2

)

2 log 2 ∨ 2

L2 ,
log
(

8κ2N
log 2

)

2 log 2 ∨ 2

The proof and the parameter families are given in Section 7.3. From this lemma
and from Corollary 4.3, by using the same parameter families, we get

Theorem 4.5. Any aggregating procedure ρ̂ minimizing

B
(

ρ, (λi)i=0,...,p, (ηi)i=0,...,p, (βj)j=0,...,q, (ζj)j=0,...,q

)

wrt the probability distribution ρ satisfies for any 1
2
≥ ǫ > 0, with P⊗N -probability

at least 1− 2ǫ,

R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ′(ǫ),
where

{

γ′(ǫ) = 2
√

C1[2V (ρ̃) + 4C2] + 6
√

C2[2V (ρ̃) + 4C2] + 2C1 + 2C2
V (ρ̃) , EPVarρ̃(dθ)fθ.

Proof. see Section 7.4. �

For a given confidence level ǫ > 0, this bound has the order of
√

C̃V (ρ̃)∨C̃, where

C̃ ,
K(ρ̃,π)+log log N

N . When the best mixture f̃ belongs to the initial model R, the

variance term vanishes and the order of the bounds is given by C̃. A particular
case of interest is when the parameter set Θ is finite: Θ = {1, . . . , d}. Taking
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arbitrarily π = 1
d

∑d
i=1 δi (uniform measure on Θ), one can check easily that for

any ρ ∈M1
+(Θ), we have

K(ρ, π) = log d−Hs(ρ) ≤ log d,

where Hs(ρ) denotes the Shannon entropy of ρ
(

Hs(ρ) , −∑d
i=1 ρi log ρi

)

. In this

case, when the best convex combination f̃ belongs to the model R (V (ρ̃) = 0),

the convergence rate of our estimator will be log d
N (we neglect log logN terms),

whereas when f̃ is not too close to the regression functions in the model R
(

i.e.

when V (ρ̃) ≥ K(ρ̃,π)+log log N
N

)

, the convergence rate will be
√

log d
N V (ρ̃). In the

worst case, the quantity V (ρ̃) has the same order as B2, and we find a convergence

rate
√

log d
N

known to be optimal in the uniform sense as soon as d >
√
N according

to the following theorem

Theorem 4.6 (Yang,2001). Let d = Nτ for some τ > 0. There exists a model

R =
{

fi ∈ F(X ,Y) : i = 1, . . . , d
}

such that for any aggregating procedure ρ̂, one can find a function f̃ ∈ R̃ =
{
∑d

i=1 ρ̃ifi : ρ̃ ∈M1
+{1, . . . , d}

}

satisfying

EP⊗NR(Eρ̂(dθ)fθ)−R(f̃) ≥ C
{

d
N

when τ ≤ 1
2

√

log d
N when τ > 1

2 ,

where the constant C does not depend on N .

Remark 4.1. This theorem which strenghtens the one of Nemirovski ([10]) has been
further improved by Tsybakov ([13]).

Remark 4.2. In [15], Yang also proposed an adaptive estimator. The advantage
of the procedure designed here is to be feasible, to avoid splitting the data in
many parts and to hold when the regression function wrt the unknown probability
distribution is not in the model R̃. Besides, our results also hold when the set of
aggregated functions is infinite and under weaker assumptions (particularly on the
noise).

Remark 4.3. Note that the unobservable term r(f̃) in the bound B does not modify
the probability distribution ρ̂λ,β minimizing B(ρ, λ, η, β, ζ)1. However the choice of

λ among (λi)i=0,...,p depends on r(f̃). To circumvent this difficulty, one can, for

instance, weaken the bound B by replacing
r(Eρ̂(dθ)fθ)−r(f̃)

1−λG(λ)
with

r(Eρ̂(dθ)fθ)− r(f̃) + λG(λ)
1−λG(λ)

[

r(Eρ̂(dθ)fθ)− r(f̂ERM)
]

,

where the function f̂ERM minimizes the empirical risk among the functions in R̃.
For this algorithm, the assertion of Theorem 4.5 becomes: for any 1

2 ≥ ǫ > 0,

(4.8) P⊗N
(

R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ′(ǫ) + r(f̃)− r(f̂ERM)
)

≥ 1− 2ǫ,

1The distribution ρ̂λ,β minimizes H(λ)Eρ(dθ)r(fθ) − h(β)V̄ + B2

N

{

H(λ)
λ

+
h(β)

β

}

K(ρ, π) so

that it does not depend on η, ζ and ǫ.



26 J.-Y. AUDIBERT

since sup
λ∈(λi)i=0,...,p

{ λG(λ)
1−λG(λ)

}

= 1. By using Theorem 4.1
(

for a posterior distrib-

ution ρ̂ERM satisfying Eρ̂ERM(dθ)fθ = f̂ERM and for λ and β of order
√

log d
N

)

, we

get that the added term r(f̃)− r(f̂ERM) is at most of order
√

log d
N (we still neglect

log logN term).
Another solution to determine the right parameters is to cut the training sample

into two parts, use the first part of the training sample to compute the distributions
ρ̂λ,β and use the second part of the training sample to select the best distribution
among the O

[

(logN)2
]

distributions (each distribution corresponds to a point in
the (λ, β)-grid). From Catoni’s theorem ([4]) concerning progressive mixtures (see
also [1]) in least square regression, this last step is almost free (we just have to

pay a negligible log log N
N

additive term), so the convergence rate of the resulting

procedure is effectively of order
√

C̃V (ρ̃)∨ C̃. From Theorem 3.1, this last step can

also be done by simply taking the distribution ρ̂λ,β having the smallest empirical
risk on the second sample2.

Remark 4.4. Had we not been interested in having tight explicit constants, we could
have written Theorem 4.1 in the following way (taking arbitrarily β = λ): there
exists C1, C2 > 0 depending only on the constants B, α and M such that for any
ǫ > 0 and 0 < λ′ < C1, with P⊗N -probability at least 1 − 2ǫ, for any aggregating
procedure ρ̂ : ZN →M1

+(Θ),

R(Eρ̂(dθ)fθ)−R(f̃) ≤ (1 +λ′)
[

r(Eρ̂(dθ)fθ)− r(f̃)
]

+2λ′V̄ +
C2

N

K(ρ̂, π) + log(ǫ−1)

λ′
,

where we still have V̄ = EP̄Varρ̂(dθ)fθ. This inequation would have also led to the
optimal convergence rate after optimization of the parameter λ′.

Theorem 4.6 also shows that a direct application of our aggregating procedure
is not optimal when d is smaller than

√
N , since then the convergence rate towards

functions for which V (ρ̃) = EPVarρ̃(dθ)fθ(x) has the same order as B2 is
√

log(dN)

N
≫ d

N
.

However, in this case (d ≤
√
N), one can consider a grid R′ on the simplex R̃:

R′ ,
{ d
∑

i=1

ai
⌊√

dN
⌋fi : ai ∈ N such that

d
∑

i=1

ai =
⌊
√
dN

⌋

}

,

where ⌊x⌋ denotes the integer satisfying x − 1 < ⌊x⌋ ≤ x. We have R̃′ = R̃.
Then applying our aggregating procedure to the new initial model R′ for a uniform
prior distribution π′ on R′, we obtain the desired convergence rate except for the
logarithmic factor.

Proof. The best convex combination f̃ =
∑d

i=1 ρ̃ifi belongs to

S ∩
{ d
∑

i=1

⌊

⌊
√
dN ⌋ρ̃i

⌋

⌊√
dN

⌋ fi +
1

⌊√
dN

⌋Cd

}

,

2See the appendix for details
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where S is the simplex {∑d
i=1 ρifi : ρi ≥ 0,

∑d
i=1 ρi = 1} and Cd is the d-

dimensional cube {∑d
i=1 aifi : 0 ≤ ai ≤ 1}. This set is the convex combination

of its vertices, so the function f̃ can be written as a convex combination of the
functions in

R′′ ,
{ d
∑

i=1

⌊

⌊
√
dN ⌋ρ̃i

⌋

+ ǫi
⌊√

dN
⌋ fi : ǫi ∈ {0, 1}

}

∩R′.

For any f, g ∈ R′′, we have ‖f − g‖∞ ≤ d
2

B
⌊√

dN
⌋ , hence3 V (ρ̃) ≤ d2

16
⌊√

dN
⌋2B2.

The number of functions in R′ is upper bounded by
(⌊
√
dN

⌋

+ 1
)d

. Since we have
K(ρ̃, π′) ≤ log Card R′ (because the distribution π′ is uniform over the set R′), we

get C̃ ≤ d log(N
3
4 +1)

N B2. As a result, we have
√

C̃V (ρ̃) ∨ C̃ = O
(

d
N logN

)

, which is

the desired convergence rate up to the logarithmic factor. �

In fact, when d ≤
√
N , the optimal convergence rate can also be obtained by

randomizing functions from the grid R′ ⊂ R̃. To combine d regression functions is
then equivalent (in terms of convergence rate) to randomizing with an appropriate
Gibbs distribution on the grid R′.
Remark 4.5. Note that to obtain an algorithm with optimal convergence rate in the
uniform sense, we need not have used sophisticated tools. We just need deviation
inequalities, a simple union bound and to discretize the simplex R̃. Indeed, any
function f of R̃ satisfies a deviation inequality similar to the one of Lemma 7.2: for
any 0 ≤ λ ≤ αB

2 satisfying 8Mλ ≤ (αB − 2λ)2e2, the deviations of

Z = −[Y − f(X)]2 + [Y − f̃(X)]2

are given by

(4.9) logEP e
λ

Z−EPZ

B2 ≤ λ2 R̄(f)

B2
G(λ),

where G(λ) , 8M
(αB−2λ)2e2 + e2λ−1−2λ

λ2 . The quantities R̄(f) and r̄(f) are still defined
as
{

R̄(f) = R(f) − R(f̃) = EP

[(

Y − f(X)
)2]− EP

[(

Y − f̃(X)
)2]

r̄(f) = r(f) − r(f̃) = EP̄

[(

Y − f(X)
)2]− EP̄

[(

Y − f̃(X)
)2]

Hence, for any 0 ≤ λ ≤ αB
2 satisfying λG(λ) ≤ 1, we have successively

EP⊗N e
λN
B2 {EP̄Z−EPZ[1−λG(λ)]} ≤ 1.

For any ǫ > 0,

P⊗N

{

λN

B2
{EP̄Z − EPZ[1− λG(λ)]} − log(ǫ−1) ≥ 0

}

≤ ǫ.

With P⊗N -probability at least 1 − ǫ, R̄(f) ≤ r̄(f)
1−λG(λ) + B2

N
log(ǫ−1)

λ[1−λG(λ)] . By using a

union bound, for any discretized simplex Rdisc with P⊗N -probability at least 1− ǫ,

3we use that for any random variable X such that a ≤ X ≤ b a.s., the variance of X is bounded
by (b − a)2/4.
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for any f ∈ Rdisc, we get

R̄(f) ≤ r̄(f)

1− λG(λ)
+
B2

N

log(ǫ−1Card Rdisc)

λ[1− λG(λ)]
.

For some m ∈ N which will be chosen later, let us take

Rdisc =

{ d
∑

i=1

ai

m
fi : ai ∈ N such that

d
∑

i=1

ai = m

}

.

Then we have

Card Rdisc =

(

m+ d

d

)

≤
{

2×md when d ≤ m
2× dm when d ≥ m,

and for any g ∈ R̃ there exists f ∈ Rdisc such that ‖f − g‖∞ ≤ B
m
. This last

inequality implies that there exists f ∈ Rdisc such that

r̄(f) =
1

N

N
∑

i=1

[2Yi − f(Xi)− f̃(Xi)][f(Xi)− f̃(Xi)] ≤ Σ
B

m
,

where Σ ,
∑N

i=1 |2Yi−f(Xi)−f̃(Xi)|
N

≤ 2
∑N

i=1 |Yi−f∗(Xi)|
N

+ 2B. The algorithm which

minimizes the empirical risk on the net Rdisc satisfies with P⊗N -probability at least
1− ǫ, for any f ∈ Rdisc,

R̄(f̂) ≤ r̄(f̃disc)

1− λG(λ)
+
B2

N

log(ǫ−1Card Rdisc)

λ[1− λG(λ)]
,

where f̃disc , argmin
f∈Rdisc

R(f), hence, by taking λ = κ1 defined as 2κ1G(κ1) = 1,

R(f̂)−R(f̃) ≤ 2Σ
B

m
+

{

2B2

Nκ1

[

d log(m) + log(2ǫ−1)
]

when d ≤ m
2B2

Nκ1

[

m log(d) + log(2ǫ−1)
]

when d ≥ m

First, assume that the output data Y are bounded. Then we have Σ ≤ κ for
some constant κ. By taking m = N

d when d ≤
√
N and m =

√

N/ log d when

d >
√
N , we obtain that with P⊗N -probability at least 1− ǫ,

(4.10) R(f̂)−R(f̃) ≤
{

CstB2
[

d
N log(N

d ) + log(2ǫ−1)
N

]

when d ≤
√
N

CstB2
[

√

log d
N + log(2ǫ−1)

N

]

when d ≥
√
N

In general, the output data Y are not bounded. However the quantity Σ behaves
more or less like 2EP|Y − f∗(X)|+ 2B. From Assumption (2.2), this expectation
is uniformly bounded wrt the distribution P. Using once more deviation equalities,
one can prove that with high probability Σ is bounded. So the bound (4.10) still
holds. As a consequence, we have

P⊗NR(f̂)−R(f̃) ≤
{

CstB2 d
N log(N

d ) when d ≤
√
N

CstB2
√

log d
N

when d ≥
√
N

We have shown here that estimators having the optimal convergence rate (up
to a logarithmic factor) can be constructed (but generally not easily implemented)
using the ERM on an appropriate net of the model. It is interesting to notice that,
in a different context ([8, 14]), Mammen and Tsybakov similarly obtained optimal
minimax convergence rate. Note that for linear and convex combination, simpler
proofs exist under stronger assumptions (see [13]).
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4.2.2. Aggregating procedure. We consider the aggregating procedure studied in
Theorem 4.5: the algorithm minimizes the quantity B

(

ρ, (λi)i∈I , (ηi)i∈I , (βj)j∈J ,

(ζj)j∈J

)

defined in (4.4) for well chosen parameter families.
This section explains how to minimize efficiently wrt the probability distribution

ρ the quantity B(ρ, λ, η, β, ζ) and shows that the resulting aggregated distribution
has the same form as the optimal randomizing distribution (see section 3.2), the
difference being that the quantity that determines the weight given to each function
is not just given by the empirical error but integrates a corrective factor that takes
into account the errors made by the other weighted functions in a similar way as
in Adaboost. Besides we will see that the corrective factor can be obtained by an
algorithm in dual form which involves the choice of a N-dimensional real vector.

For fixed λ and β, we need to minimize a bound of the following type

ψ̄(ρ) , a
(

r(Eρ(dθ)fθ) + bEP̄Varρ(dθ)fθ + cK(ρ, π)
)

,

where a > 0, 0 < b < 1 and c > 04.

Writing the dual problem

For any measurable function such that eh is π-integrable, introduce the proba-
bility distribution

πh ,
eh

Eπ(dθ)eh(θ)
· π.

Since we have
{

Eρr(fθ) = r(Eρ(dθ)fθ) + EP̄Varρ(dθ)fθ

K(ρ, π− b
c r(f)) = K(ρ, π) + b

cEρr(fθ) + logEπ(dθ)e
− b

c r(fθ)

we can write

ψ̄(ρ) = a
(

(1− b)r(Eρ(dθ)fθ) + bEρr(fθ) + cK(ρ, π)
)

= a
(

(1− b)r(Eρ(dθ)fθ) + cK(ρ, π− b
c r(f))− c logEπ(dθ)e

− b
c r(fθ)

)

= ac

(

1−b
Nc

∑N
i=1[Yi − Eρ(dθ)fθ(Xi)]

2 +K(ρ, π− b
c r(f))

)

−ac logEπ(dθ)e
− b

c r(fθ).

Hence minimizing ψ̄ is equivalent to minimizing

ψ(ρ) ,
1

2
‖Eρ(dθ)h(θ)‖2 +K(ρ, µ),

where µ , π− b
c r(f), ‖ · ‖ the euclidian norm in RN and h : Θ→ RN is defined by

hi(θ) ,

√

2(1− b)
Nc

[Yi − fθ(Xi)].

The minimization of the function ψ over the set of probability distributions has
some distinctive features stressed in the following theorem.

4For our bound, we have a = 1
1−λG(λ)

, b =
βg(β)+λG(λ)

1+βg(β)
and c = B2

Nλ

(

1 +
λ[1−λG(λ)]
β[1+βg(β)]

)

.
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Theorem 4.7. For any µ ∈ M1
+(Θ) and any bounded function h : Θ → RN , the

map ψ has a unique minimum ρ̄ inM1
+(Θ). Besides, the probability distribution ρ̄

is the only distribution satisfying

ρ̄(dθ) = µ−〈Eρ̄h,h〉(dθ) =
e−〈Eρ̄h,h(θ)〉

Eµ(dθ′)e−〈Eρ̄h,h(θ′)〉 · µ(dθ),

and we have

ψ(ρ)− ψ(ρ̄) = K(ρ, ρ̄) +
1

2
‖Eρh−Eρ̄h‖2 for any ρ ∈M1

+(Θ).

Proof. See Section 7.5 �

Introduce d1 , b
cN and d2 , 1−b

cN . From Assumption (2.1), the mappings hi

are bounded and we can apply the previous theorem. So the optimal distribution
has the following form πw , π−d1Nr(f)+〈w,f(X)〉, where w is a N -dimensional vec-
tor to be determined. Note that in support vector machines, we have to solve
a N -dimensional linearly constrained quadratic problem. Here we have a N -
dimensional unconstrained minimization problem. Both methods come down to
an N -dimensional optimization problem because they both write the dual of an
initial learning problem.

For the optimal w, from the previous theorem, the posterior distribution is

πw = π−d1Nr(f)+2d2〈Y−Eπw(dθ)fθ(X),f(X)−Y 〉.

So the optimal distribution πw stresses on functions with low empirical risk and
such that they make the opposite error as the combined estimator (since the bigger
〈Y − Eπwf(X), fθ(X) − Y 〉 is, the more weight πw gives to fθ). This is precisely
the idea that has lead to the first boosting methods, such as AdaBoost.

Solving the dual problem

Note that the unicity of the optimal probability distribution πw according to
Theorem 4.7 does not give the unicity of the vector w. We have πh = πh′ if and
only if h = h′ + Cst π-a.s. Therefore we have πw = πw′

iff 〈w − w′, f(X)〉 = Cst
π-a.s.

Define

ϕ̄(w) , ψ̄(πw) = ac
[

d2‖Eπwf(X)− Y ‖2 − logEπ− b
c

r(f)
e〈w,f(X)−Eπw f(X)〉

]

−ac logEπe
− b

c r(f).

We have

▽ϕ̄(w) = acVarπwf(X)
(

2d2[Eπwf(X)− Y ] + w
)

,

where Varπwf(X) is the covariance matrix of f(Xi), i = 1, . . . , N wrt πw. Denote
r the rank of this matrix. Usually, we have r = N . Then there is no vector v such
that 〈v, f(X)〉 = Cst π-a.s. Hence, in that case, there is a unique optimal w.

However, it may happen that r < N (for instance when two input vectors are
identical i.e. Xi = Xj for some i 6= j). Even if it means numbering again, one may
assume that f(Xr+1), . . . , f(XN) are π-linear combination of f(X1), . . . , f(Xr) to
the extent that there exists αi ∈ Rr, βi ∈ R, i = r + 1, . . . , N such that for any
i ∈ {r + 1, . . . , N}

f(Xi) = 〈αi, f(X)〉r + βi π-a.s.
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where 〈·, ·〉r is the dot product in Rr. From Theorem 4.7, we look for a N -
dimensional vector w such that

(4.11) 〈w, f(X)〉 = 2d2〈Eπw [Y − f(X)], f(X)〉+ Cst π-a.s.

Without constraints on w, there is an infinity of such vectors. Since we have

〈Eπw [Y − f(X)], f(X)〉
=
∑r

j=1 Eπw [Yj − f(Xj)]f(Xj)

+
∑N

i=r+1 Eπw [Yi − 〈αi, f(X)〉r − βi]
(

〈αi, f(X)〉r + βi
)

=
∑r

j=1

(

Eπw [Yj − f(Xj)] +
∑N

i=r+1 α
i
jEπw [Yi − 〈αi, f(X)〉r − βi]

)

f(Xj)

+
∑N

i=r+1 β
iEπw [Yi − 〈αi, f(X)〉r − βi],

one may set wr+1, . . . , wN to 0 and solve only a r-dimensional minimization problem
for which the unique solution is

(4.12) w = 2d2

(

Y − Eπwf(X) +
N
∑

i=r+1

αi[Yi − 〈αi,Eπwf(X)〉r − βi]

)

.

Remark 4.6. In the case when none of the functions of the model discriminates Xi

from Xj for some i > j (i.e. fθ(Xi) = fθ(Xj) for any θ ∈ Θ), we have αi
j = 1 and

αi
k = 0 for k 6= j. Hence, in equality (4.12), there is no additional term in wk for
k 6= j and the additional term in wj is simply Yi − Eπwf(Xj).

Remark 4.7. From Assumption (2.1), for any x ∈ X , the mapping [θ 7→ fθ(x)] is
bounded. So we can write a bracketing of w. For instance, when r = N , we have

wi ∈
[

2d2

(

Yi − sup
θ∈Θ

fθ(Xi)
)

; 2d2

(

Yi − inf
θ∈Θ

fθ(Xi)
)

]

.

Remark 4.8. It follows from wr+1 = · · · = wN = 0 that

1
ac

∂ϕ̄
∂wk

(w) =
∑r

j=1 Covπw [f(Xk), f(Xj)]
(

2d2Eπw [Yj − f(Xj)] + wj

)

+
∑N

i=r+1 2d2Covπw [f(Xk), 〈αi, f(X)〉r]Eπw [Yi − 〈αi, f(X)〉r − βi]

=
∑r

j=1 Covπw [f(Xk), f(Xj)]

(

wj + 2d2Eπw [Yj − f(Xj)]

+2d2

∑N
i=r+1 α

i
j Eπw [Yi − 〈αi, f(X)〉r − βi]

)

,

hence

▽rϕ̄(w) = acVarπwl f(X)




r

[

w − 2d2

(

Y − Eπwf(X)

+
∑N

i=r+1 α
i[Yi − 〈αi,Eπwf(X)〉r − βi]

)]

,

where ▽rϕ̄ is the vector ∂ϕ̄
∂wk

, k = 1, . . . , r and Varπwl f(X)




r
is the covariance

matrix of f(X1), . . . , f(Xr). This is another method of proving that an optimal w
is given by (4.12). It is also the required formula to program a gradient descent
algorithm in order to compute the optimal vector w. However, the variance matrix
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being computationnally too expensive5, we would prefer the following alternative
minimization procedure.

Algorithm:
BEGIN
Start with w0 = 0.
For l = 0 to maximum number of iterations do

• Set

wl+1 = 2d2

(

Y −E
πwl f(X) +

N
∑

i=r+1

αi[Yi − 〈αi,E
πwlf(X)〉r − βi]

)

.

• Exit the loop if wl+1 is not “far” from wl.
• While ϕ̄(wl+1) > ϕ̄(wl) do

wl+1 =
1

2
(wl + wl+1).

END
The stopping criteria in the loop comes from

Theorem 4.8. For any w,w′ ∈ RN , we have

ϕ̄(w)− ϕ̄(w′) = ac
(

d2‖Eπwf(X)− Eπw′ f(X)‖2 +K(πw, πw′
)

+〈w′ + 2d2(Eπw′ f(X)− Y ),Eπwf(X)− Eπw′ f(X)〉
)

.

In particular, we have

ψ̄(πwl

)− ψ̄(ρ̄)

≤ acB
∥

∥

∥

∥

wl − 2d2

(

Y − E
πwl f(X) +

∑N
i=r+1 α

i[Yi − 〈αi,E
πwlf(X)〉r − βi]

)∥

∥

∥

∥

.

Proof. See Section 7.6. �

In Section 7.7, we prove that we exit the “While” loop in a finite number of
iterations. Finally, we obtain an algorithm which derives directly from Corollary
4.3. However this procedure tends to regularize too much. The obtained bounds
are upper bounds and even if a lot of care was taken to get sharp bounds, they
still are quantitatively loose for small sample sizes. As a consequence, the regu-
larization parameters coming from these bounds are too conservative. So in our
numerical experiments, these parameters are tuned using validation sets. The pre-
vious minimization procedure will however be used to get the optimal aggregating
distribution associated with a set of these parameters.

4.3. Expected risk bound for any aggregating procedure. From Corollary
4.3, we also derive an empirical bound on the expected risk of any aggregating
procedure. One of the output of the algorithm described in the previous section is
an upper bound of R(Eπwoptf)− R(f̃). It can also be interesting to upper bound

R(Eπwoptf) (since R(f̃) is unknown). The following corollary gives an observable
upper bound of the expected risk of any aggregating procedure.

5In our numerical experiments described in Section 5, the order of the number of operations

required to compute the N2 covariances is N2 × Nd, where d is the dimensionality of the input

vector (see Corollary 5.3 for details). In this framework, the gradient descent algorithm roughly
loses a factor N in computational complexity wrt to the following procedure.
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Corollary 4.9. For any ǫ > e−κ3N , with
(

P⊗N
)

∗-probability at least 1 − 3ǫ, for

any aggregating procedure ρ̂ : ZN →M1
+(Θ),

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) + B′ + L2 log(ǫ−1)
N

+ 4B2log(ǫ−1)
κ1N

+2L
√

log(ǫ−1)
N

√

r(Eρ̂(dθ)fθ) + B′ + L2 log(ǫ−1)
N

,

where










































































B′ , inf
i∈I
j∈J

B′(ρ̂, λi, ηi, βj , ζj)

B′(ρ, λ, η, β, ζ) , H(λ)
(

λG(λ)
[

Eρ(dθ)r(fθ)− infR̃ r
]

+B2 K(ρ,π)+log[(ηǫ)−1]
Nλ

)

+h(β)
(

βg(β)V̄ (ρ) +B2 2K(ρ,π)+log[(ζǫ)−1]
2Nβ

)

= H(λ)
(

λG(λ)
[

r(Eρ(dθ)fθ)− infR̃ r
]

+B2 K(ρ,π)+log[(ηǫ)−1]
Nλ

)

+
[

λG(λ)H(λ) + βg(β)h(β)
]

V̄ (ρ)

+B2h(β) 2K(ρ,π)+log[(ζǫ)−1]
2Nβ

L , 1√
2α

[

log
(

κ4
N

log(ǫ−1)

)]2

V̄ (ρ) , EP̄Varρ(dθ)fθ

and
{

κ3 , M2e2(αB−1)

2[(αBe)2+4M ]

κ4 , MeαB+1

αB

√

κ1

8 , where by definition, κ1 satisfies 2κ1G(κ1) = 1

Proof. See Section 7.8. �

Remark 4.9. Once more, the threshold on ǫ is negligible, and κ3 can be disregarded.

Remark 4.10. When r(Eρ̂(dθ)fθ) and V̄ (ρ̂) are of order 1
N

, the bound on the ex-

pected risk R(Eρ̂(dθ)fθ) is of order (log N)4

N
. For bounded noise (i.e. Y −EP(Y/X)

uniformly bounded on X ), the argument in Section 7.8 can be easily adapted to
get rid of the (logN)4 factor (since the deviations of the empirical risk of the best
convex combination can be bounded using the first part of Lemma 7.1). This is the
case in the classification context (see Corollary 4.11).

Remark 4.11. We will see in Section 7.8 that this corollary follows from Corollary
4.3 by controlling the deviations of the empirical risk r(f̃) of the best convex com-
bination. A bound on the expected risk of any randomization procedure can be
similarly deduced from this control.

Remark 4.12. The constants in Corollary 4.9 can be slightly improved by using
remark 7.4. Indeed, when f̃ = EP(Y/X = ·), Lemma 7.5 holds for

L̃ = log

(

Me

√

N

2log(ǫ−1)α2R(f̃)

)

and κ3 = M2e−2

2(e2(αB)2+4M) (since inequality (7.14) can be improved by eliminating

the eαB factor). Therefore the corollary remains true for
{

κ3 = M2e−2

2[(αBe)2+4M ]

κ4 = Me
αB

√

κ1

8

.
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4.4. Application to binary classification. In binary classification, the output
set is Y = {0, 1}, and the model consists in a set of functions on the input space X
taking their values in [0; 1]. In this framework, the constants α and M in Assump-
tion (2.2) are not relevant since the output is bounded. Besides, we have B = 1.

We still denote g(λ) , eλ−1−λ
λ2 , h(β) , 1

1+βg(β)
and we define ȟ(λ) , 1

1−4λg(λ)
.

Theorem 4.2 can be replaced by

Theorem 4.10. Introduce countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that λi > 0, 4λig(λi) < 1, ηi > 0,
∑

i∈I ηi = 1, βj > 0, ζj > 0 and
∑

j∈J ζj =

1. For any ǫ > 0, with P⊗N -probability at least 1−2ǫ, for any randomizing procedure
ρ̂ : ZN →M1

+(Θ), for any i ∈ I and for any j ∈ J , we have

(4.13)

R(Eρ̂(dθ)fθ)−R(f̃) ≤ ȟ(λi)
[

r(Eρ̂(dθ)fθ)− r(f̃)
]

+
[

ȟ(λi)− h(βj)
]

V̄

+ ȟ(λi)
Nλi

{

K(ρ̂, π) + log[(ηiǫ)
−1]
}

+
h(βj)
2Nβj

{

2K(ρ̂, π) + log[(ζjǫ)
−1]
}

.

where V̄ (ρ̂) , EP̄Varρ̂(dθ)fθ.

Proof. The proof is similar to the ones which lead to Theorem 4.2. The only
part to modify is in Section 7.2. Since we have trivially B = 1, the deviations of

Zθ = −
(

Y − fθ(X)
)2

+
(

Y − f̃(X)
)2

= [fθ(X)− f̃(X)][2Y − f̃(X)− fθ(X)] given
by Lemma 7.2 can be obtained by using directly Lemma 7.1 to Zθ (b = 1). We get

logEP e
λ(Zθ−EPZθ) ≤ λ2EPZθ

2g(λ) ≤ 4λ2R̄(θ)g(λ),

Consequently, G(λ) can be replaced by 4g(λ). �

From Theorem 4.10, we may derive an empirical bound on the expected risk of
any combining procedure.

Corollary 4.11. For any countable families (λi)i∈I , (ηi)i∈I , (βj)j∈J and (ζj)j∈J

such that λi > 0, 4λig(λi) < 1, ηi > 0,
∑

i∈I ηi = 1, βj > 0, ζj > 0 and
∑

j∈J ζj =

1, for any ǫ > 0, with P⊗N -probability at least 1−2ǫ, for any randomizing procedure
ρ̂ : ZN →M1

+(Θ), we have

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) + B′′

+
√

2log(ǫ−1)
N

(

√

r(Eρ̂(dθ)fθ) + B′′ + log(ǫ−1)
2N +

√

log(ǫ−1)
2N

)

where










































B′′ , inf
i∈I
j∈J

B′′(ρ̂, λi, ηi, βj , ζj)

B′′(ρ, λ, η, β, ζ) , ȟ(λ)
(

4λg(λ)
[

Eρ(dθ)r(fθ)− infR̃ r
]

+ K(ρ,π)+log[(ηǫ)−1]
Nλ

)

+h(β)
(

βg(β)V̄ (ρ) + 2K(ρ,π)+log[(ζǫ)−1]
2Nβ

)

= ȟ(λ)
(

4λg(λ)
[

r(Eρ(dθ)fθ)− infR̃ r
]

+ K(ρ,π)+log[(ηǫ)−1]
Nλ

)

+
[

4λg(λ)ȟ(λ) + βg(β)h(β)
]

V̄ (ρ) + h(β) 2K(ρ,π)+log[(ζǫ)−1]
2Nβ

Proof. The proof is similar to the one in Section 7.8. To control the deviations of
the empirical risk r(f̃) of the best convex combination, we apply inequality (7.1)
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directly to Z =
(

Y − f̃(X)
)2 ∈ [0; 1]. For any λ > 0 and any µ ∈ R, we have

P⊗N (R(f̃)− r(f̃) > µ) ≤ EP⊗N eNλ(R(f̃ )−r(f̃)−µ)

≤ e−Nλµ
(

EP e
λ(EPZ−Z)

)N

≤ eN
(

−λµ+ λ2

2 EPZ
)

,

For µ = log(ǫ−1)
Nλ + λ

2R(f̃), this last bound is equal to ǫ. The previous inequality

holds for any λ > 0. To get a small µ, we take λ =
√

2log(ǫ−1)

NR(f̃)
(when R(f̃) 6= 0;

otherwise the result is trivial). It follows that with P⊗N -probability at least 1− ǫ,

R(f̃)− r(f̃) ≤

√

2log(ǫ−1)R(f̃)

N
.

Using Theorem 4.10, with P⊗N -probability at least 1− 3ǫ, we obtain

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤

√

2log(ǫ−1)R(f̃)

N
+ r(Eρ̂(dθ)fθ) + B′′,

where B′′ are the quantities defined in Corollary 4.11. Hence, we have successively
(
√

R(f̃)−
√

log(ǫ−1)

2N

)2

≤ r(Eρ̂(dθ)fθ) + B′′ +
log(ǫ−1)

2N
,

√

R(f̃) ≤
√

r(Eρ̂(dθ)fθ) + B′′ +
log(ǫ−1)

2N
+

√

log(ǫ−1)

2N
,

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) + B′′

+
√

2log(ǫ−1)
N

(

√

r(Eρ̂(dθ)fθ) + B′′ + log(ǫ−1)
2N +

√

log(ǫ−1)
2N

)

.

�

5. Numerical examples : binary classification

5.1. Setup and notations. The setting is quite simple: the input data are d-
dimensional: X = Rd. In binary classification, the output set is Y = {0, 1}. The
model consists in all decision stumps. By definition, these stumps achieve a binary
partition of X along hyperplanes orthogonal to the axes in the canonical base of
X . In other words, they compare one component of the input data to a threshold.
Hence the model is

(5.1) R =
{

α01xj<τ + α11xj≥τ : j ∈ {1, . . . , d}, τ ∈ R, α0 ∈ [0; 1], α1 ∈ [0; 1]
}

.

Recall that the set of all df (distribution functions) is the set of increasing càdlàg
functions F such that

{

lim
x→−∞

F (x) = 0

lim
x→+∞

F (x) = 1

Theorem 5.1. The set R̃ of mixtures of elements of R is an additive model

(5.2)
R̃ =

{

x 7→∑d
j=1 αjhj(xj) : for any j ∈ {1, . . . , d}, hj ∈ H, αj ≥ 0

and
∑d

j=1 αj = 1

}

,



36 J.-Y. AUDIBERT

where

H ,
{

αF + β(1−G) + γ : α ≥ 0, β ≥ 0, γ ≥ 0, α+ β + γ ≤ 1, F df, G df
}

.

R̃ can also be written
(5.3)

R̃ =

{

x 7→ γ +
∑d

j=1

(

αjFj(xj) + βj [1−Gj(xj)]
)

: for any j ∈ {1, . . . , d},
Fj df, Gj df, αj ≥ 0, βj ≥ 0 and γ +

∑d
j=1(αj + βj) ≤ 1

}

,

Proof. By definition, the set of mixtures of elements in R is the set of functions
which can be written as Eπ(dX)X , where π is a probability measure on R. This
definition requires to have put a sigma algebra on R. In our context, we take the
canonical one. Introduce the set

R′ , {0R} ∪ {1R} ∪
j∈{1,...,d}

τ∈R

{1xj≥τ} ∪
j′∈{1,...,d}

τ ′∈R

{1x′
j<τ ′},

where 0R : x 7→ 0 and 1R : x 7→ 1. Let us put on R′ its canonical sigma alge-
bra. Denote Mixt(R′) the set of mixtures of elements in R′. Since R ⊂ Mixt(R′)
and R′ ⊂ R, we have Mixt(R′) = Mixt(R) = R̃. Hence any element of R̃ can
be written Eρ(dX)X , where ρ is a probability distribution on R′. Then define
γ = ρ(1R), for any j ∈ {1, . . . , d}, αj = ρ(j), for any j′ ∈ {1, . . . , d}, βj′ = ρ(j′),
µj(dτ) = ρ(dτ/j) the probability distribution on R and νj′(dτ ′) = ρ(dτ ′/j′) the
probability distribution on R. Denote Fj the df of µj and Gj′ the df of νj′ . Then we

have Eρ(dX)X = ρ(0R)0R+ρ(1R)1R+
∑d

j=1 ρ(j)Eρ(dX/j)X+
∑d

j′=1 ρ(j
′)Eρ(dX/j′)X.

Hence Eρ(dX)X(x) = γ +
∑d

j=1 αjFj(xj) +
∑d

j′=1 βj′ [1−Gj′(xj′)]. From the defi-

nitions, it comes that for any j ∈ {1, . . . , d}, Fj and Gj are df, αj ≥ 0, βj ≥ 0 and

γ +
∑d

j=1(αj + βj) ≤ 1. Therefore, we have

R̃ ⊂
{

x 7→ γ +
∑d

j=1

(

αjFj(xj) + βj [1−Gj(xj)]
)

: for any j ∈ {1, . . . , d},

Fj df, Gj df, αj ≥ 0, βj ≥ 0 and γ +
∑d

j=1(αj + βj) ≤ 1

}

,

Inversely, using the same ideas in the reverse order, one can prove the other inclu-
sion. So equality (5.3) is true. Equality (5.2) directly comes from it. �

Remark 5.1. The model R̃ is additive. As any additive model, it cannot classify well
data coming from certain simple generator. One of the simplest is the 4-checked
draughtboard defined as























L(X) = U [0; 1]× U [0; 1]

L(Y/X = (x1, x2)) =















δ0 when x1 <
1
2

and x2 <
1
2

δ1 when x1 <
1
2

and x2 ≥ 1
2

δ1 when x1 ≥ 1
2

and x2 <
1
2

δ0 when x1 ≥ 1
2

and x2 ≥ 1
2

where δa denotes the Dirac distribution on point a. For this generator, the best
additive model has a misclassification rate of 1

4
whereas the Bayes classifier almost

surely classifies well.
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5.1.1. Data sets generators. The training sample will be drawn from the
“twonorm”, “threenorm” and “ringnorm” generators. These generators introduced
by Breiman in [3] have the following definitions

• Twonorm
Both classes have equal probabilities: P(Y = 0) = P(Y = 1) = 1

2 . The

law of probability of X ∈ Rd conditional to Y = 0 is a multivariate normal
distribution with unit covariance matrix and mean m− , (− 2√

d
, . . . ,− 2√

d
).

The law of probability of X conditional to Y = 1 is a multivariate normal
distribution with unit covariance matrix and mean m+ , ( 2√

d
, . . . , 2√

d
).

• Threenorm
Both classes have equal probabilities. The law of probability of X ∈ Rd

conditional to Y = 0 is a multivariate normal distribution with unit covari-
ance matrix and meanm , (− 2√

d
, 2√

d
,− 2√

d
, 2√

d
, . . . ). Conditional to Y = 1,

X is drawn with equal probability from a multivariate normal distribution
with unit covariance matrix and mean m− and from a multivariate normal
distribution with unit covariance matrix and mean m+.

• Ringnorm
Both classes have equal probabilities. The law of probability of X ∈ Rd

conditional to Y = 0 is a multivariate normal distribution with unit co-
variance matrix and mean m+

2
. The law of probability of X conditional to

Y = 1 is a multivariate centered normal distribution with covariance matrix
four times the identity.

Denote Gµ the multivariate normal density wrt Lebesgue measure with mean µ
and unit covariance matrix :

Gµ(x) =
e−

‖x−µ‖2

2

(2π)
d
2

.

Introduce n1 , (0, 1, 0, 1, . . .), n2 , (1, 0, 1, 0, . . .) and Cst , 8d log 2. The main
characteristics of these generators are described in the following tables.

5.1.2. Prior distribution. We are looking for the best classifying function among
the functions of R̃. In the proof of Theorem 5.1, we have noticed that R̃ is the set
of mixtures of elements in

R′ , {0R} ∪ {1R} ∪
{

fj,τ ; j ∈ {1, . . . , d}, τ ∈ R
}

∪
{

gj′,τ ′ ; j′ ∈ {1, . . . , d}, τ ′ ∈ R
}

,

where fj,τ (x) , 1xj≥τ and gj′,τ ′(x) , 1xj′<τ ′ . Instead of putting the prior dis-

tribution π on R, we will define it on R′. For any j ∈ {1, . . . , d}, a probability
distribution on {fj,τ ; τ ∈ R} or equivalently on {gj,τ ; τ ∈ R} can be seen as a prob-
ability distribution on the parameter τ ∈ R. We take arbitrarily the distribution π
such that the law of the function f ∈ R′ conditional to f ∈ {fj,τ ; τ ∈ R} and the
law of the function f ∈ R′ conditional to f ∈ {gj,τ ; τ ∈ R} are defined by the same
law G(dτ) and such that



















π(0R) = 1
4

π(1R) = 1
4

π
(

∪
τ∈R
{fj,τ}

)

= 1
4d

for any j ∈ {1, . . . , d}
π
(

∪
τ∈R
{gj,τ}

)

= 1
4d for any j ∈ {1, . . . , d}
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Twonorm
L(Y ) 1

2δ0 + 1
2δ1

L(X/Y = 0) N(m−, I)
L(X/Y = 1) N(m+, I)

L(X)
Gm− (x)+Gm+

(x)

2
dx

P(Y = 1/X = x)
Gm+

Gm+
+Gm−

(x) = 1

1+e−2〈x,m+〉

frontier 〈x,m+〉 = 0

Threenorm Ringnorm
L(Y ) 1

2
δ0 + 1

2
δ1

1
2
δ0 + 1

2
δ1

L(X/Y = 0) N(m, I) N(m+

2 , I)

L(X/Y = 1)
Gm− (x)+Gm+

(x)

2
dx N(0, 4I)

L(X)
Gm− (x)+Gm+

(x)+2Gm(x)

4 dx
Gm+/2(x)+ 1

2d G0(
x
2 )

2 dx

P(Y = 1/X = x)
Gm−+Gm+

Gm−+Gm+
+2Gm

(x)
G0(

x
2 )

G0(
x
2 )+2dGm+/2(x)

frontier e
− 4√

d
〈n1,x〉

+ e
4√
d
〈n2,x〉

= 2 ‖2x−m+‖2 − ‖x‖2 = Cst

In our numerical examples, G will be a centered normal distribution with unit
variance N(0, 1):

G(dτ) =
e−

τ2

2√
2π

.

5.2. Computation of the bound and of the classifier. Let B(λi, βj , ρ) be equal

to the RHS of inequality (4.13) in which we replace the unobservable quantity r(f̃)
with inf

R̃
r and we take ηi = η = 1

|I| and ζj = ζ = 1
|J| . Let d′1 be some real and

define ρ̂d′
1

, π−d′
1Nr(f)+〈w,f(X)〉. Set







































a , 1
1−4λg(λ)

b , 1− 1−4λg(λ)
1+βg(β)

c , 1
λN

+ 1−4λg(λ)
βN [1+βg(β)]

d1 , b
cN

d2 , 1−b
cN

d3 , 1
N

(

log[(ηǫ)−1]
λ[1−4λg(λ)] + log[(ζǫ)−1]

2β[1+βg(β)]

)

− inf{r(f);f∈R̃}
1−4λg(λ)

.

We have B(λ, β, ρ̂) = a
[

bEρ̂(dθ)r(fθ) + (1− b)r(Eρ̂(dθ)fθ) + cK(ρ̂, π)
]

+ d3, hence
(5.4)

B(λ, β, ρ̂d′
1
) = ac

(

d2

∑N
i=1[Yi − Eρ̂d′

1
f(Xi)]

2 + d1Eρ̂d′
1

∑N
i=1[Yi − f(Xi)]

2

+K(ρ̂d′
1
, π)
)

+ d3

= ac
(

d2

∑N
i=1[Yi − Eρ̂d′

1
f(Xi)]

2

+(d1 − d′1)
∑N

i=1

(

Yi − 2YiEρ̂d′
1
f(Xi) + Eρ̂d′

1
f(Xi)

)

∑N
i=1 wiEρ̂d′

1
f(Xi)− log πe−d′

1Nr(f)+〈w,f(X)〉
)

+ d3

We just need to compute Eπe
−d′

1Nr(f)+〈w,f〉) and then use that for any i ∈
{1, . . . , N}, Eρ̂d′

1
f(Xi) = ∂

∂wi
logEπe

−d′
1Nr(f)+〈w,f(X)〉 to calculate this bound.
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For any input data x ∈ X , the predicted output is

Eρ̂d′
1
f(x) =

∂

∂u
logEπe

−d′
1Nr(f)+〈w,f(X)〉+uf(x)









u=0

.

The following theorem gives a simple expression of Eπe
−d′

1Nr(f)+〈w,f(X)〉+uf(x).
We need first to introduce for any j ∈ {1, . . . , d} the bijection σj onto {1, . . . , N}
such that

Xσj(1),j < · · · < Xσj(N),j ,

where Xi,j denotes the j-th component of the i-th input vector of the training
data. (We assume that the j-th component of the N input vectors are different.)

By convention, put Xσj(0),j , −∞ and Xσj(N+1),j , +∞. Define

φ(x1, x2) ,

∫ x2

x1

G(τ)dτ

and for any j ∈ {1, . . . , d} and l ∈ {0, . . . , N},
φj,l , φ

(

Xσj(l),j, Xσj(l+1),j

)

Introduce for any j ∈ {1, . . . , d} and x ∈ X , the integer lj(x) ∈ {0, . . . , N} satisfying

Xσj [lj(x)],j ≤ x < Xσj [lj(x)+1],j .

Theorem 5.2. We have

Eπe
−d′

1Nr(f)+〈w,f(X)〉+uf(x)

= 1
4e
−d′

1

∑N
i=1 Y 2

i + 1
4e
−d′

1

∑N
i=1(1−Yi)

2+
∑N

i=1 wi+u + 1
4d

∑d
j=1

{

∑lj(x)−1
l=0 φj,l

[

e
−d′

1

∑ l
i=1 Y 2

σj(i)−d′
1

∑N
i=l+1(1−Yσj(i))

2+
∑N

i=l+1 wσj(i)+u

+e
−d′

1

∑ l
i=1(1−Yσj(i))

2−d′
1

∑N
i=l+1 Y 2

σj(i)+
∑ l

i=1 wσj(i)

]

+φ(Xσj [lj(x)],j , x)

[

e
−d′

1

∑ l
i=1 Y 2

σj(i)−d′
1

∑N
i=l+1(1−Yσj(i))

2+
∑N

i=l+1 wσj(i)+u

+e
−d′

1

∑ l
i=1(1−Yσj(i))

2−d′
1

∑N
i=l+1 Y 2

σj(i)+
∑ l

i=1 wσj(i)

]

+φ(x,Xσj [lj(x)+1],j)

[

e
−d′

1

∑ l
i=1 Y 2

σj(i)−d′
1

∑N
i=l+1(1−Yσj(i))

2+
∑N

i=l+1 wσj(i)

+e
−d′

1

∑ l
i=1(1−Yσj(i))

2−d′
1

∑N
i=l+1 Y 2

σj(i)+
∑ l

i=1 wσj(i)+u
]

+
∑N

l=lj(x)+1 φj,l

[

e
−d′

1

∑ l
i=1 Y 2

σj(i)−d′
1

∑N
i=l+1(1−Yσj(i))

2+
∑N

i=l+1 wσj(i)

+e
−d′

1

∑ l
i=1(1−Yσj(i))

2−d′
1

∑N
i=l+1 Y 2

σj(i)+
∑ l

i=1 wσj(i)+u
]

}

As a consequence,

Eπe
−d′

1Nr(f)+〈w,f(X)〉

= 1
4
e−d′

1

∑N
i=1 Y 2

i + 1
4
e−d′

1

∑N
i=1(1−Yi)

2+
∑N

i=1 wi

+ 1
4d

∑d
j=1

∑N
l=0 φj,l

{

e
−d′

1

∑ l
i=1 Y 2

σj(i)−d′
1

∑N
i=l+1(1−Yσj(i))

2+
∑N

i=l+1 wσj(i)

+e
−d′

1

∑ l
i=1(1−Yσj(i))

2−d′
1

∑N
i=l+1 Y 2

σj(i)+
∑ l

i=1 wσj(i)

}
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Proof. If l is the number of Xi,j, i = 1, . . . , N lower than τ , we have

d′1Nr(fj,τ ) + 〈w, fj,τ〉 = d′1

l
∑

k=1

Y 2
σj(k) +

N
∑

k=l+1

(1− Yσj(k))
2 +

N
∑

k=l+1

wσj(k)

and

d′1Nr(gj,τ) + 〈w, gj,τ〉 = d′1

l
∑

k=1

(1− Yσj(k))
2 +

N
∑

k=l+1

Y 2
σj(k) +

l
∑

k=1

wσj(k).

The calculus is then straightforward. �

Let N0 (resp. N1) be the number of class 0 data (resp. class 1 data) in the

training sample. We have trivially N0 + N1 = N . Introduce cw0 , e−d′
1N1 , cw1 ,

e−d′
1N0+

∑N
i=1 wi , for any j ∈ {1, . . . , d} and l ∈ {0, . . . , N},






















aw
j,l , φj,le

−d′
1

∑ l
i=1 Yσj(i)−d′

1

∑N
i=l+1(1−Yσj(i))+

∑N
i=l+1 wσj(i)

= φj,le
−d′

1(N0−l+2
∑ l

i=1 Yσj(i))+
∑N

i=l+1 wσj(i)

bwj,l , φj,le
−d′

1

∑ l
i=1(1−Yσj(i))−d′

1

∑N
i=l+1 Yσj(i)+

∑ l
i=1 wσj(i)

= φj,le
−d′

1(N1+l−2
∑ l

i=1 Yσj(i))+
∑ l

i=1 wσj(i)

for any x ∈ X ,

cwj,l(x) ,











aw
j,l when l < lj(x)

φ(Xσj(l),j ,xj)a
w
j,l+φ(xj ,Xσj(l+1),j)b

w
j,l

φj,l
when l = lj(x)

bwj,l when l > lj(x)

and for any x, y ∈ X ,

cwj,l(x, y) ,























aw
j,l when l < lj(x) ∧ lj(y)

φ(Xσj(l),j ,xj∧yj)

φj,l
aw

j,l when l = lj(x) ∧ lj(y)
φ(xj∨yj ,Xσj(l+1),j)

φj,l
bwj,l when l = lj(x) ∨ lj(y)

bwj,l when l > lj(x) ∨ lj(y)

,

with the following convention when lj(x) ∨ lj(y) = lj(x) ∧ lj(y):

cwj,lj(x)∨lj(y)(x, y) ,
φ(Xσj(l),j , xj ∧ yj)

φj,l
aw

j,l +
φ(xj ∨ yj, Xσj(l+1),j)

φj,l
bwj,l.

Then

Corollary 5.3. For any constant d′1, we have

Eπe
−d′

1Nr(f)+〈w,f(X)〉 = 1
4d

(

dcw0 + dcw1 +
∑d

j=1

∑N
l=0

(

aw
j,l + bwj,l

)

)

.

Let ρ̂d′
1

, π−d′
1Nr(f)+〈w,f(X)〉. We have











Eρ̂d′
1
f(x) =

dcw
1 +

∑d
j=1

∑N
l=0 cw

j,l(x)

dcw
0 +dcw

1 +
∑

d
j=1

∑

N
l=0

(

aw
j,l+bw

j,l

)

Eρ̂d′
1
[f(x)f(y)] =

dcw
1 +

∑d
j=1

∑N
l=0 cw

j,l(x,y)

dcw
0 +dcw

1 +
∑

d
j=1

∑

N
l=0

(

aw
j,l

+bw
j,l

)



AGGREGATED ESTIMATORS 41

Proof. It comes from Theorem 5.2 and from














Eρ̂d′
1
f(x) = ∂

∂u logEπe
−d′

1Nr(f)+〈w,f(X)〉+uf(x)









u=0

Covρ̂d′
1

(

f(x), f(y)
)

= ∂2

∂u∂v logEπe
−d′

1Nr(f)+〈w,f(X)〉+uf(x)+vf(y)









u=0,v=0

�

Remark 5.2. To compute Eρ̂d′
1
f(Xi), we may note that lj(Xi) = σ−1

j (i). Besides,

there is a simple link between aw
j,l and bwj,l since for any j ∈ {1, . . . , d} and l ∈

{0, . . . , N}, we have

aw
j,lb

w
j,l = φ2

j,lc
w
0 c

w
1 .

Computation of the constant d3

We have

d3 ,
1

N

( log[(ηǫ)−1]

λ[1− 4λg(λ)]
+

log[(ζǫ)−1]

2β[1 + βg(β)]

)

− inf{r(f); f ∈ R̃}
1− 4λg(λ)

.

To compute the constant d3, we need to calculate inf{r(f); f ∈ R̃}. From Theorem

5.1, determining inf{r(f); f ∈ R̃} is equivalent to solving the following convex
quadratic (QP) problem

min
ui,j ,vi,j

N
∑

i=1

(

d
∑

j=1

(

ui,j + vi,j

)

− Yi

)2

under the linear constraints






0 ≤ uσj(1),j ≤ · · · ≤ uσj(N),j for any j ∈ {1, . . . , d}
vσj(1),j ≥ · · · ≥ vσj(N),j ≥ 0 for any j ∈ {1, . . . , d}
∑d

j=1

(

uσj(N),j + vσj(1),j

)

≤ 1

The dimension of the QP-problem is dN and the number of linear constraints is
2dN + 1. This is numerically untractable (since dN ≫ 1000). Therefore, we can

either weaken our bound by neglecting the term − inf{r(f);f∈R̃}
1−4λg(λ)

or approximate this

term by − inf{r(Eρ(dθ)fθ)+δK(ρ,π);ρ∈M1
+(Θ)}

1−4λg(λ)
for sufficiently small δ (since this last

optimization problem has been proven to be tractable).

5.3. Experiments.

5.3.1. Our algorithm: KL-Boost. In KL-Boost algorithm, we cross-validate on the
Kullback-Leibler regularization parameter and neglect the variance term. For any
couple (λ,β), the vector wopt in the procedure derived from Corollary 4.3 is solution
of the minimization problem

min
w∈RN

1

2
r(Eπw(dθ)fθ) + α′EP̄Varπw(dθ)fθ + αK(πw, π),

for α = 2c and α′ = 2b. The variance term in this minimization problem is useful
only when the best regression function f̃ in the model R̃ is in (or very close to) the
initial model R. Generally, this is not the case in applications. So let us forget the
variance term (α′ = 0). Finally, we look for the adequate parameter α by using
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cross-validation. After having chosen the parameter, the algorithm is calibrated on
all the training set for this regularization parameter.

According to Theorem 4.10, the quantity B(λ, β, ρ̂0) (see (5.4)) gives a risk guar-
antee. From Section 4.2.2, the final aggregating distribution is ρ̂ = π〈w,f〉, where

the vector w satisfies wi = 1
αN [Yi −Eπ〈w,f〉f(Xi)] for any i ∈ {1, . . . , N}.

In our experiments, we have taken

• maximum number of iterations used to optimize the bound m = 300,
• absolute error accepted when minimizing the bound err = 0.0001,
• number of blocks used in the cross-validation = 2,
• set of values of the regularization parameter α:

{0.0002, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.2}.
Note that this set is inspired from the bound and takes into account the fact
that the bound is conservative (i.e. tends to regularize too much). Strictly
speaking, it should depend on N .

In our simulations, the value 0.0002 of the parameter α leads to a procedure close
to the empirical risk minimizer on the set of mixtures R̃ and thus is used to ap-
proximate d3.

5.3.2. AdaBoost using domain-partitioning functions ([5, 12, 6]). The first boosting
methods train functions on weighted versions of the training sample, giving higher
weights to cases that are currently misclassified. In AdaBoost (Freund and Schapire
[5]), the functions trained are classifiers, that is to say functions taking their values
in {0, 1} in the two-class classification setting. We describe the original algorithm in
figure 2 where Ewm denotes the empirical expectation wrt the weights wm

1 , . . . , w
m
N .

Figure 1. “Discrete” AdaBoost using domain-partitioning func-
tions (Freund and Schapire [5])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Choose a partition of X = ⊔L
l=1Xm

l .
On each Xm

l , fm ∈ {0, 1} is constant and such that it minimizes
the weighted training error

em , Pwm−1(Y 6= fm(X)).

Set wm
i =

wm−1
i e

cm1Yi 6=fm(Xi)

Cst for any i ∈ {1, . . . , N}, where
• Cst is the normalizing constant,
• cm , log

(

1−em

em

)

.

Output the classifier 1Ecf(x)≥ 1
2
, where Ec is the expectation wrt the weights
c1, . . . , cM .

The weights cm are positive since by construction of the classifier fm, we have
em ≤ 1

2 . The choice of the partition can be done in several different ways. In
standard boosting methods, one can choose the split which causes the greatest
drop in the value of a criterion to be specified. This greedy procedure is sometimes
replaced by randomizing methods. For instance, one can draw a set of splits and
choose the split among this set which minimizes the criterion. Another way of
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randomizing is to draw a subset of the training sample and then take the split
which minimizes the criterion on this subset.

Introduce Fm ,
∑m

j=1 cjfj . Define Ȳ , −1 + 2Y ∈ {−1, 1}, f̄ , −1 + 2f and

F̄m , −1 + 2Fm. Then we have: F̄m =
∑m

j=1 cj f̄j . Introduce fm,l ∈ {0, 1} such
that

fm(x) =

L
∑

l=1

fm,l1x∈Xm
l
,

where {Xm
l }1,...,L is the chosen partition during the m-th step of the procedure

(described in figure 2).

Lemma 5.4. Once the partition has been chosen, the positive real cm and the family

fm,l ∈ {0, 1}, l = 1, . . . , L are chosen in order to minimize EP̄(e−
1
2 Ȳ F̄m(X)).

The link between AdaBoost and this criterion has been introduced by Friedman,
Hastie and Tibshirani [6].

Proof. By induction on m, one may easily prove that for any m ∈ {0, . . . ,M},

Pwm =
e−

1
2 Ȳ F̄m(X)

EP̄(e−
1
2 Ȳ F̄m(X))

· P̄.

Then we have

EP̄(e− 1
2

Ȳ F̄m(X))

EP̄(e− 1
2

Ȳ F̄m−1(X))
= Ewm−1(e−

1
2 Ȳ cmf̄m(X))

=
∑L

l=1 P̄(X ∈ Xm
l )Ewm−1(e−

1
2 Ȳ cmf̄m,l/X ∈ Xm

l )

=
∑L

l=1

(

Pwm−1(Y = 1;X ∈ Xm
l ) e−

1
2 cmf̄m,l

+Pwm−1(Y = 0;X ∈ Xm
l ) e

1
2 cmf̄m,l

)

For any l ∈ {1, . . . , L} and for fixed cm ≥ 0, the l-th term of this last sum is
minimized for f̄m,l equal to the most wm−1-popular class on Xm

l , hence

fm,l = argmax
u∈{0,1}

Pwm−1(Y = u/X ∈ Xm
l ) = argmin

u∈{0,1}
Ewm−11{Y 6=u;X∈Xm

l }.

Since we have

Ewm−1(e−
1
2 Ȳ cmf̄m(X)) = e

1
2 cmPwm−1 [Y 6= fm(X)] + e−

1
2 cmPwm−1 [Y = fm(X)],

the optimal cm is

cm = log

(

1− em

em

)

,

where em = Pwm−1(Y 6= fm(X)). �

As Friedman, Hastie and Tibshirani pointed out, this algorithm produces adap-
tive Newton updates for minimizing [F̄ 7→ EP̄e

−Ȳ F̄ (X)], which are stage-wise con-
tributions to an additive logistic model.

In [12], Schapire and Singer suggests to use real-valued functions rather than
classifiers (which, by definition, take their values in {−1, 1}). This leads to the
algorithm described in figure 3 which outperforms the “discrete” AdaBoost when
L is small (especially when we use stumps: L = 2).

In this procedure, at the m-th step, the family f̄m,l, l = 1, . . . , L is chosen such
that it minimizes

EP̄ e
−Ȳ F̄m(X) = EP̄ e

−Ȳ F̄m−1(X)Ewm−1 e−Ȳ f̄m(X).
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Figure 2. “Real” AdaBoost using domain-partitioning functions
(Schapire and Singer[12])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Choose a partition of X = ⊔L
l=1Xm

l .
For any l ∈ {1, . . . , L}, on each Xm

l , f̄m ∈ R is constant and
equal to

f̄m,l ,
1

2
log

(

Pwm−1(Y = 1;X ∈ Xm
l )

Pwm−1(Y = 0;X ∈ Xm
l )

)

.

Set wm
i =

wm−1
i e−Ȳif̄m(Xi)

Cst
for any i ∈ {1, . . . , N}, where Cst is the

normalizing constant.

Output the classifier 1FM (x)≥ 1
2

= 1+sign[F̄M(x)]
2 .

Besides, we have

Ewm−1 e−Ȳ f̄m(X)

=
∑L

l=1 Pwm−1(Y = 0;X ∈ Xm
l )ef̄m,l + Pwm−1(Y = 1;X ∈ Xm

l )e−f̄m,l

= 2
∑L

l=1

√

Pwm−1(Y = 0;X ∈ Xm
l ) Pwm−1(Y = 1;X ∈ Xm

l ).

Therefore, as Schapire and Singer stresses, a natural criterion to partition the input
space X is to minimize this last sum. This is more coherent to use it instead of
the Gini index or an entropy function since it aims, as the rest of the procedure, to
minimize the functional [F̄ 7→ EP̄e

−Ȳ F̄ (X)].
It may happen that one of the predictions f̄m,l is very large or even infinite,

which leads to numerical problems. To limit the magnitude of the predictions,
Schapire and Singer define

f̄m,l ,
1

2
log

(

Pwm−1(Y = 1;X ∈ Xm
l ) + β

Pwm−1(Y = 0;X ∈ Xm
l ) + β

)

,

where β is a small positive real arbitrarily defined as β = 1
4N

.
In our numerical examples, we are interested in decision stumps x 7→ α01xj<τ

+ α11xj≥τ which partition X into X<
j,τ , {xj < τ} and X≥j,τ , {xj ≥ τ}. For any

j ∈ {1, . . . , d} and τ ∈ R, introduce

Ww(j, τ) ,

√

Pw(Y = 0; x ∈ X<
j,τ )Pw(Y = 1; x ∈ X<

j,τ )

+
√

Pw(Y = 0; x ∈ X≥j,τ )Pw(Y = 1; x ∈ X≥j,τ ) .

The AdaBoost used in our numerical examples is described in figure 4. After
having tested different values for the number of stumps aggregated, we have taken
M = 100.

Remark 5.3. The set of (j, τ) minimizing Wwm−1(j, τ) has the following form

∪d
j=1

(

{j} × ∪kj

k=1]aj; bj]
)

,

where aj and bj belong to {−∞, X1,j, . . . , XN,j,+∞} and k1, . . . , kd are positive
integers. We take arbitrarily the smallest j to make the split (i.e. the smallest
integer j such that kj > 0). Then τ is chosen in ]Xσj(l),j;Xσj(l+1),j ], where l
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Figure 3. “Real” AdaBoost using stumps (Schapire and Singer[12])

Start with weights w0
i = 1

N for any i ∈ {1, . . . , N}.
For m = 1 to M do

Determine j ∈ {1, . . . , d} and τ ∈ R minimizing Wwm−1(j, τ).
Choose f̄m = f̄m,<1x∈X<

j,τ
+ f̄m,≥1x∈X≥

j,τ
, where















f̄m,< , 1
2 log

(

Pwm−1 (Y =1;X∈X<
j,τ )+β

Pwm−1 (Y =0;X∈X<
j,τ )+β

)

f̄m,≥ , 1
2 log

(

Pwm−1 (Y =1;X∈X≥
j,τ )+β

Pwm−1 (Y =0;X∈X≥
j,τ )+β

)

and β = 1
4N
.

Set wm
i =

wm−1
i e−Ȳif̄m(Xi)

Cst
for any i ∈ {1, . . . , N}, where Cst is

the normalizing constant.

Output the classifier 1FM (x)≥ 1
2

= 1+sign[F̄M(x)]
2

.

is the smallest integer such that (j,Xσj(l+1),j) minimizes Wwm−1(j, τ). We take
arbitrarily

τ =
Xσj(l),j +Xσj(l+1),j

2
∈ R̄.

We use the convention X<
j,−∞ , ∅, X≥j,−∞ , R, X<

j,+∞ , R and X≥j,+∞ , ∅. Hence
τ = +∞ and τ = −∞ give the same partition and consequently, the same function
fm.

Remark 5.4. Since E e−Ȳ F̄ (X) is minimized for F̄ (x) = 1
2

log
(

P(Y =1/X=x)
P(Y =0/X=x)

)

and

since the AdaBoost procedure aims to minimize the functional
[

F̄ 7→ EP̄e
−Ȳ F̄ (X)

]

,

the quantity 1
1+e−2F̄M (x) is an estimate of the regression function E(Y/X = x) =

P(Y = 1/X = x).

Remark 5.5. The “real” AdaBoost algorithm using stumps as a weak learner leads
to a classifier which belongs to

sign(R̃) , {g : X → {−1; 1} : there exists f ∈ R̃ such that g = signf}.
So it is not associated with a larger model than the one used in KL-Boost. “Dis-
crete” AdaBoost using stumps has trivially this property (final classifier belongs to

sign(R̃)) since the estimates fm aggregated belongs to R′. To prove the property
for the “real” Adaboost algorithm, we just need to notice that

1FM (x)≥ 1
2

= 1Eµf ′
m(x)≥ 1

2
,

where f ′m ,
1+f̄ ′

m

2 , f̄ ′m ,
f̄m

max
{

|fm,k|;k∈{<,≥},m∈{1,...,M}
} and µ is the uniform

distribution on {1, . . . ,M}, and to check that f ′m belongs to R (see equality (5.1)
for the definition of R).

However, in KL-Boost, the additive model is put on the conditional expectation
rather than the logit transformation

1

2
log

(

P(Y = 1/X)

P(Y = 0/X)

)

=
1

2
log

(

E(Y/X)

1− E(Y/X)

)

.
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Therefore, as algorithms estimating the conditional expectation E(Y/X), AdaBoost
and KL-Boost are associated with very different models.

5.4. Numerical results and comments. In our experiments, we compare KL-
Boost with Adaboost. It appears that KL-Boost is more efficient than AdaBoost
on noisy data, and the results are more balanced in low noise frameworks. For the
lines of the tables in which the training sample is of size 100 or 500 and in which the
dimension is 3, we generated 100 training sets. For the other lines, 25 training sets
have been simulated. The errors which appear in the tables are averaged errors
over the 100 or 25 simulations. Below, in brackets, we put twice the associated
standard deviations over the square root of the number of simulations to give the
usual approximations of the confidence intervals. In the numerical simulations, the
input dimension was either 3 or 6 or 20. In the tables, the parameter 3, 6 (resp.
10, 20) in the “dimension” column means that the input is 6-dimensional (resp.
10-dimensional) but the output only depends on 3 (resp. 10) components of the
input (the other 3 (resp. 10) components of the input being generated by a centered
normal distribution with unit variance independently of the output).

For ringnorm generators without noise, AdaBoost is definitely more efficient
than KL-Boost. We have to bear in mind that even if the underlying classification
model is the same for all the algorithms (that is to say the set sign(−1+2R̃) where

R̃ is described in Theorem 5.1 and when the classes are {−1; +1}), the regression

models are different in Adaboost and KL-Boost procedures. Let us denote R̃ada the
regression function model associated with Adaboost. On the one hand, Adaboost
will tend to classify as Cada , sign(−1 + 2f̃ada), where

f̃ada , argmin
f∈R̃ada

R(f)

and R(f) still denotes the quadratic risk. On the other hand, KL-Boost algorithm

will tend to classify as CKL , sign(−1 + 2f̃), where

f̃ , argmin
f∈R̃

R(f).

Usually, the function f̃ is different from f̃ada. Therefore the classifiers Cada and CKL

are in general different and the type of the classification task (which is determined
by the unknown probability distribution P) will decide which of these two classifiers
outperforms the other. The performance of the algorithms will utterly come from
the performance of these classifiers.

Using big training sets, one gets an idea of the efficiency of these classifiers.
Numerical results (for training sets of size N = 2000) tend to say that the classifier
Cada is “closer” to the Bayes rule than CKL for non-noisy ringnorm generators. The
opposite occurs for non-noisy twonorm generators. In the other cases, the situation
is balanced but globally in favor of CKL.

To cross-validate a parameter of the algorithm using the classification error plays
a key role for the twonorm generators since in this context, KL-Boost works better
than AdaBoost whereas its least square generalization errors is worse than Ad-
aBoost ones and increases when the training set size N increases.

In KL-Booost, the theoretical bound given by Theorem 4.10 is still far away from
the real value. When the number of training points is lower than 500, it often gets
irrelevant values, i.e. values bigger than 1/4. This is not surprising since we use
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for different twonorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 5, 1% 3,8% 0, 0% 2, 0% 0,050 0, 085 0, 000 0, 077
(±0, 3%) (±0, 3%) (±0, 0%) (±0, 3%) (±0, 003) (±0, 008) (±0, 000) (±0, 010)

500 3 3, 2% 2,9% 0, 0% 2, 6% 0,029 0, 100 0, 000 0, 099
(±0, 1%) (±0, 1%) (±0, 0%) (±0, 1%) (±0, 001) (±0, 010) (±0, 000) (±0, 010)

2000 3 2, 8% 2,7% 1, 3% 2, 7% 0,023 0, 131 0, 009 0, 131
(±0, 2%) (±0, 1%) (±0, 1%) (±0, 1%) (±0, 001) (±0, 018) (±0, 001) (±0, 018)

100 6 5, 4% 4,2% 0, 0% 2, 6% 0,052 0, 106 0, 000 0, 095
(±0, 3%) (±0, 5%) (±0, 0%) (±0, 6%) (±0, 004) (±0, 014) (±0, 000) (±0, 016)

500 6 3, 6% 3,0% 0, 0% 2, 6% 0,032 0, 129 0, 000 0, 127
(±0, 2%) (±0, 1%) (±0, 0%) (±0, 3%) (±0, 001) (±0, 016) (±0, 000) (±0, 016)

2000 6 2, 9% 2,8% 0, 7% 2, 8% 0,024 0, 156 0, 005 0, 156
(±0, 1%) (±0, 1%) (±0, 1%) (±0, 1%) (±0, 001) (±0, 015) (±0, 001) (±0, 015)

100 20 7, 8% 7,3% 0, 0% 2, 4% 0,073 0, 152 0, 000 0, 129
(±0, 6%) (±1, 1%) (±0, 0%) (±0, 6%) (±0, 005) (±0, 008) (±0, 000) (±0, 011)

500 20 4, 5% 3,7% 0, 0% 3, 0% 0,041 0, 160 0, 000 0, 156
(±0, 2%) (±0, 2%) (±0, 0%) (±0, 3%) (±0, 001) (±0, 008) (±0, 000) (±0, 008)

2000 20 3, 6% 3,1% 0, 1% 3, 0% 0,030 0, 167 0, 002 0, 167
(±0, 1%) (±0, 1%) (±0, 1%) (±0, 2%) (±0, 001) (±0, 010) (±0, 000) (±0, 010)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for twonorm generators with superfluous features

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3, 6 12, 4% 10,8% 0, 0% 7, 2% 0,119 0, 123 0, 000 0, 108
(±0, 7%) (±0, 8%) (±0, 0%) (±1, 2%) (±0, 006) (±0, 012) (±0, 000) (±0, 015)

500 3, 6 10, 4% 9,5% 1, 0% 8, 4% 0,086 0, 130 0, 009 0, 127
(±0, 3%) (±0, 2%) (±0, 2%) (±0, 4%) (±0, 002) (±0, 018) (±0, 002) (±0, 018)

2000 3, 6 9,0% 9, 1% 6, 3% 8, 7% 0,069 0, 168 0, 044 0, 168
(±0, 2%) (±0, 2%) (±0, 2%) (±0, 2%) (±0, 001) (±0, 020) (±0, 001) (±0, 020)

100 10, 20 15, 2% 14,7% 0, 0% 6, 7% 0,144 0, 170 0, 000 0, 143
(±0, 8%) (±1, 3%) (±0, 0%) (±1, 1%) (±0, 008) (±0, 011) (±0, 000) (±0, 017)

500 10, 20 11, 5% 10,5% 0, 0% 8, 5% 0,099 0, 169 0, 000 0, 165
(±0, 3%) (±0, 2%) (±0, 0%) (±0, 5%) (±0, 002) (±0, 009) (±0, 000) (±0, 010)

2000 10, 20 10, 1% 9,3% 4, 9% 8, 9% 0,079 0, 183 0, 034 0, 180
(±0, 3%) (±0, 2%) (±0, 3%) (±0, 2%) (±0, 001) (±0, 011) (±0, 002) (±0, 010)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for different threenorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 16, 5% 16, 5% 0, 0% 14, 4% 0,159 0, 165 0, 001 0, 146
(±0, 7%) (±0, 8%) (±0, 0%) (±0, 8%) (±0, 004) (±0, 003) (±0, 000) (±0, 005)

500 3 15, 2% 13,2% 8, 6% 14, 2% 0,113 0, 156 0, 058 0, 152
(±0, 3%) (±0, 3%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 002)

2000 3 14, 9% 12,6% 13, 1% 14, 4% 0,099 0, 153 0, 091 0, 152
(±0, 4%) (±0, 1%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 002)

100 6 20,6% 27, 5% 0, 0% 16, 1% 0, 233 0,187 0, 000 0, 160
(±1, 6%) (±1, 2%) (±0, 0%) (±1, 8%) (±0, 009) (±0, 006) (±0, 000) (±0, 013)

500 6 18,2% 23, 9% 8, 3% 19, 0% 0,178 0, 180 0, 056 0, 177
(±0, 6%) (±0, 6%) (±0, 6%) (±0, 8%) (±0, 003) (±0, 004) (±0, 004) (±0, 005)

2000 6 18,0% 23, 6% 14, 3% 19, 2% 0,156 0, 173 0, 099 0, 172
(±0, 4%) (±0, 4%) (±0, 4%) (±0, 4%) (±0, 002) (±0, 002) (±0, 002) (±0, 003)

100 20 28,1% 31, 4% 0, 0% 13, 5% 0, 273 0,209 0, 009 0, 153
(±1, 2%) (±1, 0%) (±0, 0%) (±1, 6%) (±0, 008) (±0, 003) (±0, 013) (±0, 010)

500 20 24,9% 26, 5% 4, 4% 21, 3% 0, 209 0,208 0, 034 0, 200
(±0, 6%) (±0, 8%) (±0, 6%) (±0, 8%) (±0, 003) (±0, 004) (±0, 003) (±0, 006)

2000 20 23,1% 24, 3% 15, 7% 22, 0% 0,170 0, 202 0, 107 0, 200
(±0, 3%) (±0, 4%) (±0, 3%) (±0, 4%) (±0, 002) (±0, 002) (±0, 002) (±0, 003)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for threenorm generators with superfluous features

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3, 6 30, 1% 27,4% 0, 0% 21, 1% 0, 268 0,205 0, 001 0, 171
(±1, 2%) (±1, 3%) (±0, 1%) (±2, 1%) (±0, 009) (±0, 005) (±0, 001) (±0, 011)

500 3, 6 27, 4% 23,1% 14, 1% 24, 1% 0, 192 0,191 0, 095 0, 183
(±0, 6%) (±0, 6%) (±1, 0%) (±1, 2%) (±0, 003) (±0, 004) (±0, 005) (±0, 005)

2000 3, 6 25, 0% 21,0% 20, 8% 22, 9% 0,161 0, 185 0, 142 0, 183
(±0, 4%) (±0, 3%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 001)

100 10, 20 36, 1% 35,6% 0, 0% 20, 4% 0, 333 0,228 0, 000 0, 180
(±1, 4%) (±2, 1%) (±0, 0%) (±2, 9%) (±0, 010) (±0, 004) (±0, 000) (±0, 013)

500 10, 20 32, 5% 29,1% 8, 2% 25, 7% 0, 241 0,215 0, 061 0, 203
(±0, 7%) (±0, 6%) (±0, 6%) (±0, 8%) (±0, 003) (±0, 004) (±0, 004) (±0, 006)

2000 10, 20 30, 1% 27,2% 21, 3% 27, 2% 0,196 0, 214 0, 142 0, 210
(±0, 3%) (±0, 3%) (±0, 3%) (±0, 4%) (±0, 002) (±0, 005) (±0, 002) (±0, 006)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for different ringnorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 26,7% 30, 4% 0, 3% 23, 9% 0, 232 0,209 0, 007 0, 188
(±0, 5%) (±0, 5%) (±0, 1%) (±0, 9%) (±0, 003) (±0, 002) (±0, 001) (±0, 005)

500 3 22,5% 27, 0% 13, 1% 25, 0% 0,166 0, 199 0, 090 0, 193
(±0, 2%) (±0, 3%) (±0, 3%) (±0, 3%) (±0, 001) (±0, 001) (±0, 002) (±0, 002)

2000 3 21,0% 25, 1% 17, 6% 24, 4% 0,148 0, 194 0, 122 0, 192
(±0, 5%) (±0, 5%) (±0, 2%) (±0, 5%) (±0, 001) (±0, 001) (±0, 001) (±0, 002)

100 6 20,1% 30, 4% 0, 0% 20, 6% 0,186 0, 211 0, 000 0, 182
(±0, 8%) (±1, 4%) (±0, 0%) (±1, 2%) (±0, 007) (±0, 003) (±0, 000) (±0, 008)

500 6 14,7% 24, 7% 4, 6% 23, 2% 0,120 0, 200 0, 032 0, 196
(±0, 4%) (±0, 5%) (±0, 5%) (±0, 5%) (±0, 002) (±0, 002) (±0, 003) (±0, 002)

2000 6 13,2% 23, 7% 9, 5% 23, 0% 0,099 0, 198 0, 067 0, 195
(±0, 3%) (±0, 4%) (±0, 3%) (±0, 3%) (±0, 001) (±0, 001) (±0, 001) (±0, 001)

100 20 12,4% 28, 9% 0, 0% 13, 9% 0,116 0, 217 0, 000 0, 183
(±1, 1%) (±2, 6%) (±0, 0%) (±1, 7%) (±0, 011) (±0, 003) (±0, 000) (±0, 008)

500 20 4,9% 21, 2% 0, 0% 16, 5% 0,041 0, 210 0, 000 0, 201
(±0, 2%) (±2, 0%) (±0, 0%) (±1, 6%) (±0, 002) (±0, 003) (±0, 000) (±0, 005)

2000 20 3,3% 17, 7% 0, 1% 16, 5% 0,026 0, 205 0, 001 0, 205
(±0, 2%) (±1, 0%) (±0, 0%) (±0, 8%) (±0, 001) (±0, 002) (±0, 000) (±0, 003)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for ringnorm generators with superfluous features

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3, 6 25,9% 29, 0% 0, 0% 20, 8% 0, 236 0,206 0, 000 0, 177
(±0, 7%) (±0, 9%) (±0, 0%) (±1, 5%) (±0, 005) (±0, 006) (±0, 000) (±0, 012)

500 3, 6 21,6% 25, 1% 10, 0% 23, 3% 0,167 0, 188 0, 068 0, 183
(±0, 5%) (±0, 7%) (±0, 6%) (±0, 6%) (±0, 002) (±0, 003) (±0, 003) (±0, 005)

2000 3, 6 19,6% 22, 9% 15, 9% 22, 2% 0,142 0, 183 0, 110 0, 182
(±0, 3%) (±0, 5%) (±0, 2%) (±0, 5%) (±0, 001) (±0, 002) (±0, 001) (±0, 002)

100 10, 20 16,7% 28, 7% 0, 0% 15, 9% 0,157 0, 214 0, 000 0, 178
(±0, 9%) (±1, 7%) (±0, 0%) (±1, 2%) (±0, 008) (±0, 004) (±0, 000) (±0, 012)

500 10, 20 9,7% 20, 9% 0, 0% 17, 9% 0,085 0, 201 0, 000 0, 194
(±0, 2%) (±0, 7%) (±0, 0%) (±0, 6%) (±0, 002) (±0, 004) (±0, 000) (±0, 005)

2000 10, 20 8,1% 19, 2% 3, 4% 18, 4% 0,065 0, 202 0, 024 0, 200
(±0, 2%) (±0, 5%) (±0, 2%) (±0, 4%) (±0, 001) (±0, 004) (±0, 001) (±0, 005)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy twonorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 31, 8% 23,4% 1, 0% 20, 6% 0, 269 0,191 0, 015 0, 172
(±0, 7%) (±0, 4%) (±0, 3%) (±0, 9%) (±0, 004) (±0, 003) (±0, 002) (±0, 006)

500 3 26, 0% 21,9% 18, 0% 21, 6% 0, 198 0,190 0, 124 0, 187
(±0, 3%) (±0, 1%) (±0, 3%) (±0, 3%) (±0, 001) (±0, 003) (±0, 002) (±0, 004)

2000 3 23, 2% 21,6% 21, 1% 21, 5% 0,181 0, 185 0, 157 0, 184
(±0, 3%) (±0, 1%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 007) (±0, 002) (±0, 007)

100 6 32, 4% 24,1% 0, 0% 19, 7% 0, 287 0,198 0, 001 0, 172
(±1, 0%) (±0, 9%) (±0, 0%) (±1, 8%) (±0, 008) (±0, 005) (±0, 001) (±0, 013)

500 6 28, 4% 22,1% 15, 6% 21, 6% 0, 213 0,197 0, 104 0, 194
(±0, 6%) (±0, 1%) (±0, 6%) (±0, 6%) (±0, 003) (±0, 006) (±0, 003) (±0, 007)

2000 6 24, 2% 21,8% 21, 2% 21, 7% 0,187 0, 194 0, 154 0, 195
(±0, 4%) (±0, 1%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 007) (±0, 002) (±0, 007)

100 20 34, 7% 28,2% 0, 0% 17, 6% 0, 322 0,210 0, 000 0, 166
(±1, 0%) (±1, 8%) (±0, 0%) (±2, 0%) (±0, 008) (±0, 005) (±0, 000) (±0, 014)

500 20 31, 5% 23,0% 8, 8% 21, 8% 0, 245 0,213 0, 061 0, 209
(±0, 7%) (±0, 3%) (±0, 5%) (±0, 8%) (±0, 003) (±0, 006) (±0, 003) (±0, 007)

2000 20 27, 2% 22,0% 20, 4% 21, 9% 0,202 0, 216 0, 141 0, 215
(±0, 4%) (±0, 1%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 005) (±0, 002) (±0, 005)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy threenorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 38, 0% 32,8% 2, 1% 25, 2% 0, 307 0,222 0, 026 0, 188
(±0, 7%) (±0, 9%) (±0, 3%) (±1, 0%) (±0, 005) (±0, 002) (±0, 002) (±0, 004)

500 3 32, 3% 28,1% 21, 5% 27, 7% 0, 225 0,211 0, 145 0, 204
(±0, 3%) (±0, 2%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 001) (±0, 002) (±0, 002)

2000 3 29, 5% 27,5% 26, 5% 27, 9% 0,205 0, 207 0, 180 0, 205
(±0, 4%) (±0, 2%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 001) (±0, 002) (±0, 002)

100 6 39, 0% 38,2% 0, 0% 26, 0% 0, 350 0,231 0, 004 0, 194
(±1, 2%) (±1, 1%) (±0, 1%) (±1, 6%) (±0, 009) (±0, 003) (±0, 002) (±0, 009)

500 6 35, 2% 34,2% 18, 5% 29, 9% 0, 257 0,219 0, 127 0, 212
(±0, 6%) (±0, 4%) (±0, 5%) (±1, 0%) (±0, 002) (±0, 003) (±0, 003) (±0, 004)

2000 6 32,6% 33, 5% 27, 0% 30, 8% 0, 227 0,214 0, 181 0, 212
(±0, 4%) (±0, 2%) (±0, 5%) (±0, 4%) (±0, 001) (±0, 001) (±0, 002) (±0, 001)

100 20 42, 6% 41,9% 0, 0% 24, 6% 0, 388 0,241 0, 000 0, 188
(±1, 0%) (±1, 9%) (±0, 0%) (±4, 2%) (±0, 007) (±0, 003) (±0, 000) (±0, 014)

500 20 39, 8% 36,8% 12, 3% 30, 2% 0, 290 0,230 0, 091 0, 215
(±0, 5%) (±0, 7%) (±0, 7%) (±1, 1%) (±0, 003) (±0, 002) (±0, 004) (±0, 006)

2000 20 36, 6% 34,9% 26, 0% 32, 7% 0, 240 0,229 0, 172 0, 227
(±0, 4%) (±0, 3%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 007)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy ringnorm generators

Classif. gen. errors Classif. emp. errors L2 gen. errors L2 emp. errors
N dimension AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost AdaBoost KL-Boost

100 3 39, 3% 36,5% 2, 1% 28, 5% 0, 318 0,231 0, 026 0, 203
(±0, 5%) (±0, 7%) (±0, 4%) (±1, 1%) (±0, 004) (±0, 002) (±0, 002) (±0, 005)

500 3 33, 9% 32,3% 22, 0% 30, 6% 0, 233 0,219 0, 149 0, 211
(±0, 3%) (±0, 2%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 004)

2000 3 31, 7% 30,8% 27, 5% 30, 2% 0, 214 0,213 0, 187 0, 210
(±0, 5%) (±0, 2%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 002)

100 6 37, 3% 36,6% 0, 0% 25, 0% 0, 327 0,232 0, 003 0, 196
(±1, 0%) (±1, 9%) (±0, 0%) (±2, 2%) (±0, 009) (±0, 004) (±0, 001) (±0, 009)

500 6 32, 6% 31,5% 17, 2% 29, 4% 0, 233 0,219 0, 117 0, 213
(±0, 5%) (±0, 3%) (±0, 5%) (±0, 8%) (±0, 003) (±0, 003) (±0, 003) (±0, 004)

2000 6 29,3% 30, 5% 24, 8% 30, 0% 0,206 0, 213 0, 171 0, 211
(±0, 5%) (±0, 2%) (±0, 4%) (±0, 4%) (±0, 001) (±0, 001) (±0, 002) (±0, 001)

100 20 34,7% 39, 5% 0, 0% 24, 1% 0, 324 0,237 0, 066 0, 203
(±1, 0%) (±2, 2%) (±0, 0%) (±3, 9%) (±0, 008) (±0, 004) (±0, 066) (±0, 013)

500 20 30,5% 30, 7% 8, 5% 27, 0% 0, 240 0,225 0, 062 0, 216
(±0, 7%) (±1, 0%) (±0, 4%) (±0, 8%) (±0, 004) (±0, 002) (±0, 002) (±0, 005)

2000 20 26,7% 28, 2% 19, 7% 27, 1% 0,199 0, 222 0, 139 0, 218
(±0, 5%) (±0, 5%) (±0, 3%) (±0, 4%) (±0, 001) (±0, 002) (±0, 002) (±0, 002)
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the minimax approach, which condiders the worst possible probability distribution
and consequently leads to very conservative bounds.

To add noise, we just flip the output with probability 20%. Then the frontier
between the classes is not altered but the regression function f is transformed into
0.2 + 0.6f which implies that it is always between 0.2 and 0.8. In this case, results
are much more in favor of KL-Boost. Here the loss of performance of AdaBoost
does not seem to come from overfitting since the empirical risks are no longer close
to 0. It is due to the model itself, which is not enough complex to take into account
a regression function which is bounded away from 0 and 1.

For the 6-dimensional twonorm generator with 3 superfluous components in the
input, KL-Boost gives better results than AdaBoost for small training sets, whereas
for large training sets, both methods lead to similar results. This is also true for
the 6-dimensional noisy threenorm and ringnorm generators. The reverse has not
occured in our simulations. So KL-Boost seems to be well-adapted to small training
set situations.

It seems that KL-Boost is in general more trustworthy than Adaboost since

• Adaboost clearly overfits (note that it does not prevent the algorithm from
classifying well; it will not overfit when the model is too simple to explain
the learning sample; in other cases, it is bound to overfit since it is based
on the empirical risk minimization principle)

• KL-Boost behaves well on small training sets and on noisy data.
• Adaboost minimizes a criterion (the exponential risk) using a model which

is not at all suited to do it6.

6. Conclusion

To get an upper bound on the misclassification rate of any aggregating procedure,
we introduce the Kullback-Leibler distance between the aggregating distribution
and an arbitrary chosen prior distribution. Then we obtain bounds of optimal order
in the minimax sense. We use these bounds to derive the KL-Boost procedure that
competes with Adaboost in practice (in particular in noisy classification tasks) and
which does not suffer from wild overfitting as AdaBoost. KL-Boost is an aggregating
procedure regularized by the Kullback-Leibler distance between the aggregating
distribution and a prior distribution. A full description of the algorithm has been
given when stumps are aggregated.

Future work may concentrate on

• describing the general algorithm when the functions aggregated are not
stumps : due to the simplicity of stumps, it has been possible to compute
explicitly terms which are not computable in general.

• tightening the bounds: even if these theoretical bounds are much tighter
than most of the existing bounds, there is still a gap between theoretical
bounds of the misclassification error and the actual misclassification error.
Part of this gap clearly comes from the minimax approach. The target
would be to reduce the other part.

• reducing the computational cost of the algorithm.

6Numerical results show that this criterion is minimized much more efficiently by KL-Boost!
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7. Proofs

7.1. Proof of Theorem 3.1. The proof relies on deviation inequalities and on
Legendre formula.

7.1.1. First step : deviation inequalities. Let R̄(θ) denote the expected risk of fθ

relatively to the reference one: R̄(θ) , R(fθ) − R(f̃). Similarly, we define r̄(θ) ,

r(fθ)− r(f̃). Putting Zθ(X, Y ) , −
(

Y − fθ(X)
)2

+
(

Y − f̃(X)
)2

, we have R̄(θ) =
−EPZθ. We will need a deviation lemma for Zθ. Let us start with general deviation
lemmas for random variables:

Lemma 7.1. Let Z be a random variable.

• If Z ≤ b a.s., then for any η ≥ 0,

(7.1) logEeη(Z−EZ) ≤ η2EZ2g(ηb),

where g : u 7→ eu−1−u
u2 is a positive convex increasing function such that

g(0) = 1
2 by continuity.

• If Eeα|Z−EZ| ≤M for some α > 0 and M > 0, then for any 0 ≤ η < α,

(7.2) logEeη(Z−EZ) ≤ η2g1(η),

where g1(η) , 2M
(α−η)2e2 .

Proof. • We have

eηZ = 1 + ηZ + η2Z2g(ηZ).

Using that log(1 + x) ≤ x and that g(ηZ) ≤ g(ηb), we obtain

logEeηZ ≤ ηEZ + η2g(ηb)EZ2,

which leads to inequality (7.1).
• From the bound on the exponential moment of Z̄, we can easily deduce

bounds for the moments of Z̄. By straightforward computation, one can
show that the maximum of [u 7→ ue−βu] on R+ is 1

βe
, hence, for any q > 0:

E|Z̄|q ≤
(

sup
u∈R+

ue−
α
q u
)q

Eeα|Z̄|

≤
(

q
αe

)q

Eeα|Z̄|

≤
(

q
αe

)q

M.

According to the Taylor series expansion, for any η ≥ 0, for any x ∈ R,

there exists γ ∈]0; η[ such that eηx−1−ηx = η2x2

2
eγx, hence for any x ∈ R,

eηx − 1− ηx ≤ η2x2

2
eη|x|.
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Then for any η ∈ [0;α[, we have

logEeηZ̄ ≤ E(eηZ̄ − 1− ηZ̄)

≤ E
(

η2Z̄2

2
eη|Z̄|

)

≤ η2

2 E
(

Z̄2eη|Z̄|
)

≤ η2

2

(

E|Z̄| 2α
α−η

)
α−η

α
(

Eeα|Z̄|
)

η
α

(by Hőlder’s inequality)

≤ η2

2

(

2
(α−η)e

)2

M

≤ η2g1(η).

�

The deviations of Zθ = −
(

Y − fθ(X)
)2

+
(

Y − f̃(X)
)2

are given by:

Lemma 7.2. For any 0 < λ < αB
2 satisfying

(7.3) 8Mλ ≤ (αB − 2λ)2e2,

we have

(7.4) logEP e
λ

Zθ−EPZθ
B2 ≤ λ2EP(f̃ − fθ)

2

B2
G(λ),

where

G(λ) ,
8M

(αB − 2λ)2e2
+
e2λ − 1− 2λ

λ2
.

Remark 7.1. The condition λ < αB
2

is unavoidable since we have not put strong
assumptions on the noise (i.e. Y −E(Y/X)) distribution. The result will be applied
for small values of λ. So the conditions on λ are not harmful and can be disregarded,
and we will have

G(λ) ≈ G(0) =
8M

(αBe)2
+ 2.

Note that G is adimensional since it is expressed in terms of M and αB.

Remark 7.2. The first term in the deviation function G comes from the noise
whereas the second one takes into account the deviations of fθ with respect to
the reference regression function f̃ . When the noise is gaussian, specifically when
Y − f∗(X) is a centered gaussian random variable with variance σ2, the deviation
function is

G(λ) =
σ2

2B2
+
e2λ − 1− 2λ

λ2
.

Remark 7.3. The inequality is tight to the extent that for fθ sufficiently close to f̃ ,
the bound is close to 0.

Proof. We can write

Zθ = −(f̃ − fθ)
2 − 2

(

Y − f∗
)

(f̃ − fθ)− 2
(

f∗ − f̃
)

(f̃ − fθ),

where f refers to f(X) in order to simplify notations and f∗ , EP(Y/X = ·) is the
regression function associated with the distribution P. Hence, using the deviation
inequality (7.2) and introducing

κ(λ) ,
4λ

B2
g1

(2λ

B

)

=
8Mλ

(αB − 2λ)2e2
≤ 1
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for any λ satisfying (7.3),

EP(dY/X)e
λ

Zθ−EPZθ
B2

= e
λ

B2

(

R̄(θ)−(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)
)

EP(dY/X)e
− 2λ

B2 (f̃−fθ)[Y−f∗]

≤ e λ
B2

(

R̄(θ)−(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)
)

e

[

2λ
B2 (f̃−fθ)

]2
g1(

2λ
B )

= e
λ

B2

(

EP(f̃−fθ)2+2EP

{

(f∗−f̃)(f̃−fθ)
}

−
[

1− 4λ
B2 g1(

2λ
B )
]

(f̃−fθ)2−2(f∗−f̃)(f̃−fθ)
)

= e
λ

B2

[

EP(f̃−fθ)2+2EP

{

(f∗−f̃)(f̃−fθ)
}

−(f̃−fθ)
(

[1−κ(λ)](f̃−fθ)+2(f∗−f̃)
)]

= e
λ

B2 κ(λ)EP(f̃−fθ)2+ λ
B2 (Z̄θ−EPZ̄θ),

where Z̄θ , −(f̃ −fθ)
{

2f∗− [1+κ(λ)]f̃ − [1−κ(λ)]fθ

}

≤ 2B2. From the deviation
inequality (7.1), we get

logEP e
λ

B2 (Zθ−EPZθ) ≤ λκ(λ)
B2 EP(f̃ − fθ)

2 +
(

λ
B2

)2
EPZ̄

2
θg(2λ)

≤ λκ(λ)
B2 EP(f̃ − fθ)

2 + λ2

B4EP(f̃ − fθ)
24B2g(2λ)

≤ λ2 EP(f̃−fθ)2

B2

[κ(λ)
λ + 4g(2λ)

]

.

�

7.1.2. Second step : Legendre formula. Let us remind the definition of the Kullback-
Leibler divergence between two probability distributions on a measurable set (A,A):

K(ν, µ) ,

{

Eν log
(

ν
µ

)

if ν ≪ µ,

+∞ otherwise.

The Legendre transform of the convex function ν 7→ K(ν, µ) is given by the following
formula: for any measurable function h : A 7→ R,

(7.5) sup
ν∈M1

+(A)

{

Eν(da)h(a)−K(ν, µ)
}

= logEµ(da)e
h(a),

where, by convention:

{

Eν(da)h(a) , sup
H∈R

Eν(da)[H ∧ h(a)]
Eν(da)h(a)−K(ν, µ) = −∞ if K(ν, µ) = +∞

Moreover, when eh is µ-integrable, the probability distribution

ν(da) ,
eh(a)

Eµ(da′)eh(a′)
· µ(da)

achieves the supremum.
For any ǫ > 0 and λ > 0 such that λG(λ) < 1, the event

{

there exists ρ ∈M1
+(Θ) such that

Eρ(dθ)R(fθ)−R(f̃) >
Eρ(dθ)r(fθ)−r(f̃)

1−λG(λ) + B2

N
K(ρ,π)+log(ǫ−1)

λ[1−λG(λ)]

}
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is successively equal to
{

sup
ρ∈M1

+(Θ)

{

EρR̄− Eρr̄
1−λG(λ)

− B2

N
K(ρ,π)+log(ǫ−1)

λ[1−λG(λ)]

}

> 0

}

,

{

sup
ρ∈M1

+(Θ)

{

Eρ

(

[1− λG(λ)]R̄− r̄
)

− B2

Nλ

[

K(ρ, π) + log(ǫ−1)
]

}

> 0

}

,

{

sup
ρ∈M1

+(Θ)

{

Eρ

[

Nλ
B2

(

[1− λG(λ)]R̄− r̄
)

− log(ǫ−1)

]

−K(ρ, π)
]

}

> 0

}

,

{

logEπe
Nλ
B2

(

[1−λG(λ)]R̄−r̄
)

−log(ǫ−1) > 0
}

,
{

Eπe
Nλ
B2

(

[1−λG(λ)]R̄−r̄
)

−log(ǫ−1) > 1
}

.

Therefore its P⊗N -probability is strictly lower than

EP⊗NEπe
Nλ
B2

(

[1−λG(λ)]R̄−r̄
)

−log(ǫ−1)

= EπEP⊗N e
Nλ
B2

(

[1−λG(λ)]R̄−r̄
)

−log(ǫ−1) (by Fubini’s theorem)

= ǫEπEP⊗N e
Nλ
B2 [EP̄Zθ−EPZθ−λG(λ)R̄]

(

since Zθ , (Y − f̃)2 − (Y − fθ)
2
)

≤ ǫEπ

[

e−
Nλ2G(λ)R̄

B2
(

EP e
λ

B2 (Zθ−EPZθ)
)N
]

(since the training sample is i.i.d)

≤ ǫEπ

[

e
Nλ2G(λ)[EP(f̃−fθ)2−R̄]

B2

]

(from Lemma 7.2)

≤ ǫ,

where at the last step we use that we have EP(f̃ − fθ)
2 ≤ R̄(θ) since the function

f̃ is the best convex combination.

Remark 7.4. Theorems 3.1 and 3.2 remain true for any reference estimator f̃ satis-

fying EP

{

[

f∗(X)− f̃(X)
][

f̃(X)− fθ(X)
]

}

≥ 0. Naturally, this property holds for

the best mixture. When the reference estimator is the regression function associated
with the distribution P: f̃ = f∗, we have Z̄θ = −[1 − κ(λ)][f∗ − fθ]

2 ∈ [−B2; 0].
Consequently, in this case, Theorems 3.1 and 3.2 hold with a smaller deviation
function : G(λ) = 8M

(αB−2λ)2e2 + 1
2
.

7.2. Proof of Theorem 4.1. The decomposition

(7.6) R(Eρ(dθ)fθ) = Eρ(dθ)R(fθ)−EPVarρ(dθ)fθ(X)

shows that aggregating regression procedures is more efficient than randomizing
and that the difference is measured by EPVarρ(dθ)fθ(X). We will use this
decomposition to bound the expected risk of the aggregated regression procedure
by successively bounded the two terms on the right-hand side. The first term has
already been bounded (see Theorem 3.1). It remains to bound the variance term.
Once more, we use deviation inequalities and Legendre formula.

7.2.1. First step : deviation inequalities. Let us introduce Zθ,θ′ , (fθ − f ′θ)
2 ∈

[0;B2]. We have

Varρ(dθ)fθ(X) =
1

2
Eρ⊗ρ(dθ,dθ′)Zθ,θ′ .

The deviations of Zθ,θ′ are given by
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Lemma 7.3. For any λ ≥ 0,

logEP e
λ

Z
θ,θ′−EPZ

θ,θ′
B2 ≤ λ2EPZθ,θ′

B2
g(λ),

where g(λ) , eλ−1−λ
λ2 .

Remark 7.5. Recall that g is a positive convex increasing function such that g(0) =
1
2

by continuity.

Proof. For any λ ≥ 0,

logEP e
λ

Z
θ,θ′−EPZ

θ,θ′
B2 ≤ EP

[

eλ
Z

θ,θ′−EPZ
θ,θ′

B2 − 1− λZθ,θ′−EPZθ,θ′
B2

]

= EP

[

(

λ
Zθ,θ′−EPZθ,θ′

B2

)2

g
(

λ
Zθ,θ′−EPZθ,θ′

B2

)

]

≤ λ2

B4EP[Zθ,θ′2g(λ)]

≤ λ2

B2 g(λ)EPZθ,θ′ ,

since Zθ,θ′2 ≤ B2Zθ,θ′ . �

7.2.2. Second step : Legendre formula. Introduce V = EPVarρ̂(dθ)fθ and V̄ =
EP̄Varρ̂(dθ)fθ. For any ǫ > 0 and β > 0, the event

{

there exists ρ ∈M1
+(Θ) such that

−V > − V̄
1+βg(β) + B2

2N
2K(ρ,π)+log(ǫ−1)

β[1+βg(β)]

}

is equal to
{

sup
ρ∈M1

+(Θ)

{

−Eρ⊗ρ(dθ,dθ′)EPZθ,θ′ +
Eρ⊗ρ(dθ,dθ′)EP̄Zθ,θ′

1+βg(β)

−B2

N
2K(ρ,π)+log(ǫ−1)

β[1+βg(β)]

}

> 0

}

,

which is included in the event
{

sup
µ∈M1

+(Θ×Θ)

{

Eµ(dθ,dθ′)

[

EP̄Zθ,θ′ − [1 + βg(β)]EPZθ,θ′
]

−B2

N
K(µ,π⊗π)+log(ǫ−1)

β

}

> 0

}

.

This last event can be written successively as
{

sup
µ∈M1

+(Θ×Θ)

{

Eµ(dθ,dθ′)

[

Nβ
B2

(

EP̄Zθ,θ′ − [1 + βg(β)]EPZθ,θ′
)

− log(ǫ−1)
]

−K(µ, π ⊗ π)

}

> 0

}

,

{

logEπ⊗π(dθ,dθ′)e
Nβ

B2

(

EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′
)

−log(ǫ−1) > 0
}

,
{

Eπ⊗π(dθ,dθ′)e
Nβ

B2

(

EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′
)

−log(ǫ−1) > 1
}

.
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Therefore its P⊗N -probability is strictly lower than

EP⊗NEπ⊗π(dθ,dθ′)e
Nβ

B2

(

EP̄Zθ,θ′−[1+βg(β)]EPZθ,θ′
)

−log(ǫ−1)

= ǫEπ⊗π(dθ,dθ′)EP⊗N e
Nβ

B2

(

EP̄Zθ,θ′−EPZθ,θ′−βg(β)EPZθ,θ′
)

(by Fubini’s theorem)

≤ ǫEπ

[

e−
Nβ2g(β)EPZ

θ,θ′
B2

(

EP e
β

B2 (Zθ,θ′−EPZθ,θ′))N
]

(i.i.d. training sample)

≤ ǫ (from Lemma 7.3)

7.3. Proof of Lemma 4.4. We will take the following parameter families

• (λi)i=0,...,p, where λi , λmax

2i , p is such that λmax

2p < λmin ≤ λmax

2p−1 and λmin

and λmax will be determined later,
• (ηi)i=0,...,p, where ηi , η , 1

p+1
,

• (βj)j=0,...,q, where βj ,
βmax

2j , q is such that βmax

2q < βmin ≤ βmax

2q−1 and βmin

and βmax will be determined later,
• (ζj)j=0,...,q, where ζj , ζ , 1

q+1
.

The exponential form of the parameters λi and βj allows us to have a grid on
which for any probability distribution ρ, the minimum of B(ρ, λ, η, β, ζ) has the
same order as

inf
λ∈[λmin;λmax]
β∈[βmin;βmax]

B(ρ, λ, η, β, ζ).

We will choose the parameters λmin and λmax (resp. βmin and βmax) such that the
constant η (resp. ζ) is large (in order that the bound is not significantly affected
by the union bound term log[(ηǫ)−1] (resp. log[(ζǫ)−1])). We will see a posteriori
that B(ρ̃, λ, η, β, ζ) will just differ from B(ρ̃, λ, 1, β, 1) by a log logN factor.

We have

(7.7)
B(ρ̃, λ, η, β, ζ) =

(

1
1−λG(λ) − 1

1+βg(β)

)

V̄ (ρ̃)

+B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λ[1−λG(λ)] + B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

β[1+βg(β)] .

In general, the quantity V̄ (ρ̃) = EP̄Varρ̃(dθ)fθ is of order 1 (i.e. B2). Consequently,
to make the second term small, we need to take both parameters λ and β small.
However, these parameters must not be too small since the two last terms are
respectively proportional to 1

λ
and 1

β
. In the particular case when V̄ (ρ̃) is close to

0, we need not taking λ and β small. So we take arbitrarily
{

λmax = κ1

βmax = κ2
,

where κ1 and κ2 are respectively defined as 2κ1G(κ1) = 1 and κ2g(κ2) = 1.
We will consider separately the terms of (7.7) depending on λ and on β. We

start with the β terms. Since g is an increasing function such that g(0) = 1
2

and

since for any 0 < x ≤ 1, 1− x < 1
1+x ≤ 1− x

2 , we have for any 0 < β ≤ βmax,

(7.8)

− V̄ (ρ̃)
1+βg(β) + B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

β[1+βg(β)]

≤ −[1− βg(βmax)]V̄ (ρ̃) +

(

1− β
4

)

B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

β

= −V̄ (ρ̃)− B2

8N

(

2K(ρ̃, π) + log[(ζǫ)−1]
)

+ β
βmax

V̄ (ρ̃) + B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

β



AGGREGATED ESTIMATORS 63

The last RHS is minimum when

β = βopt ,

√

B2βmax

2N

2K(ρ̃, π) + log[(ζǫ)−1]

V̄ (ρ̃)
≥
√

2βmax log 2

N
,

since ǫ ≤ 1
2

and V̄ (ρ̃) ≤ B2

4
according to Assumption (2.1). Therefore, let us take

βmin ,

√

2βmax log 2

N
∧ βmax.

Let us define the event

E1 ,

{

B2

2N

2K(ρ̃, π) + log[(ζǫ)−1]

V̄ (ρ̃)
≤ βmax

}

.

General case: E1 occurs

Then we have βopt ≤ βmax So there exists an integer 0 ≤ j ≤ q such that
βj ≤ βopt < 2βj . For this integer j, using inequality (7.8), we get

− V̄ (ρ̃)
1+βjg(βj)

+ B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βj [1+βjg(βj)]

≤ −V̄ (ρ̃)− B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

4 +
βopt

βmax
V̄ (ρ̃) + B2

N
2K(ρ̃,π)+log[(ζǫ)−1]

βopt

= −V̄ (ρ̃)− B2

8N

(

2K(ρ̃, π) + log[(ζǫ)−1]
)

+ 3
√

B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βmax
V̄ (ρ̃)

Particular case: (E1)
c occurs

Then, for j = 0, we have

− V̄ (ρ̃)
1+βjg(βj)

+ B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βj [1+βjg(βj)]

= − V̄ (ρ̃)
2 + B2

4N
2K(ρ̃,π)+log[(ζǫ)−1]

βmax
.

Besides, we have
√

B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βmax
V̄ (ρ̃) ≥ V̄ (ρ̃).

So, in both cases, there exists an integer 0 ≤ j ≤ q such that

(7.9)
− V̄ (ρ̃)

1+βjg(βj)
+ B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βj [1+βjg(βj)]

≤ −V̄ (ρ̃) + B2

4N
2K(ρ̃,π)+log[(ζǫ)−1]

βmax
+ 3
√

B2

2N
2K(ρ̃,π)+log[(ζǫ)−1]

βmax
V̄ (ρ̃).

Now let us deal with the λ terms of (7.7). Since G is an increasing function and
the inequation 1

1−x ≤ 1+2x holds for any 0 < x ≤ 1
2 , we have for any 0 < λ ≤ λmax

V̄ (ρ̃)
1−λG(λ) + B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λ[1−λG(λ)]

≤ [1 + 2λG(λmax)]

(

V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λ

)

= V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
+ λ V̄ (ρ̃)

λmax
+ B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λ

The last RHS is minimum when

λ = λopt ,

√

B2λmax

N

K(ρ̃, π) + log[(ηǫ)−1]

V̄ (ρ̃)
> 2

√

λmax log 2

N
.

Therefore, let us take λmin , 2
√

λmax log 2
N

∧ λmax. Introduce the event

E2 =

{

B2

N

K(ρ̃, π) + log[(ηǫ)−1]

V̄ (ρ̃)
≤ λmax

}

.
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By convention, the event Ec
2 contains the case when V̄ (ρ̃) = 0 (λopt = +∞).

General case: E2 occurs

Then we have λopt ≤ λmax So there exists an integer 0 ≤ i ≤ p such that
λi ≤ λopt < 2λi. For this integer i, we have

V̄ (ρ̃)
1−λiG(λi)

+ B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λi[1−λiG(λi)]

≤ V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
+ λopt

V̄ (ρ̃)
λmax

+ 2B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λopt

= V̄ (ρ̃) + B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
+ 3
√

B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
V̄ (ρ̃)

≤ V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
+ 2
√

B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
V̄ (ρ̃).

Particular case: (E2)
c occurs

For i = 0, we have

V̄ (ρ̃)
1−λiG(λi)

+ B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λi[1−λiG(λi)]

= 2V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax

and
√

B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
V̄ (ρ̃) ≥ V̄ (ρ̃).

Therefore, in both subcases, there exists an integer 0 ≤ i ≤ p such that

(7.10)

V̄ (ρ̃)
1−λiG(λi)

+ B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λi[1−λiG(λi)]

≤ V̄ (ρ̃) + 2B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
+ 2
√

B2

N
K(ρ̃,π)+log[(ηǫ)−1]

λmax
V̄ (ρ̃).

To prove the first inequation of Corollary 4.3, it remains to lower bound η = 1
p+1

and ζ = 1
q+1 . By definition, we have















p =

⌊

log λmax
λmin

log 2 + 1

⌋

q =

⌊

log βmax
βmin

log 2 + 1

⌋ ,

hence














(η)−1 =

⌊

log 4λmax
λmin

log 2

⌋

≤ L1

(ζ)−1 =

⌊

log 4βmax
βmin

log 2

⌋

≤ L2

.

where ⌊x⌋ denotes the integer part of x.

7.4. Proof of Theorem 4.5. The result mainly comes from Lemma 4.4 and Corol-
lary 4.3 since an aggregating procedure minimizing

B
(

ρ, (λi)i=0,...,p, (ηi)i=0,...,p, (βj)j=0,...,q, (ζj)j=0,...,q

)

wrt the probability distribution ρ is such that

(7.11) B
(

ρ̂, (λi), (ηi), (βj), (ζj)
)

≤ B
(

ρ̃, (λi), (ηi), (βj), (ζj)
)

.

So, for any 0 < ǫ ≤ 1/2, with P⊗N -probability at least 1− 2ǫ, we have

R(Eρ̂(dθ)fθ)−R(f̃) ≤ γ(ǫ).
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Now, recall that to prove this inequality, we put ourselves on a subset of the event:
for any distribution ρ ∈ M1

+(Θ), for any β in the grid introduced in Section 7.3,
we have

−V ≤ − V̄
1+βg(β) + B2

2N
2K(ρ,π)+log(L2ǫ−1)

β[1+βg(β)] .

Taking β = βmax, we obtain V̄ ≤ 2V + B2

2N
2K(ρ,π)+log(L2ǫ−1)

βmax
, which leads to the

desired inequality.

7.5. Proof of Theorem 4.7. We will first notice that the infimum of ψ(ρ) ,
1
2
‖Eρ(dθ)h(θ)‖2 + K(ρ, µ) can be searched in the set of probabilities which are

equivalent to µ. It is clear that we do not change the infimum by considering
only distributions absolutely continuous w.r.t. µ. Inversely, consider ρ such that
supp(ρ) is strictly included supp(µ). Let A , supp(µ)−supp(ρ). We have ρ(A) = 0
and µ(A) > 0. Our aim is then to build ρ′ ∈ M1

+(Θ) such that ψ(ρ′) ≤ ψ(ρ) and

supp(ρ′) = supp(µ). Define ρA(dθ) , µ(·/A) = 1θ∈A

µ(A) ·µ(dθ) and ρ′ , λρA +(1−λ)ρ

for some λ ∈]0; 1[ to be determined. We have

ψ(ρ′)− ψ(ρ)

= 1
2
‖λEρA

h+ (1− λ)Eρh‖2 + λEρA
log λ

µ(A)
+ (1− λ)Eρ log (1−λ)ρ

µ

−1
2
‖Eρh‖2 − Eρ log ρ

µ

= 1
2‖Eρh‖2(λ2 − 2λ) + λ2

2 ‖EρA
h‖2 + λ(1− λ)〈EρA

h,Eρh〉
+λ log[µ(A)−1] + λ logλ+ (1− λ) log(1− λ)
∼

λ→0
λ logλ.

Therefore, for sufficiently small λ, we have ψ(ρ′) < ψ(ρ).
We will now prove that for any ρ ∈M1

+(Θ) equivalent to µ, there exists z ∈ RN

such that Eµ〈z,h〉h = Eρh. With this end in view, we introduce

χρ(v) = logEµe
〈v,h−Eρh〉,

for any v ∈ RN . Let us show that χρ admits a minimum. Without loss of generality,
one may assume that the hi, i = 1, . . . , N are linearly independent wrt to µ,
or equivalently wrt to ρ (since µ and ρ are equivalent)7. So, for any z ∈ RN ,
ρ(〈z, h〉 − Eρ〈z, h〉 > 0) > 0, hence µ(〈z, h〉 − Eρ〈z, h〉 > 0) > 0. Introduce, for

β > 0, the mappings ηβ from S(0, 1) , {u ∈ RN : ‖u‖ = 1} to R defined as

ηβ(u) = µ(〈u, h− Eρh〉 > β).

We first claim that there exists β such that the mapping is lower bounded by β.
Otherwise one can build a sequence un ∈ S(0, 1) such that η 1

n
(un) ≥ 1

n . Since the

sphere S(0, 1) is compact, there exists a converging subsequence uα(n). Denote u
its limit. By Fatou’s theorem, we have

µ(〈u, h−Eρh〉 > 0) ≤ Eµ

(

lim inf
n→+∞

1〈un,h−Eρh〉> 1
n

)

≤ lim inf
n→+∞

µ
(

〈un, h−Eρh〉 > 1
n

)

= 0,

which is absurd. For this real β, we have

χρ(z) = logEµe
‖z‖〈 z

‖z‖ ,h−Eρh〉 ≥ β‖z‖+ log β →
‖z‖→+∞

+∞.

7For h = Cst µ−a.s., the result is trivial
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Now, by Lebesgue’s theorem, the mapping χρ is continuous. Consequently, it ad-
mits a minimum which we will denote z. By differentiation under the expectation,
we have Eµ〈z,h〉h−Eρh = ▽χρ(z) = 0. Hence,

ψ(ρ)− ψ(µ〈z,h〉) = K(ρ, µ)−K(µ〈z,h〉, µ)
= K(ρ, µ)− 〈z,Eµ〈z,h〉h〉+ logEµe

〈z,h〉

= K(ρ, µ〈z,h〉) ≥ 0.

So the infimum of ψ could be searched among {µ〈z,h〉 : z ∈ RN}.
Now, let (z′n)n∈N be a sequence of RN such that

(7.12) ψ(µ〈z′
n,h〉) →

n→+∞
inf
M1

+(Θ)
ψ.

Let p{x1,...,xm}⊥ denote the orthogonal projection into the orthogonal of the system

{x1, . . . , xm} (by convention, p∅⊥ , IdRN ). By compacity of the sphere S(0, 1),
there exists a subsequence (zn)n∈N such that there exists L ∈ {1, . . . , N} and an

orthonormal system VL , {v1, . . . , vL} satisfying

p{v1,...,vl−1}⊥(zn)

‖p{v1,...,vl−1}⊥(zn)‖ −→n→+∞
vl

for any l ∈ {1, . . . , L} and zn ∈ Span(v1, . . . , vL). Let (λn,l)l=1,...,L denote the

components of zn in the system VL: zn =
∑L

l=1 λn,lvl. By definition of the system
VL, we have λn,1 ≫ λn,2 ≫ · · · ≫ λn,L, where an ≫ bn means that bn = o(an).
Even if it means to consider a subsequence of (zn)n∈N, one can assume that for

any l ∈ {1, . . . , L}, λn,l −→
n→+∞

λl ∈ R+ ∪ {+∞}. Let λ0 , +∞ and L′ , max
{

l ∈
{0, . . . , L} : λl = +∞

}

. Introduce the following family of subsets of Θ:

{

Ã0 , Θ

Ãl ,
{

θ ∈ Ãl−1 : 〈vl, h(θ)〉 = ess supµ(·/Ãl−1)
〈vl, h〉

} ,

where µ(·/Ãl−1) ,
1Ãl−1

µ(Ãl−1)
· µ makes sense since one can prove (by induction and

using that lim sup
n→+∞

K(µ〈zn,h〉, µ) < +∞) that µ(Ãl−1) > 0. Then, one can prove that

µ〈λL′+1vL′+1,h〉(·/ÃL′) minimizes ψ (where λL′+1vL′+1 , 0 when L′ = L). Now, we

have necessarily L′ = 0. Indeed, if L′ > 0, from the linear independency of the
functions hi, i = 1, . . . , N , we have µ(ÃL′) < 1, hence, the optimal distribution is
not equivalent to µ. This is in contradiction with what we proved at the beginning
of this section.

So the function ϕ : z 7→ ψ(µ〈z,h〉) admits a minimum denoted z̄ = λ1v1. Let

ρ̄ , µ〈z̄,h〉.

By differentiation under the expectation, ▽ϕ(z) = Varµ〈z,h〉h(Eµ〈z,h〉h+ z), where
Varµ〈z,h〉h denotes the covariance matrix of the hi, i = 1, . . . , N wrt µ〈z,h〉. Since
the functions hi, i = 1, . . . , N are linearly independent wrt to µ〈z,h〉, the matrix
Varµ〈z,h〉h is invertible. Therefore, we have z̄ = −Eρ̄h. It remains to prove the

uniqueness. It follows from the following equality which holds for any ρ ∈M1
+(Θ)
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and comes from ρ̄ = µ−〈Eρ̄h,h〉 :

ψ(ρ)− ψ(ρ̄) = 1
2
‖Eρh‖2 +K(ρ, µ)− 1

2
‖Eρ̄h‖2 −K(ρ̄, µ)

= 1
2
‖Eρh‖2 +K(ρ, ρ̄)− 〈Eρ̄h,Eρh〉 − logEµe

−〈Eρ̄h,h〉

−1
2‖Eρ̄h‖2 − logEµe

〈Eρ̄h,h−Eρ̄h〉

= K(ρ, ρ̄) + 1
2‖Eρh− Eρ̄h‖2.

7.6. Proof of Theorem 4.8. For any w,w′ ∈ RN , we have

ϕ̄(w)−ϕ̄(w′)
ac

= d2

(

‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2
)

+ logEπ− b
c

r(f)
e〈w

′,f(X)−E
πw′ f(X)〉 − logEπ− b

c
r(f)

e〈w,f(X)−Eπw f(X)〉

= d2

(

‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2
)

− 〈w′,Eπw′f(X)− Y 〉
+〈w,Eπwf(X)− Y 〉+ logEπ− b

c
r(f)

e〈w
′,f(X)−Y 〉 − logEπ− b

c
r(f)

e〈w,f(X)−Y 〉

= d2

(

‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2
)

− 〈w′,Eπw′f(X)− Y 〉
+〈w′,Eπwf(X)− Y 〉+K(πw, πw′

)

= d2

(

‖Eπwf(X)− Y ‖2 − ‖Eπw′ f(X)− Y ‖2

−2〈Eπw′ f(X)− Y,Eπwf(X)−Eπw′ f(X)〉
)

+
〈

w′ + 2d2(Eπw′f(X)− Y ),Eπwf(X)− Eπw′ f(X)
〉

+K(πw, πw′
)

= d2‖Eπwf(X)−Eπw′ f(X)‖2 +K(πw, πw′
)

+〈w′ + 2d2(Eπw′f(X)− Y ),Eπwf(X)− Eπw′f(X)〉.

The second inequality of the theorem is obtained by choosing w = w̄ , −Eρ̄h and
w′ = wl and by using Assumption (2.1).

7.7. Proof of the exit of the “While” loop. The wl+1 tested by the loop are

wl+1 = wl − αzl,

where

zl , wl − 2d2

(

Y −E
πwl f(X) +

N
∑

i=r+1

αi[Yi − 〈αi,E
πwlf(X)〉r − βi]

)

and α ∈ { 1
2n : n ∈ N}. We have

▽rϕ̄(wl) = acVar
πwlf(X)





r
zl

hence

ϕ̄(wl+1)− ϕ̄(wl) = 〈wl+1 − wl,▽ϕ̄(wl)〉+ o(‖wl+1 − wl‖)
= −acα(zl)′Var

πwlf(X)




r
zl + o(α).

The covariance matrix Var
πwlf(X)





r
is definite positive by definition of r. So

there exists α ∈ { 1
2n : n ∈ N} such that ϕ̄(wl − αzl)− ϕ̄(wl) < 0.

7.8. Proof of the Corollary 4.9. To deduce Corollary 4.9 from Corollary 4.3,
we need to control the deviations of the empirical risk r(f̃) of the best convex
combination. We begin with the following deviation inequality.
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Lemma 7.4. Let Z be a positive random variable. If E eα
√

Z ≤M ′ for some α > 0

and M ′ > 0, then, for any η ≥ 0 and A ≥
(

2
α

)2
,

logE eη(EZ−Z) ≤ ηM ′Ae−α
√

A +
η2

2
AEZ.

Proof. For any A ≥
(

2
α

)2
,

EZ − Z ≤ E(Z1Z≥A) + E(Z1Z<A)− Z1Z<A

≤ E
(

eα
√

Z sup
u≥A

ue−α
√

u
)

+ E(Z1Z<A)− Z1Z<A

≤M ′Ae−α
√

A + E(Z1Z<A)− Z1Z<A

since the mapping [u 7→ ue−α
√

u] is decreasing on
[(

2
α

)2
; +∞

[

. Applying the pre-
vious deviation inequality to Z1Z<A ∈ [0;A], we obtain

logE eη(EZ−Z) ≤ ηM ′Ae−α
√

A +
η2

2
AEZ.

�

The deviations of the empirical risk of the best mixture f̃ are given by

Lemma 7.5. For any ǫ ≥ e−κ3N , we have

(7.13) P⊗N

[

R(f̃)− r(f̃) > L̃2

√

2log(ǫ−1)R(f̃)

α2N

]

≤ ǫ,

where

L̃ , log

(

MeαB+1

√

N

2log(ǫ−1)α2R(f̃)

)

and

κ3 ,
M2e2(αB−1)

2[(αBe)2 + 4M ]
.

Proof. For any λ > 0 and any µ ∈ R,

P⊗N (R(f̃)− r(f̃) > µ) ≤ EP⊗N eNλ(R(f̃)−r(f̃)−µ) ≤ e−Nλµ
(

EP e
λ(EZ−Z)

)N
,

where Z ,
(

Y − f̃(X)
)2 ≥ 0. We have

(7.14)

EP e
α
√

Z = EP e
α|Y−f̃(X)| ≤ EP e

α(|Y−EP(Y/X)|+|EP(Y/X)−f̃(X)|) ≤MeαB , M ′.

From the previous lemma, we get for any A ≥
(

2
α

)2
,

P⊗N (R(f̃)− r(f̃) > µ) ≤ exp
{

−Nλµ+NλM ′Ae−α
√

A +N λ2

2 AR(f̃)
}

≤ ǫ,

when µ = log(ǫ−1)
Nλ

+M ′Ae−α
√

A + λ
2
AR(f̃). The previous inequality holds for any

λ > 0 and A ≥
(

2
α

)2
. To get a small µ, we take λ =

√

2log(ǫ−1)

ANR(f̃)
(when R(f̃) 6= 0;

otherwise the result is trivial) and A =
(

L̃−1
α

)2
. To fulfil the condition A ≥

(

2
α

)2
,

we need that ǫ should be not too small. More precisely, the condition (L̃− 1)2 ≥ 4
is satisfied when

log
(

MeαB+1

√

N

2log(ǫ−1)α2R(f̃)

)

≥ 3,
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equivalently, M2e2αB N
2log(ǫ−1)α2R(f̃)

≥ e4 and M2e2αB−4

2α2R(f̃)
N ≥ log(ǫ−1). Now, from

inequality (4.6), the expected risk of any function in the model R̃ is bounded by

κB2 where κ , 4M
e2(αB)2 + 1. Therefore, for any ǫ ≥ e−κ3N , we have (L̃− 1)2 ≥ 4 as

required. �

From Corollary 4.3, using that r(f̃) ≥ infR̃ r, we have

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤ R(f̃)− r(f̃) + r(Eρ̂(dθ)fθ) + B′,

where










































B′ , inf
i∈I
j∈J

B′(ρ, λi, ηi, βj, ζj)

B′(ρ, λ, η, β, ζ) ,
λG(λ)

1−λG(λ)

[

Eρ(dθ)r(fθ)− infR̃ r
]

+ B2

N
K(ρ,π)+log[(ηǫ)−1]

λ[1−λG(λ)]

+ βg(β)
1+βg(β) V̄ + B2

2N
2K(ρ,π)+log[(ζǫ)−1]

β[1+βg(β)]

= λG(λ)
1−λG(λ)

[

r(Eρ(dθ)fθ)− infR̃ r
]

+ B2

N
K(ρ,π)+log[(ηǫ)−1]

λ[1−λG(λ)]

+
(

λG(λ)
1−λG(λ)

+ βg(β)
1+βg(β)

)

V̄ + B2

2N
2K(ρ,π)+log[(ζǫ)−1]

β[1+βg(β)]

Then, using Lemma 7.5, we obtain that with probability at least 1− 3ǫ,

R(f̃) ≤ R(Eρ̂(dθ)fθ) ≤ L̃2

√

2log(ǫ−1)R(f̃)

α2N
+ r(Eρ̂(dθ)fθ) + B′.

Now, using simple computations, one can show that a positive number x such that
x ≤ 2c

√
x+a for some a, c > 0 satisfies

√
x ≤ c+

√
a+ c2. Applying this result for

x = R(f̃), a = r(Eρ̂(dθ)fθ) + B′ and c = L̃2
√

log(ǫ−1)
2α2N

, we get

R(Eρ̂(dθ)fθ) ≤ L̃2

√

2log(ǫ−1)

α2N

(

c+
√

a+ c2
)

+ a.

The remaining unobsersable term in this bound is L̃ which depends on R(f̃). We
will consider two cases:
General case: R(f̃) ≥ 4

κ1

log(ǫ−1)
N

B2 occurs

The constant 4
κ1

in this threshold is arbitrary (it has been chosen since it looks

like the second term in B′). Then we have

L̃ ≤ log
(

MeαB+1

αB

√

κ1

8
N

log(ǫ−1)

)

,

hence

L̃2

√

2log(ǫ−1)

α2N
≤ 2L

√

log(ǫ−1)

N
,

where L , 1√
2α

[

log
(

κ4
N

log(ǫ−1)

)]2

and κ4 , MeαB+1

αB

√

κ1

8 . This leads to the desired

result.
Particular case: R(f̃) < 4

κ1

log(ǫ−1)
N B2 occurs

From Corollary 4.3, with probability at least 1− 2ǫ, we have

R(Eρ̂(dθ)fθ) ≤ r(Eρ̂(dθ)fθ) + B′ +
4

κ1

log(ǫ−1)

N
B2.

The announced inequality is also true in this case.
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Model selection and Remark 4.3

We recall here the convergence rate of model selection. The target of model
selection is to find a procedure doing as well as the best function among d prediction
functions f1, . . . , fd, up to a remainder term called the convergence rate of model
selection.

In [4], Catoni proves that by using a progressive Gibbs mixture f̂ , for any proba-
bility satisfying the assumptions (2.1) and (2.2), we have

P⊗NR(f̂)− min
i∈{1,...,d}

R(fi) ≤ C log d
N
.

Theorem 3.1 provides a different result which is weaker as far as model selection is

concerned. However, it allows to prove that the empirical risk minimizer f̂ERM on
the second sample over the functions (built on the first sample) associated with the
(λ, β)−grid, which will be denoted G, satisfies with P⊗N -probability at least 1− ǫ,

R(f̂ERM)− min
(λ,β)∈G

R
(

Eρ̂λ,β(dθ)fθ

)

≤ C
{

√

C̃(ǫ)V (ρ̃) ∨ C̃(ǫ)
}

,

where C̃(ǫ) ,
K(ρ̃,π)+log[log(3N)ǫ−1]

N
.

Proof. Let R2 ,
{

Eρ̂λ,β(dθ)fθ : (λ, β) ∈ G
}

, and let N1 and N2 be the respective

sizes of the first and second sample. Let f̌ ∈ argminf∈R2
R(f). The set R2 ⊂ C(R)

is interesting since its cardinal is small: |R2| = |G| ≤ L1L2 (with N ← N1) and
from Theorem 4.5, with P⊗N -probability at least 1− ǫ,
(.15) R(f̌) ≤ R(f̃) + γ′N←N1

(ǫ/2),

where we recall that f̃ = argminf∈C(R)R(f).

Introduce f̃2 the best convex combination of functions in R2. Since R2 ⊂ R, we
have R(f̌) ≥ R(f̃2) ≥ R(f̃). Let r2 denote the empirical risk on the second sample.
Define λ0 ∈]0; αB

2 [ as λ0G(λ0) = 1
2 . Taking λ = λ0, Theorem 3.1 applied to a

uniform prior distribution on R2 gives

(.16) R(f̂ERM)−R(f̃2) ≤ 2
[

r2(f̌)− r2(f̃2)
]

+ 2B2

λ0N2

[

log |R2|+ log(ǫ−1)
]

.

Since Lemma 7.2 still holds when Zθ ← −Zθ, for any π2 ∈ M1
+(R2), with proba-

bility at least 1− ǫ wrt the second sample distribution, for any ρ2 ∈ M1
+(R2), we

have the same kind of formula as in Theorem 3.1:

Eρ2
r2 − r2(f̃2) ≤

[

1 + λG(λ)
][

Eρ2
R−R(f̃2)

]

+ B2[K(ρ2,π2)+log(ǫ−1)]
λN2

.

Taking λ = λ0 and π2 = ρ2 = δf̌ , we obtain

(.17) r2(f̌)− r2(f̃2) ≤ 3
2

[

R(f̌)−R(f̃2)
]

+ B2 log(ǫ−1)
λ0N2

.

From inequalities (.15), (.16) and (.17), we obtain that with P⊗N -probability at
least 1− ǫ,

R(f̂ERM) ≤ 3R(f̌)− 2R(f̃2) + 2B2

λ0N2
log(L1L2ǫ

−2)

≤ R(f̃) + 3γ′N←N1
(ǫ/2) + 2B2

λ0N2
log(L1L2ǫ

−2)

≤ R(f̃) + C
{

√

C̃(ǫ)V (ρ̃) ∨ C̃(ǫ)
}

provided that N1 and N2 has the order of N . �



AGGREGATED ESTIMATORS 71

Remark .6. Since the procedure is independent from the confidence level, we may

integrate the deviations to obtain P⊗NR(f̂ERM)−R(f̃) ≤ C
{

√

C̃(1)V (ρ̃) ∨ C̃(1)
}

for an appropriate different constant C > 0.
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Abstract. The common method to understand and improve classification

rules is to prove bounds on the generalization error. Here we provide local-
ized data-based PAC-bounds for the difference between the risk of any two

randomized estimators. We derive from these bounds two types of algorithms:
the first one uses combinatorial technics and is related to compression schemes

whereas the second one involves Gibbs estimators.

We also recover some of the results of the Vapnik-Chervonenkis theory
and improve them by taking into account the variance term measured by the

pseudo-distance (f1, f2) 7→ P[f1(X) 6= f2(X)].

Finally, we present different ways of localizing the results in order to im-
prove the bounds and make them less dependent on the choice of the prior.

For some classes of functions (such as VC-classes), this will lead to gain a log-
arithmic factor without using the chaining technique (see [1] for more details).
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1. Setup and notations

We assume that we observe an i.i.d. sample ZN
1 , (Xi, Yi)

N
i=1 of random vari-

ables distributed according to a product probability measure P⊗N , where P is a
probability distribution on (Z,BZ) , (X × Y ,BX ⊗ BY), (X ,BX ) is a measurable
space called the pattern space, Y = {1, . . . , |Y|} is the (finite) label space and BY
is the sigma algebra of all subsets of Y . Let P(dY |X) denote a regular version
of the conditional probabilities (which we will use in the following without further
mention).

Let F(X ,Y) denote the set of all measurable functions mapping X into Y . The
aim of a classification procedure is to build a function f ∈ F(X ,Y) from the learning
sample such that f(X) well predicts the label Y associated with X . The quality of
the prediction is measured by the expected risk

R(f) , P[Y 6= f(X)].

A function f∗ such that for any x ∈ X ,

f∗(x) ∈ argmax
y∈Y

P(Y = y|X = x),

minimizes the expected risk. This function is not necessarily unique. We assume
that there exists one which is measurable. We will once for all fix it and refer to it
as the Bayes classifier. The regression function will be denoted

η∗(x) , P(Y |X = x).

Since we have no prior information about the distribution P of (X, Y ), the regression
function and the Bayes classifier are unknown.

It is well known that there is generally no measurable estimator f̂ : ZN →
F(X ,Y) such that

lim
N→+∞

sup
P∈M1

+(Z)

{

P⊗(N+1)
[

YN+1 6= f̂(ZN
1 )(XN+1)

]

− inf
f∈F(X ,Y)

P[Y 6= f(X)]
}

= 0.

So we have to work with a prescribed set of classification functions F , called the
model. This set is just some subset of the set of all measurable functions F(X ,Y).

Let us denote f̃ the best function in the model, i.e. a function minimizing the
expected risk:

f̃ ∈ argmin
F

R.

For sake of simplicity, we assume that it exists1. The empirical risk

r(f) , P̄[Y 6= f(X)],

where

P̄ ,
1

N

N
∑

i=1

δ(Xi,Yi),

gives an estimate of the expected risk. An estimator which minimizes the empirical
risk

f̂ERM ∈ argmin
F

r

1Otherwise we would have to introduce some small positive real β and consider f̃ as an esti-

mator minimizing the expected risk up to β. This real β would then appear in all the equations
related to this function and make things needlessly messy.
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is called an ERM2-classifier.
Since we will study randomized estimators, we assume that we have a σ−algebra

T such that (F , T ) is a measurable space containing the sets {f} for any f ∈ F
and such that the function

F × X → Y
(f, x) 7→ f(x)

is measurable. A randomized estimator consists in drawing a function in F accord-
ing to some random distribution ρ̂ : ZN → M1

+(F), where M1
+(F) is the set of

probability distributions on the measurable space (F , T ).
To shorten notations, we will use µh to denote the expectation of the random

variable h under the probability distribution µ: µh ,
∫

h(x)dµ(x). The symbol C
will denote a positive universal constant whose value may differ from line to line.
We define

πh ,
exp(h)

π exp(h)
· π

for any measurable real function h such that exp(h) is π-integrable. Most of the
posterior distributions encountered in this paper will have this form. The rando-
mized estimators associated with the posterior distributions π−Cr will be called the
standard Gibbs estimators with temperature 1

C .
Let us recall some basic properties of the Kullback-Leibler divergence defined as

K(µ, ν) ,

{

µ log
(

µ
ν

)

if µ≪ ν,
+∞ otherwise,

where ν and µ are two probability distributions on a measurable set (A,A). The
Legendre transform of the convex function µ 7→ K(µ, ν) is given by the following
formula: for any measurable function h : A 7→ R,

(1.1) sup
µ∈M1

+(A)

{

µh−K(µ, ν)
}

= log ν exp(h),

where, by convention:
{

µh , sup
H∈R

µ(H ∧ h)
µh−K(µ, ν) = −∞ if K(µ, ν) = +∞

.

Moreover, when the measurable function exp(h) is ν-integrable, the probability
distribution νh achieves the supremum.

In this paper, we will consider prior distributions which may depend on the data.
Most of them will depend on the data in an almost exchangeable way according to
the following definition.

Definition 1.1. A function Q on Z2N is said to be almost exchangeable iff
it satisfies: for any permutation σ such that for any i ∈ {1, . . . , N}, we have
{σ(i), σ(N + i)} = {i, N + i}, the following equality holds

QZσ(1),...,Zσ(2N)
= QZ1,...,Z2N

.

To shorten, we will sometimes write Q for QZ2N
1
.

2ERM = Empirical Risk Minimization
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Finally, to circumvent some measurability problems, we will consider inner and
outer expectations. Let (A,A, µ) be a measure space and C(A;R) be the class of
real measurable functions. For any (measurable or not) function f , its inner and

outer expectation wrt µ are respectively µ∗(h) , sup
{

µ(g) : g ∈ C(A;R), g ≤ h
}

and µ∗(h) , inf
{

µ(g) : g ∈ C(A;R), g ≥ h
}

. Naturally, for any set B ⊂ A,

µ∗(B) and µ∗(B) are defined by µ∗(B) = µ∗(1B) and µ∗(B) = µ∗(1B). Note that
µ∗ and µ∗ are not measures but satisfy µ∗(B) + µ∗(Bc) = 1 and µ∗(B1 ∪ B2) ≤
µ∗(B1) + µ∗(B2). Besides, if µ∗(h) < +∞, then there exists a random variable
h∗ such that µ∗(h) = µ(h∗). For more details on properties of inner and outer
expectations, see [20].

The paper is organized as follows. The next section is an introduction to gen-
eralization error bounds. Section 3 provides new classification rules which can be
used for preventing a given classifier to overfit the data, choosing an algorithm
among a family of algorithms and choosing the temperature of a Gibbs estimator.
For all these algorithms, we give a guarantee on their efficiency. In particular, we
prove that it is possible to empirically choose the Gibbs temperature such that
under some Tsybakov’s type assumptions the Gibbs classifier has the optimal con-
vergence rate. The remainder of the paper, except Section 7, is dedicated to prove
these generalization error bounds. Since some of the intermediate results are in-
teresting by themselves, we produce them in separate sections. Sections 4 and 5
present relative data-dependent bounds in respectively the PAC-Bayesian and com-
pression schemes frameworks. Section 6 proposes a tight bracketing of the efficiency
of Gibbs estimators. Section 7 is just here to illustrate the sharpness of our bounds
in the well-known setting of Vapnik-Chervonenkis theory. Finally, the unavoidable
toolbox to prove the results of this paper is given in the self-contained Section 8.
The PAC-bounds provided there are given in a general context such that it can be
used for other loss functions than the classification one: L[Y, f(X)] = 1Y 6=f(X).

2. The different types of generalization error bounds in
classification

To understand the tightness and the originality of the bounds presented in this
paper, we need first to give some global vision on generalization error bounds. The
concepts presented in this section are not specific to classification problems. It is
similar for the other risks R(f) = PL[Y, f(X)] and r(f) = P̄L[Y, f(X)] obtained
for other loss functions - in particular for the L2-risks for which L[Y, f(X)] =
[Y − f(X)]2.

2.1. First PAC-bounds. The first PAC-bounds which have appeared in the lit-
erature are uniform deviation inequalities of the empirical risk: for any η > 0,

(2.1) P⊗N
[

sup
F
{R− r} ≥ η

]

≤ ψF (η),

where ψF is some increasing function of η (which highly depends on the size -called
complexity or capacity- of the model). This result is in general equivalent to the
following assertions

• for any estimator f̂ and η > 0,

(2.2) P⊗N
[

R(f̂)− r(f̂) ≥ η
]

≤ ψF (η).
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• for any estimator f̂ and ǫ > 0,

(2.3) P⊗N
[

R(f̂)− r(f̂) ≥ γF(ǫ)
]

≤ ǫ,
where γF = ψ−1

F .
• for any ǫ > 0,

(2.4) P⊗N
[

sup
F
{R − r} ≥ γF(ǫ)

]

≤ ǫ.

Another way of presenting Inequality (2.4) is to say that for any ǫ > 0, with P⊗N -
probability at least 1− ǫ, for any function f ∈ F , we have3

R(f) ≤ r(f) + γF(ǫ).

For this kind of bounds, the best guarantee on the generalization ability of some
classification procedure is obtained for the ERM-algorithm. For this estimator, we
obtained that for any ǫ > 0, with P⊗N -probability at least 1− ǫ,

R(f̂ERM) ≤ r(f̂ERM) + γF (ǫ).

This leads to

• an upper bound on the quantile of R(f̂ERM) − R(f̃): for any ǫ > 0, with
P⊗N -probability at least 1− 2ǫ, we have4

R(f̂ERM) ≤ R(f̃) + γF (ǫ) +

√

log(ǫ−1)

2N

• an upper bound on the expected value of R(f̂ERM)−R(f̃):

P⊗NR(f̂ERM)−R(f̃) ≤
∫ 1

0

ψF (η)dη.

Besides, for any estimator, with P⊗N -probability at least 1− 2ǫ, we have

R(f̂)−R(f̃) ≤ r(f̂)− r(f̃) + γF (ǫ) +

√

log(ǫ−1)

2N
.

For a large model, the complexity term can be so large that we prefer to look
for the best function in a smaller model in order to get a better guarantee on the
generalization error of our procedure. To fix the size of this smaller model, we first
build a collection of embedded models F1 ⊂ F2 ⊂ · · · such that the union of the
collection of models is equal to F . Let f̂ERM,Fk

denote the ERM-algorithm relative

to the model Fk. The SRM5-algorithm is to use f̂ERM,Fk̂
where

k̂ , argmin
k∈{1,2,...}

r
(

f̂ERM,Fk

)

+ γFk(αkǫ),

and where αk are positive reals summing to one6. The real αk is the weight given
to the model Fk. By using a union bound with these weights, we obtain that for

3this formulation justifies the prefix “PAC”(probably approximately correctly) given to this

kind of bound.

4since, by using Hoeffding’s inequality, we obtain r(f̃) ≤ R(f̃) +

√

log(ǫ−1)
2N

with P⊗N -

probability 1 − ǫ.
5SRM = Structural Risk Minimization
6Once more, we do not bother with the existence of the argmin. Note that practitioners seem

to skip the αk when using the SRM principle.
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any ǫ > 0, with P⊗N -probability at least 1− ǫ, we have

R
(

f̂ERM,Fk̂

)

≤ r
(

f̂ERM,Fk̂

)

+ γF(αk̂ǫ).

To sum up, this type of bounds gives us a model selection algorithm and general-
ization error bounds for any estimator, which are minimized for the ERM-classifier.

For relatively small models (VC-classes for instance), the bounds are of order7

1/
√
N and are known to be suboptimal for some kind of probability distributions

P. In particular, when the unknown probability distribution is such that R(f̃) is
small (i.e. has the order of 1/Nβ with β > 0), the bound is known to be suboptimal

(, problem {1}). In this type of bounds, the deviations of the empirical risk of any
function in the model is treated similarly without taking into account the relevance
of the function to predict labels. From the central limit theorem, we know that the

deviations of the empirical risk for the function f has the order of
√

R(f)[1−R(f)]
N .

Therefore, when f is a good predictor (i.e. when the quantity R(f) is small), the
deviations are much smaller than when f is a poor classifier. This remark explains
the suboptimality of this kind of bounds.

2.2. First improvements. To correct this last drawback, we have to allow γ(ǫ)
to depend on f . Specifically, we now consider bounds of the following form : for
any ǫ > 0,

(2.5) P⊗N
[

sup
f∈F
{R(f)− r(f)− γ(f, ǫ)} ≥ 0

]

≤ ǫ,

or in general equivalently, for any estimator f̂ and ǫ > 0, with P⊗N -probability at
least 1− ǫ, we have

(2.6) R(f̂) ≤ r(f̂) + γ(f̂ , ǫ).

From the previous discussion, we also see that we would like to take γ(f, ǫ) of the

following form
√

R(f)γ′(ǫ). With this form, Inequality (2.6) can be written as

R(f̂) ≤
(
√

r(f̂) +
[γ′(ǫ)]2

4
+ γ′(ǫ)

)2

.

This kind of bounds solves in general the problem {1}. For instance, in [22, 23],
Vapnik and Chervonenkis obtained that for any ǫ > 0, with P⊗N -probability at
least 1− ǫ, we have

γ′(ǫ) = 2

√

log(ǫ−1) + log[4SF (2N)]

N
.

Therefore, when the model has a finite VC-dimension and when the minimum of
the empirical risk has the order of 1/Nβ for some β ∈ R+ ∪ {+∞}, the bound on

R(f̂) has the order of 1

N
1+β
2

∧1
.

However, in noisy classification tasks, we still have not o(1/
√
N)-bounds for the

relative expected risk R(f̂) − R(f̃) when the probability distribution P has some

7In [21], Vapnik and Chervonenkis obtained γF (ǫ) =

√

8
log(ǫ−1)+log[4SF (2N)]

N
where the shat-

ter coefficient SF (N) is the maximal number of different sets {(f(x1), . . . , f(xN )) : f ∈ F} among

all the possible input sets (x1, . . . , xN ) of size N . For VC-classes, there exists an integer h called
the VC-dimension such that log[SF (N)] ≤ h log(eN/h).
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particular form. Indeed, for any estimator f̂ , with P⊗N -probability at least 1− 2ǫ,
we only have

R(f̂)−R(f̃) ≤
(
√

r(f̂) +
[γ′(ǫ)]2

4
+ γ′(ǫ)

)2

− r(f̃) +

√

log(ǫ−1)

2N

since we separately deal with the deviations of r(f̃) and those of r(f̂) and we cannot

expect to have much better than with P⊗N -probability at least 1 − ǫ, r(f̃) ≤
R(f̃) +

√

log(ǫ−1)
2N in noisy classification. Note that we cannot expect to obtain

o(1/
√
N)-bounds for any probability distribution P since in [22, 8] it has been

proven that, when the model F has a VC-dimension h ≥ 2 and when N ≥ 14h, for

any estimator f̂ , there exists some probability such that

P⊗NR(f̂)−R(f̃) ≥ 10−5

√

h− 1

N
.

So the next target is to find some kind of oracle inequalities which show that the
estimators minimizing the bounds adapt themselves to the unknown distribution.

2.3. Relative PAC-bounds. One way of improving the previous bounds is to
deal simultaneously with both the deviations of the functions f and f̃ . So far,
we have been adding these deviations. There is hope that, for some models F
and probability distributions P, the first order deviation terms of r(f) and r(f̃)
compensate themselves and that finally the bounds are driven by second order
terms. This kind of bounds has the following form: for any ǫ > 0,

(2.7) P⊗N

(

sup
f∈F

{

R(f)− r(f)−R(f̃) + r(f̃)− γ(f, ǫ)
}

≥ 0

)

≤ ǫ.

Once more, the central limit theorem advises us to take γ(f, ǫ) as

γ(f, ǫ) =
√

VarP
[

L[Y, f(X)]− L[Y, f̃(X)]
]

γ′(ǫ)

for an appropriate function γ′. Equation (2.7) can also be written as: for any

measurable estimator f̂ and any ǫ > 0, with P⊗N -probability at least 1 − ǫ, we
have

R(f̂)−R(f̃) ≤ r(f̂)− r(f̃) + γ(f̂ , ǫ).

Once we have succeeded in obtaining such bounds, the last step is to get bounds
in which the unknown distribution P does not appear. To obtain this, we have to
succeed in replacing P by its empirical version P̄ in the variance term.

This strategy to get tight bounds has already been addressed in the literature
([11, 9, 2, 17, 6]). However these results present different drawbacks:

• the unknown probability distribution P appears in the bound ([6, 2]8),
• in binary classification (Y = {0; 1}), the bounds only hold when we have

the two following assumptions ([11, 9, 2, 17])

– f∗ = f̃ , i.e. the model contains the Bayes classifier,
– P[|η∗(X)− 1/2| ≥ t] ≤ Čtα for some α > 0 and Č > 0 and any t > 0,

which roughly means that the regression function η∗(X) is not with
too high-probability close to 1/2,

8In [2], Sections 6.3 which deal with sample-based bounds do not concern relative PAC-bounds
in classification.
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• the bounds are not localized: the global size of the model appears, the
complexity is not only computed on the “best” part of the model ([11])9.

This paper will provide localized sample-based relative PAC-bounds for classifica-
tion which have not these drawbacks and from which we can derive the algorithms
presented in the following section.

3. Classification using relative data-dependent bounds

In this section, we will give new algorithms improving the variance estimation
by comparing the efficiency of various estimators. These algorithms will be first
described in the transductive setting since it allows to have simpler formulae and
proofs.

Our transductive setting is the following: we possess two samples of size N . The
first sample is labeled: {(X1, Y1), . . . , (XN , YN)}. The second one {XN+1, . . . , X2N}
has to be labeled: the outputs {YN+1, . . . , Y2N} are unknown.

We will use the following notations for the empirical distributions and empirical
risks:



























P̄ , 1
N

∑N
i=1 δ(Xi,Yi)

P̄′ , 1
N

∑2N
i=N+1 δ(Xi,Yi)

¯̄P , 1
2N

∑2N
i=1 δ(Xi,Yi)

r(f) , 1
N

∑N
i=1 1Yi 6=f(Xi) = P̄[Y 6= f(X)]

r′(f) , 1
N

∑2N
i=N+1 1Yi 6=f(Xi) = P̄′[Y 6= f(X)]

The variance terms in concentration inequalities will have the following pseudo-
distances appeared















¯̄Pf1,f2
, ¯̄P[f1(X) 6= f2(X)]

P̄f1,f2
, P̄[f1(X) 6= f2(X)]

P̄′f1,f2
, P̄′[f1(X) 6= f2(X)]

Pf1,f2
, P[f1(X) 6= f2(X)]

.

3.1. Compression schemes complexity. Consider an algorithm

f̂ : ∪
n∈N∗

Zn ×X → Y

which produces for any n ≥ 1 and any training set zn
1 the prediction function

f̂zn
1

: X → Y . Assume that the algorithm is exchangeable: for any n and any

permutation σ of {1, . . . , n}, we have f̂zn
1

= f̂zσ(1),...,zσ(n)
.

Let F̂h ,
{

f̂(Xij
,yi)h

j=1
: (i1, . . . , ih) ∈ {1, . . . , 2N}h, yh

1 ∈ Yh
}

. A natural ex-

changeable model associated with the algorithm and the dataX2N
1 is F̂ , ∪

2≤h≤N
F̂h.

For any function f ∈ F̂ , let h(f) be the smallest integer 2 ≤ h ≤ N such that

f ∈ F̂h. Let α ∈]0; 1[. Define C(f) , h(f) log
( 2N|Y|

α

)

the complexity of the func-

tion f . Finally, introduce L , log[(1− α)−2α4ǫ−1] and

S(f1, f2) ,

√

8¯̄Pf1,f2
[C(f1)+C(f2)+L]

N
.

9In [2, 9, 17], the model is localized via the variance VarP
(

L[Y, f(X)] − L[Y, f̃(X)]
)

to the

extent that the complexity of the model is measured on a subset of functions with low variance.

In classification, small variance implies small probability Pf,f̃ , hence R(f) close to R(f̃). Note

that the converse is not true in general: “f classifies well” does not imply small variance. But it

holds under the previous margin assumption.
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The following procedure gives a way of using the initial algorithm f̂ to produce
a classifier with a good guarantee of efficiency.

Algorithm 3.1. Let f0 ∈ F̂2. For any k ≥ 1, define fk ∈ F̂ as a function with the
smallest complexity such that r(fk)− r(fk−1) + S(fk−1, fk) < 0. Classify using the
function obtained at the last iteration.

The following theorem guarantees the efficiency of this procedure.

Theorem 3.1. The iterative scheme is not infinite: there exists K ∈ N such
that fK exists but not fK+1. With

(

P⊗2N
)

∗-probability at least 1 − ǫ, for any

k ∈ {1, . . . , K}, we have

• r(fk) < r(fk−1) and r′(fk) < r′(fk−1),
• C(fk) ≥ C(fk−1),

• defining for any f ∈ F̂ the integer k(f) , max
{

0 ≤ k ≤ K; C(fk) ≤ C(f)
}

,

(3.1) r′(fK) ≤ min
f∈F̂

{

r′(f) + 2S(fk(f), f)
}

.

•

(3.2) r′(fK) ≤ inf
f∈F̂

sup
g∈F̂:C(g)≤C(f)

{

2r′(f)− r′(g) + 8

√

2¯̄Pf,g [2C(f)+L]
N

}

.

Proof. See Section 9.1. �

Remark 3.1. From the second assertion of the previous theorem, we are allowed to
search fk in ∪

h(fk−1)≤h≤N
F̂h.

Remark 3.2. In Inequality (3.1), the variance term ¯̄Pfk(f),f depends on the functions
fk, 0 ≤ k ≤ K. To get rid of it, we can weaken the bound and obtain the following
oracle inequality

r′(fK) ≤ min
f∈F̂

{

r′(f) + 8
√

2C(f)+L
2N

}

.

Inequality (3.2) provides a smarter way of taking care of the variance term.

Remark 3.3. In our algorithm, there are several possible choices for the function
fk. Only the set F̂hk

, in which the function fk is, is well determined. A natural
choice consists in taking the minimizer of r(fk) − r(fk−1) + S(fk−1, fk) in the set

F̂hk
. This function is not necessarily the ERM in F̂hk

. However we can prove that

the theoretical guarantee associated with this function is not more than
√

2 smaller
than the one associated with the ERM on F̂h. In other words, for any 2 ≤ h ≤ N
we can restrict our search to the functions minimizing the empirical risk on F̂h.

Remark 3.4. The parameter α essentially influences the constants in the bound.
Taking 1

2 or 3
4 for α will not in general modify drastically the final classifier.

This compression scheme will be useful when the initial algorithm f̂ tends to
overfit the data (for instance, the 1-Nearest Neighbor algorithm, non pruned trees,
Support Vector Machine in the separable case10 when errors are heavily penalized,
lowly regularized boosting methods such as Adaboost, . . . ). Besides, contrary to
other compression schemes, our procedure takes into account the variance term

10It is in particular the case when we use the gaussian kernel and when the input data Xi are
pairwise distinct.



A BETTER VARIANCE CONTROL 83

so that we can expect much better results than for other compression schemes
(specially in noisy classification tasks).

Since to scan all the possible subsets
{

(xi, yi)
h
i=1 : xh

1 ⊂ X2N
1 , yh

1 ∈ Yh
}

is
not computationally tractable, we can use some suboptimal heuristics such as the
following one.

Detailed algorithm 3.1. The function f0 is chosen as the function in F̂2 mini-

mizing the empirical risk. Let z2
1 ∈ Z2 such that f0 = f̂z2

1
.

We repeat for any k ≥ 3,

zk = argmin
zk∈misclassified points in ZN

1 −z2
1

{

r(f̂zk
1
)− r(f̂z2

1
) + S(f̂zk

1
, f̂z2

1
)
}

.

until the minimum is negative (or until we have no more point to add). When

the minimum is negative, we define f1 = f̂
z

k1
1

. To define f2, we repeat for any

k ≥ k1 + 1,

zk = argmin
zk∈misclassified points in ZN

1 −z
k1
1

{

r(f̂zk
1
)− r(f̂

z
k1
1

) + S(f̂zk
1
, f̂

z
k1
1

)
}

.

until the minimum is negative (or until we have no more point to add), and so on. A
less costly alternative is to stop when adding one more point increases the criterion
(i.e. when the growth of complexity is no longer compensated by the diminution of
the empirical risk). At the end, we classify using the function denoted fK obtained
for the last negative minimum.

Let Ī ⊂ I be the set of compression sets considered in the previous heuristics

and define for any f ∈ F̄ ,
{

f̂I ; I ∈ Ī
}

the integer

k(f) , max
{

0 ≤ k ≤ K; C(fk) ≤ C(f)
}

.

We have the following guarantee:

Theorem 3.2. With
(

P⊗2N
)

∗-probability at least 1 − ǫ, for any k ∈ {1, . . . , K},
we have

• r(fk) < r(fk−1) and r′(fk) < r′(fk−1),
• r′(fK) ≤ minf∈F̄

{

r′(f) + 2S(fk(f), f)
}

.

• r′(fK) ≤ inf
f∈F̄

sup
g∈F̄ :C(g)≤C(f)

{

2r′(f)− r′(g) + 8

√

2¯̄Pf,g [2C(f)+L]
N

}

.

Proof. The proof is similar to the one of Theorem 3.1. �

3.2. PAC-Bayesian complexity.

3.2.1. Kullback-Leibler complexity. In this section, the complexity of a randomized
estimator is measured by the KL-divergence between the posterior distribution and
a prior distribution π which is introduced in order to put a structure on the model.
This approach pioneered by McAllester [16] has been developed in [5, 18, 7] among
others.

For any ǫ > 0, λ > 0 and ρ′, ρ′′ ∈M1
+(F), let























L , log[log(eN)ǫ−1]

K̃ρ′,ρ′′ , K(ρ′, π) +K(ρ′′, π) + L

Sλ(ρ′, ρ′′) , 2λ
N (ρ′ ⊗ ρ′′) ¯̄P·,· +

√
e

λ K̃ρ′,ρ′′

S(ρ′, ρ′′) , min
λ∈[
√

N ;N ]
Sλ(ρ′, ρ′′)
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Algorithm 3.2. Let ρ0 = π−λ0r. For any k ≥ 1, define ρk as the distribution with
the smallest complexity K(ρk, π) such that ρkr− ρk−1r+ S(ρk−1, ρk) ≤ 0. Classify
using a function drawn according to the posterior distribution obtained at the last
iteration.

The following result guarantees the efficiency of the randomized estimator.

Theorem 3.3. Let

(3.3) G(λ) , − 1
λ

log π exp
(

− λr′
)

+ 1
2λ

log π−λr′ exp
(

72
√

eλ2

N
π−λr′ ¯̄P·,·

)

+ L
2λ
.

The iterative scheme is not infinite: there exists K ∈ N such that ρK exists but
not ρK+1. With

(

P⊗2N
)

∗-probability at least 1−ǫ, for any k ∈ {1, . . . , K}, we have

• ρkr − ρk−1r + S(ρk, ρk−1) = 0,
• ρkr < ρk−1r and ρkr

′ ≤ ρk−1r
′,

• K(ρk, π) ≥ K(ρk−1, π),
• ρKr

′ ≤ min√
N

6
√

e
≤λ≤ N

6
√

e
:K(π−λr′ ,π)≥K(ρ0,π)

G(λ).

Proof. See Section 9.2. �

Let us explain why we believe that the guarantee on the generalization ability of
our procedure is tight and satisfactory. First, consider a prior distribution πU(X2N

1 )

which is uniform on one of the smallest set S of functions such that for any f ∈ F ,
there exists f ′ ∈ S equal to f on {X1, . . . , X2N}. Using this prior distribution, we
have

G

(
√
N

6
√
e

)

≤ r′(f̃ ′) + C

√

h log
(

2eN
h

)

+ log(ǫ−1)

N
,

hence our randomized estimator achieves the optimal convergence rate for VC
classes (up to the logarithmic factor).

Secondly, consider the following complexity and margin assumptions which will
be refered to as (CM) assumptions:

• there exists C′ > 0 and 0 < q < 1 such that the covering entropy of the
model F for the distance P·,· satisfies for any u > 0, H(u,F ,P·,·) ≤ C′u−q,

• there exist c′′, C′′ > 0 and κ ≥ 1 such that for any function f ∈ F ,

c′′
[

R(f)−R(f̃)
]

1
κ ≤ Pf,f̃ ≤ C′′

[

R(f)−R(f̃)
]

1
κ ,

where we recall that by definition f̃ ∈ argminFR. Under (CM) assumptions, one
can prove11 that with

(

P⊗2N
)

∗-probability at least 1− ǫ,

G(λ) ≤ r′(f̃) + log(eǫ−1)O
(

N−
κ

2κ−1+q

)

provided that λ0 = 0, λ = N
κ

2κ−1+q (∈ [
√
N ;N ]) and π is taken independent from

the data and such that

(3.4) π
(

P·,f̃ ≤ Č1N
− 1

2κ−1+q

)

≥ exp
(

− Č2N
− q

2κ−1+q

)

for some constants Č1 and Č2. The convergence rate N−
κ

2κ−1+q is known to be
optimal in this situation (see [14, 19] for original results and [1] for more details on
the assumptions and their implications).

11See Appendix B for the main lines.
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Remark 3.5. Let us describe approximatively the quantity G. It is made of three
terms.

• The first term is a decreasing function wrt the parameter λ with limit equal
to 0 when λ→ +∞. It is linked to the error on the second sample associated
with the randomized distributions π−Cr′ through:

− 1
λ

log π exp (−λr′) =
∫ 1

0
π−γλr′r′dγ.

• By Jensen’s inequality, the second term is upperbounded with

36
√
e λ

N (π−λ[r′−72
√

e λ
N π−λr′

¯̄P·,·]
⊗ π−λr′) ¯̄P·,·,and lower bounded with

36
√
e λ

N (π−λr′ ⊗ π−λr′) ¯̄P·,·.

So it can be seen as a variance term.
• The last term roughly behaves as 1

λ (we neglect the log logN factor).

Remark 3.6. Let us explain why the condition
√

N
6
√

e
≤ λ ≤ N

6
√

e
: K(π−λr′ , π) ≤ K(π−λ0r, π)

in the last assertion of Theorem 3.3 is not harmful.
Since we have ¯̄Pf1,f2

≥ 1
2
P̄′f1,f2

≥ r′(f1)−r′(f2)
2

, the second term in the quantity
G is very loosely lower bounded by

inf
η>0

{

1
2λ log

(

π(r′ −minF r′ ≥ η) exp
[

− λ+ 36
√

eηλ2

N π−λr′(r′ −minF ≤ η
2 )
]

)}

.

When λ > N1+β with β > 0, it is reasonable to believe that in general there will be
a fixed η > 0 such that π−λr′(r′ −minF ≤ η

2 ) ≈ 1 and π(r′ −minF r′ ≥ η) ≥ 1
2 so

that the previous lower bound ensures that 1
2λ

log π−λr′ exp
(

72
√

eλ2

N
π−λr′ ¯̄P·,·

)

is at

least of order C λ
N (when λ > N1+β with β > 0). Therefore the condition λ ≤ N

6
√

e

can be disregarded. Let λ′min ,
√

N
6
√

e
. For any λ ≤ λ′min, we have

G(λ′min) ≤ − 1
λ′
min

log π exp
(

− λ′minr
′)+ C√

N

≤ − 1
λ

log π exp
(

− λr′
)

+ C√
N

hence G(λ′min) − r′(f̃ ′) = O
(

G(λ) − r′(f̃ ′)
)

. So the condition λ ≥ λ′min is not
harmful wrt the order of the convergence rate. Note that the optimality of the
procedure under (CM) assumptions also justifies to have restricted ourselves to
Gibbs distribution with temperature in

[

C
N ; C√

N

]

.

So the only strong constraint on λ is that K(π−λr′ , π) ≥ K(π−λ0r, π). Taking
λ0 = 0 solves this problem. However if we are not pleased with a poor starting
distribution, a tempting choice is to take λ0 of order

√
N since it is very likely that

K(π−C
√

Nr′ , π) ≥ K(π−C
√

N
2 r

, π)12.

12In fact, this assertion is not as trivial as it may seem. By symmetry and from the inequality

K(π−C
√

Nr , π) ≥ K(π
−C

√
N

2
r
, π), the assertion holds with P⊗2N -probability at least 1

2
. To prove

that the inequality holds with high probability (up to unimportant additive quantities depending
on the confidence level) requires most of the technical tools developed in this paper. The proof

is left to highly determined readers. Naturally, the factor 2 in the inequality has no fundamental

meaning: it can be replaced with any constant greater than 1 at the price that the confidence
level term explodes when the constant goes to 1.
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Now one can argue that the previous algorithm is hard to implement. For-
tunately, if we search the posterior distribution only among the standard Gibbs
distributions π−λr of inverse temperature parameter λ belonging to a finite geo-

metric grid of [
√
N ;N ], we can prove13 a similar guarantee as in Theorem 3.3 and

shows its optimality for VC classes or under (CM) assumptions.

3.2.2. Localized complexity. Here we use localized complexities to choose the tem-
perature of a standard Gibbs estimator in a finite grid. Specifically, we arbitrarily

use the grid Λ ,
{

λj ,
√
Ne

j
2 ; 0 ≤ j ≤ logN

}

. Consider the randomized estimator
associated with the posterior distribution π−λjr. For any 0 ≤ j ≤ logN , its com-

plexity is defined as C(j) , log π−λjr exp
(λ2

j

N
π−λjr

¯̄P·,·
)

. For any 0 ≤ i < j ≤ logN

and ǫ > 0, we introduce L , log[log2(eN)ǫ−1] and

S(i, j) ,
2λj

N

(

π−λir ⊗ π−λjr

) ¯̄P·,· +
2C(i)+2C(j)+3L

λj
.

The following algorithm appropriately chooses the integer 0 ≤ j ≤ logN such
that the associated Gibbs classifier satisfies a localized version of the guarantee in
Theorem 3.3.

Algorithm 3.3. Let u(0) = 0. For any k ≥ 1, define u(k) as the smallest integer
j ∈]u(k − 1); logN ] such that π−λjrr − π−λu(k−1)rr + S

(

u(k − 1), j
)

≤ 0. Classify
using a function drawn according to the posterior distribution associated with the
last u(k).

Theorem 3.4. Let
(3.5)

Gloc(j) , π−λj−1r′r′ +
sup

0≤i≤j

{

log π−λir′⊗π−λir′ exp
(

Cλ2
i

N P̄′
·,·

)}

λj
+ C log[log(eN)ǫ−1]

λj

for an appropriate constant C > 0. The iterative scheme is not infinite: there exists
K ∈ N such that u(K) exists but not u(K + 1). For any ǫ > 0, with

(

P⊗2N
)

∗-
probability at least 1− ǫ, , for any k ∈ {1, . . . , K}, we have

• π−λu(k)rr < π−λu(k−1)rr and π−λu(k)rr
′ ≤ π−λu(k−1)rr

′,
• π−λu(K)rr

′ ≤ min
1≤j≤log N

Gloc(j).

Proof. See Section 9.3. �

Remark 3.7. The localized guarantee (3.5) has the same form as the non localized
one (see (3.3)). The first term is localized since

π−λr′r′ ≤
∫ 1

0
π−γλr′r′dγ = − 1

λ log π exp(−λr′).
The second term seems to be worse than in the non localized bound since the
supremum appears. In fact, this supremum has no effect since when we upper
bound this term in order to recover the known convergence rates (either under
Vapnik’s entropy condition or under (CM) assumptions), the bound increases with
the parameter λ. Besides, the discretization of the parameter λ does not influence
the convergence rates under these assumptions, and in general will not be harmful.

13We do not provide the proof of it since in Section 3.2.2 we give a more difficult-to-prove
guarantee in the case of localized complexities.
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Detailed algorithm 3.2. This is a possible implementation of Algorithms 3.3
and 3.6. Set M depending on the computer resources available and the required
accuracy of approximation.
j′ := 0
Simulate M functions fj′,m, m = 1, . . . ,M under the distribution π−λj′r

While j′ ≤ logN do
j := j′

Repeat
j′ := j′ + 1
If j′ ≤ logN Then

Simulate M functions fj′,m, m = 1, . . . ,M under π−λj′r

Using fj,m and fj′,m, estimate π−λj′rr − π−λjr + S(j, j′)
End If

until j′ > logN or π−λj′rr − π−λjr + S(j, j′) ≤ 0
End Repeat

End While
Classify using fj,1 or to follow the lines of boosting methods classify using

x 7→ argmaxy∈Y
∑

m∈[1;M ]

1fj,m(x)=y.

Remark 3.8. To simulate under the Gibbs distributions π−λ′r and π−λ′′r, we may
use the Metropolis algorithm. To avoid numerical troubles due to the exponential

in log π−λr exp
(

λ2

N π−λr
¯̄P·,·
)

, we can approximate this quantity by

λ2

N

(

π−λr ⊗ π−λr+ λ2

2N π−λr
¯̄P·,·

) ¯̄P·,· or λ2

N
(π ⊗ π)−λr(f1)−λr(f2)+ λ2

2N
¯̄Pf1,f2

¯̄P·,·

since it is lower bounded with λ2

N

(

π−λr ⊗ π−λr

) ¯̄P·,· and upper bounded with

λ2

N

(

π−λr ⊗ π−λr+ λ2

N π−λr
¯̄P·,·

) ¯̄P·,· ∧ λ2

N
(π ⊗ π)−λr(f1)−λr(f2)+

λ2

N
¯̄Pf1,f2

¯̄P·,·.

3.3. Mixing both complexities. This section explains that, by rewriting the
algorithms given in Section 3.2 for an appropriate prior distribution, we obtain an
algorithm combining the compression scheme approach (Section 3.1) and the usual
PAC-Bayesian approach (Section 3.2).

Consider a “family of algorithms”:

F̂ : ∪+∞
n=0Zn ×Θ× X → Y .

For any θ ∈ Θ, F̂θ is an algorithm to the extent that, with any training set ZN
1 ,

it associates a prediction function F̂ZN
1 ,θ : X → Y . In this sense, the parame-

ter θ “indexes” the algorithms. We assume that these algorithms F̂θ are almost
exchangeable.

Let I , ∪
2≤h≤2N

{1, . . . , 2N}h. Any I ∈ I can be written as I = {i1, . . . , ih} with

2 ≤ h ≤ 2N . Let α ∈]0; 1[ and π1 be a prior distribution on the set Θ (possibly
depending on Z2N

1 in an almost exchangeable way). Consider on the set I×Y2N×Θ

a distribution such that π0(I, y
2N
1 , dθ) ≥ 1−α

α2

(

α
2N|Y|

)h
π1(dθ) when yi = 0 for i > h.

The model is defined as

F̂ ,

{

F̂zh
1 ,θ : 2 ≤ h ≤ 2N, xi ∈ {X1, . . . , X2N}, θ ∈ Θ

}

.
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The prior distribution on the model is given by: for any measurable set A ⊂ F̂ ,
π(A) , π0

{

(I, y2N
1 , θ) ∈ I × Y2N × Θ : F̂(Xi1

,y1),...,(Xih
,yh),θ ∈ A

}

. Since the algo-

rithms F̂θ are almost exchangeable, the distribution π is also almost exchangeable
so that we can apply Algorithms 3.2 and 3.3 introduced in Section 3.2.

Remark 3.9. When the family of classification rules is just a family of functions
(i.e. when the function F̂zn

1 ,θ does not depend on the training set zn
1 ), we recover

the algorithm described in Section 3.2.

Such a procedure can be useful to choose the similarity measure on the input
data, and in particular to choose the kernel (its type and its parameter) of a SVM.
It is an alternative to the commonly used cross-validation procedure which has the
benefit to be theoretically justified. When |Θ| is countable, we can also give the
following non randomized version of the algorithm.

Algorithm 3.4. Let us take θ0 ∈ argmaxθ∈Θπ1(θ) and f0 , F̂X1,X2,θ0
. For any

function f̂ ∈ F̂ , define its complexity as

C(f̂) , min
(I,y2N

1 ,θ)∈I×Y2N×Θ:f̂,F̂(Xi1
,y1),...,(Xih

,yh),θ

{

h log
( 2N|Y|

α

)

+ log π−1
1 (θ)

}

.

For any k ≥ 1, define fk as a function with the smallest complexity such that

r(fk)− r(fk−1) +

√

8¯̄Pfk−1,fk
{C(fk−1)+C(fk)+log[(1−α)−2α4ǫ−1]}

N ≤ 0.

Classify using the function obtained at the last iteration.

From the arguments used in Section 3.1, one can prove a guarantee for this
algorithm similar to the last assertion in Theorem 3.1.

Remark 3.10. When |Θ| = 1, we recover the algorithm described in Section 3.1.

3.4. Similar algorithms in the inductive setting. In the inductive setting,
new difficulties arise and the adaptation of the previous results requires i.i.d. com-
pression schemes similar to the ones developed in [18, 7].

In this section, we only describe an algorithm using a mixed complexities when
the set of primary algorithms is countable. When this set is not countable, we will
give the algorithm without compression scheme and for a localized complexity (and
obtain results of the same nature as the ones in Section 3.2.2).

Remark 3.11. We could have described a general algorithm from which these two
algorithms would have been derived up to some variations. We will not give it since
notations become quite messy and the practical utility of the resulting classification
rule is not obvious since to choose both the algorithm θ and the compression set I
is computationally expensive for “huge” set Θ.

3.4.1. Mixed complexities. In this section, we consider a family of algorithms:

F̂ : ∪+∞
n=0Zn ×Θ× X → Y .

Introduce for any h ∈ N∗, Ih , {1, . . . , N}h. Any I ∈ Ih can be written as

I = {i1, . . . , ih}. Define Ic , {1, . . . , N} − {i1, . . . , ih} and ZI ,
(

Zi1 , . . . , Zih

)

.

The law of the random variable ZI will be denoted PI . For any J ⊂ {1, . . . , N},
introduce P̄J , 1

|J|
∑

i∈J δZi
.
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Finally, for any I, I1, I2 in I , ∪
2≤h≤N−1

Ih and θ, θ1, θ2 in Θ, introduce



















R(I, θ) , P[Y 6= F̂ZI ,θ(X)]

r(I, θ) , P̄Ic

[Y 6= F̂ZI ,θ(X)]

P(I1, θ1, I2, θ2) , P[F̂ZI1
,θ1

(X) 6= F̂ZI2
,θ2

(X)]

P̄(I1, θ1, I2, θ2) , P̄(I1∪I2)
c

[F̂ZI1
,θ1

(X) 6= F̂ZI2
,θ2

(X)]

Let π : ∪+∞
n=0Zn →M1

+(Θ) associate a prior distribution on the set Θ with any
training sample ZI . For any θ ∈ Θ and any I ∈ Ih, the complexity of the estimator
F̂ZI ,θ is defined as C(I, θ) , log π−1

ZI
(θ)+h log

(

N
α

)

. To shorten the formulae, intro-

duce C1,2 ,
C(I1,θ1)+C(I2,θ2)+log[(1−α)−2α4ǫ−1]

|(I1∪I2)c| . For any (I1, θ1, I2, θ2) ∈ I×Θ×I×Θ,

define

S(I1, θ1, I2, θ2) ,

√

2C1,2P̄(I1, θ1, I2, θ2) + C2
1,2 +

4C1,2

3
.

The following algorithm appropriately chooses the primary algorithm θ ∈ Θ and
the compression set I.

Algorithm 3.5. Let I0 ∈ I2 and θ0 ∈ argmaxθ∈ΘπZI0
(θ). For any k ≥ 1, define

Ik ∈ ∪
2≤h≤N−1

Ih and θk ∈ Θ such that

(Ik, θk) ∈ argmin
(I,θ):r(I,θ)−r(Ik−1,θk−1)+S(I,θ,Ik−1,θk−1)≤0

C(I, θ).

Classify using the function F̂ZIK
,θK

where (IK , θK) is the compression set and al-
gorithm obtained at the last iteration.

Define for any (I, θ) ∈ I × Θ, k(I, θ) , max
{

0 ≤ k ≤ K; C(Ik, θk) ≤ C(I, θ)
}

.
The following theorem guarantees the efficiency of this procedure.

Theorem 3.5. The iterative scheme is not infinite: there exists K ∈ N such that
(IK , θK) exists but not (IK+1, θK+1). With

(

P⊗N
)

∗-probability at least 1− 2ǫ, for
any k ∈ {1, . . . , K}, we have

• r(Ik, θk) < r(Ik−1, θk−1) and R(Ik, θk) ≤ R(Ik−1, θk−1),
• C(Ik, θk) ≥ C(Ik−1, θk−1),
•

(3.6) R(IK , θK) ≤ inf
(I,θ)∈I×Θ

{

R(I, θ) + 2S(Ik(I,θ), θk(I,θ), I, θ)
}

,

and consequently

(3.7)

R(IK, θK) ≤ inf
(I,θ)∈I×Θ

ξ≥0

sup
(I′,θ′)∈I×Θ:
C(I′,θ′)≤C(I,θ)

{

(1 + ξ)R(I, θ)− ξR(I ′, θ′)

+2(1 + ξ)S(I ′, θ′, I, θ)
}

.

Proof. See Section 9.4. �

Remark 3.12. Define ΘZI
, argminθ∈ΘP̄

I [Y 6= F̂ZI ,θ(X)] and let ν be a prior
distribution on Θ independent from the data. A natural choice for the prior dis-

tributions is to take πZI
(θ) ,

1θ∈ΘZI

ν(ΘZI
)
· ν(θ) so that for each compression set I, we

consider only the algorithms which minimizes the empirical risk on I. The resulting
classifier is based on the ERM principle but does not overfit the data thanks to the
compression scheme regularization.
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3.4.2. PAC-Bayesian complexities. In this section, we consider a model F which is
structured by a prior distribution π ∈M1

+(F) independent from the data. Introduce
for any 0 ≤ j ≤ logN and ǫ > 0,







































λj , 0.19
√
Ne

j
2

C(j) , log π−λjr exp
(λ2

j

N π−λjrP̄·,·
)

g(u) ,
exp(u)−1−u

u2

ā(λ) , λ
N
g( λ

N
)
(

1 + λ
2N

)

b̄(λ) , 1
λ

[

1 + λ
N g(

λ
N )
(

1 + λ
2N

)2
]

L , log[2 log2(eN)ǫ−1]

and for any 0 ≤ i < j ≤ logN and ǫ > 0,

S(i, j) , ā(λj)
(

π−λir ⊗ π−λjr

)

P̄·,· + b̄(λj)
[

2C(i) + 2C(j) + 3L
]

.

The following localized algorithm gives a way of choosing the standard Gibbs tem-
perature which ensures to get the optimal convergence rate under (CM) assump-
tions.

Algorithm 3.6. Let u(0) = 0. For any k ≥ 1, define u(k) as the smallest integer
j ∈]u(k − 1); logN ] such that π−λjrr − π−λu(k−1)rr + S

(

u(k − 1), j
)

≤ 0. Classify
using a function drawn according to the posterior distribution associated with the
last u(k).

Theorem 3.6. Let
(3.8)

Gloc(j) , π−λj−1RR +
sup

0≤i≤j

{

log π−λiR⊗π−λiR exp
(

Cλ2
i

N P·,·
)}

λj
+ C log[log(eN)ǫ−1]

λj
.

The iterative scheme is not infinite: there exists K ∈ N such that u(K) exists but
not u(K + 1). With

(

P⊗N
)

∗-probability at least 1− ǫ, for any k ∈ {1, . . . , K}, we
have

• π−λu(k)rr < π−λu(k−1)rr and π−λu(k)rR ≤ π−λu(k−1)rR,

• π−λu(K)rR ≤ min
1≤j≤log N

Gloc(j).

Proof. See Section 9.5. �

An implementation of this procedure is presented in Algorithm 3.2.

Remark 3.13. The algorithms presented in this section are based on the same
principle since they all consist in “ranking” the functions in the model by increasing
complexity, picking the “first” function in this list and taking at each step the
function of smallest complexity such that its generalization error is smaller than
the one at the previous step. Note that this section has indirectly emphasized the
benefit of relative data-dependent bounds.

4. Comparison between the errors of any two randomized estimators

We start with the transductive setting which provides simpler formulae and in
which the variance term is directly observable. Results for the inductive setting are
collected in Section 4.4.
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4.1. Basic result. Let π1 and π2: Z2N → M1
+(F) denote two almost exchange-

able functions. Let us introduce K1,2 , K(ρ1, π1) +K(ρ2, π2) + log(ǫ−1).

Theorem 4.1. For any ǫ > 0, λ > 0, with
(

P⊗2N
)

∗-probability at least 1− ǫ, for

any distributions ρ1, ρ2 ∈M1
+(F), we have

(4.1) ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤
2λ

N
(ρ1 ⊗ ρ2)

¯̄P·,· +
K1,2

λ
.

Proof. Using Theorem 8.4 for G = F × F , W
[

(f1, f2), Z
]

= 1Y 6=f2(X) − 1Y 6=f1(X)

and (µ, ν) = (ρ1 ⊗ ρ2, π1 ⊗ π2), we obtain Inequality (4.1). �

The bound consists in a variance term 2λ
N (ρ1 ⊗ ρ2)

¯̄P·,· and a complexity term
K1,2

λ . The variance term will be small when the distributions ρ1 and ρ2 are con-
centrated around the same function. The complexity of a randomized estimator is
measured by the Kullback-Leibler divergence of its posterior distribution wrt the
prior distribution.

Since the variance term 2λ
N (ρ1 ⊗ ρ2)

¯̄P·,· = 2λ
N Eρ1(df1)Eρ2(f2)

¯̄Pf1,f2
is to be large

when the distributions ρ1 and ρ2 are close and not concentrated, we might want to
improve this term by coupling. This is done in Appendix A.

Remark 4.1. Since the labels YN+1, . . . , Y2N are unknown, the prior distributions
will only be observable when they do not depend on the labels.

4.2. Optimizing the result wrt the parameter λ. First let us show how to
optimize the free parameter in Theorem 4.1. Let Λ ⊂ R∗+ be a finite set and

K′1,2 , K(ρ1, π1) +K(ρ2, π2) + log(|Λ|ǫ−1).

Theorem 4.2. For any ǫ > 0, with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have for

any λ ∈ Λ, ρ1, ρ2 ∈M1
+(F)

(4.2) ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤ min
λ∈Λ

{

2λ

N
(ρ1 ⊗ ρ2)

¯̄P·,· +
K′1,2

λ

}

.

Proof. The result just comes from a union bound and Theorem 4.1. �

Remark 4.2. Let us take ρ1 = π1 = δf̃ . To shorten notations, introduce ρ = ρ2 and

π = π2. We get ρr′ − r′(f̃) ≤ ρr − r(f̃) + min
λ∈Λ

{

2λ
N
ρ ¯̄P·,f̃ + K

λ

}

,where

K , K(ρ, π) + log(|Λ|ǫ−1).

Then the previous results compare the generalization errors of a ρ-randomized
estimator and a reference function f̃ . To understand well the bounds of this paper,
it is important to keep in mind that we are interested in bounds having the order
of 1/Nβ where β ∈]0; 1]. The power β of the bound appears to be closely linked
to both the complexity of the model and the order of Pf,f̃ when f gets close

to the reference classifier. This idea already appears in [14, 19, 4] which assume
(

Pf,f̃

)κ ≤ R(f)−R(f̃) for some κ ≥ 1 and then deduce the convergence rate of the
ERM-algorithm. In this paper, we obtain empirical bounds in which the same kind

of trade-off
(

here between ¯̄Pf,f̃ and r(f)− r(f̃)
)

takes place. When the posterior

distribution ρ is fixed, the optimal parameter λ has the order of
√

NK/(ρ ¯̄P·,f̃ ) and

for this parameter, 2λ
N ρ ¯̄P·,f̃ + K

λ has the order of
√

Kρ ¯̄P·,f̃/N .
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Remark 4.3. There is a simple way to recover non relative results in which the
deviations of the functions f and f̃ were added (as explained in Section 2). It
consists in upper bounding 1f(X)6=f̃(X) by 1Y 6=f(X) + 1Y 6=f̃(X). This inequality

implies that 2ρ ¯̄P·,f̃ ≤ ρr + ρr′ + r(f̃) + r′(f̃). Replacing ρ ¯̄P·,f̃ by its upper bound,
we find inequalities to which non relative PAC-Bayesian bounds lead to.

Another way of recovering non relative PAC-Bayesian bounds is to use the
results of Section 8 (such as Theorem 8.4) with W(f, Z) = 1Y 6=f(X) instead of

W
[

(f1, f2), Z
]

= 1Y 6=f2(X) − 1Y 6=f1(X).
In non relative bounds, the optimal randomizing distributions (i.e. the ones

minimizing the bounds) are standard Gibbs distributions. In relative bounds, ¯̄P·,·-
terms appear but, finally, the form of the optimal distribution is not very different:
the relative approach just really improves the bounds in noisy situations and leads
to a less conservative choice of the temperature (i.e. to larger λ).

The optimal parameter λ in Inequality (4.1) is
√

NK1,2

2(ρ1⊗ρ2)¯̄P·,·
≥
√

N log(ǫ−1)
2

.

Besides, for λ ≥ N , the bound is greater than 2(ρ1⊗ρ2)
¯̄P·,· which is a trivial upper

bound on ρ2r
′ − ρ1r

′ + ρ1r − ρ2r.
So values of the parameter smaller than

√
N or greater than N can be disre-

garded. Then a good set of parameters is

(4.3) Λ ,

{√
Nζk; 0 ≤ k ≤ logN

2 log ζ

}

where ζ > 1. Using this family, we obtain the following continuously uniform bound
wrt λ:

Theorem 4.3. Let ǫ > 0 and K′′1,2 , K(ρ1, π1) + K(ρ2, π2) + log
[

log(ζ2N)
2 log ζ ǫ−1

]

.

With
(

P⊗2N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈ M1
+(F), we have

(4.4) ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤ min
λ∈[
√

N ;N ]

{

2λ

N
(ρ1 ⊗ ρ2)

¯̄P·,· + ζ
K′′1,2

λ

}

.

To conclude, it does not cost much (just a log logN factor14) to gain uniformity
in the parameter λ. We have shown how to get this uniformity. The same tools
can be used to write uniform versions in real parameters of results claimed in this
paper.

4.3. Localization.

4.3.1. Localizing both KL-divergences. In Theorem 4.1, the global size of the model
appears in the Kullback-Leibler divergence. The complexity term K(ρ, π) can be
large and will be all the more substantial as we had in the model irrelevant func-
tions for our classification task. This is clearly a drawback that we want to correct.
By replacing the prior distribution π by a suitable almost exchangeable Gibbs dis-
tribution

(

π−C[r+r′]

)

and by managing smartly the inequalities in order to recover
an observable upper bound, we can correct it. We will use the following lemma.

14Note that log log N ≤ 4 for N ≤ 1023 !
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Lemma 4.4. For any ǫ > 0, λ > 0 and ξ ∈]0; 1[, with
(

P⊗2N
)

∗-probability at least

1− ǫ, for any ρ ∈M1
+(F), we have

(4.5)

K
(

ρ, π−λ
2 [r+r′]

)

≤ 1
1−ξ

[

K
(

ρ, π−λr

)

+ log π−λr exp
(

λ2

2ξN ρ
¯̄P·,·
)

+ ξlog(ǫ−1)
]

.

Proof. See Section 9.6. �

Combining Theorem 4.1 for prior distributions (π1)− 1
2 λ1[r+r′] and (π2)− 1

2 λ2[r+r′]

(where π1 and π2 do not depend on the labels to be observable), and Lemma 4.4,
we obtain the following localized inequality.

Theorem 4.5. For any ǫ > 0, ξ ∈]0; 1[ and λ, λ1, λ2 > 0, with
(

P⊗2N
)

∗-probability
at least 1− 3ǫ, for any distributions ρ1, ρ2 ∈M1

+(F), we have

(4.6) ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤
2λ

N
(ρ1 ⊗ ρ2)

¯̄P·,· +
Kloc

1,2

(1− ξ)λ,

where

Kloc
1,2 , K

(

ρ1, (π1)−λ1r

)

+K
(

ρ2, (π2)−λ2r

)

+ log(π1)−λ1r exp
( λ2

1

2ξN
ρ1

¯̄P·,·
)

+ log(π2)−λ2r exp
( λ2

2

2ξN
ρ2

¯̄P·,·
)

+ (1 + ξ)log(ǫ−1).

For λ1 = λ2 = ξ → 0, we recover the non localized inequality. As a special case
of Theorem 4.5, for an almost exchangeable prior π, we have

Corollary 4.6. For any ǫ > 0 and any finite set Λ ⊂ R∗+, with
(

P⊗2N
)

∗-probability
at least 1− 3ǫ, for any (λ, λ′, λ′′) ∈ Λ3, we have

(4.7) π−λ′′rr
′ − π−λ′rr

′ + π−λ′rr − π−λ′′rr ≤
2λ

N
(π−λ′r ⊗ π−λ′′r)

¯̄P·,· +
¯̄K
λ
,

where

¯̄K , 2 log π−λ′r exp
(

λ′2

N π−λ′r
¯̄P·,·
)

+ 2 log π−λ′′r exp
(

λ′′2

N π−λ′′r
¯̄P·,·
)

+3 log
(

|Λ|3ǫ−1
)

.

Proof. Use the previous theorem with ξ = 1
2 , (ρ1, π1, ρ2, π2) = (π−λ′r, π, π−λ′′r, π),

λ1 = λ′, λ2 = λ′′, and make a union bound on the parameters λ, λ′ and λ′′. �

To conclude this section, localization leads to smaller complexity terms and
smaller influence of the choice of the prior distribution. Corollary 4.6 also shows
that the complexity term can be seen as a variance term since the quantities

log π−λr exp
(

λ2

N π−λr
¯̄P·,·
)

are roughly approximated with λ2

N (π−λr ⊗ π−λr)
¯̄P·,· (at

least for small enough λ).

4.3.2. Localizing one KL-divergence. When we want to localize just one of the
two KL-divergences, we can obtain a simpler result (without terms of the form

log π−λr exp
{

C λ2

N
ρ ¯̄P·,·

}

) by using a more direct proof:

Theorem 4.7. Let ρ̆ be an almost exchangeable prior distribution (for instance
π−C(r+r′) or δf̃ ). For any ǫ > 0, λ > 0 and ξ ≥ 0, we have

• when ξ < 1, with
(

P⊗2N
)

∗-probability at least 1− 2ǫ, for any randomizing

distribution ρ ∈M1
+(F),

(4.8) ρr′ − ρ̆r′ ≤ ρr − ρ̆r + 1+ξ
1−ξ

2λ
N

(

ρ⊗ ρ̆
) ¯̄P·,· +

K(ρ,π−2ξλr)+(1+ξ)log(ǫ−1)
(1−ξ)λ

.
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• with
(

P⊗2N
)

∗-probability at least 1 − 2ǫ, for any randomizing distribution

ρ ∈M1
+(F),

ρ̆r′ − ρr′ ≤ ρ̆r − ρr + 2λ
N

(

ρ⊗ ρ̆
) ¯̄P·,· +

K(ρ,π−2ξλr)+(1+ξ)log(ǫ−1)
(1+ξ)λ

.

Proof. See Section 9.7. �

For ξ = 0, we recover the non localized bound. We can also give uniform results
in both parameters λ and ξ as the following remark shows.

Remark 4.4. Let Λ ⊂ [
√
N ;N ] and Ξ ⊂ [0; 1[. The previous bound holds uniformly

in λ ∈ Λ and ξ ∈ Ξ by replacing the term log(ǫ−1) by log(|Λ||Ξ|ǫ−1).

Again, good sets of parameters have the following form Λ ,
{√

Nζk; 0 ≤ k ≤
log N
2 log ζ

}

and Ξ ,
{

α−k; 1 ≤ k ≤ log(αN)
log α

}

where α > 1, ζ > 1. Using these sets, we

can obtain continuously uniform version of the previous results. The union bound

just introduces log logN terms since |Λ||Ξ| ≤ log(ζ2N) log(αN)
2 log(ζ) log(α) .

4.4. In the inductive setting. We can adapt all the methods developed in the
transductive setting to the inductive setting when the prior distribution is indepen-
dent from the data. The only extra difficulty comes from the variance term (since
we have to transform P·,· into P̄·,· when we want an observable bound and P̄·,· into
P·,· when we want theoretical bounds) but this problem is solved by using Theorem
8.1 with W(f1, f2, Z) = −1f1(X)6=f2(X) and W(f1, f2, Z) = 1f1(X)6=f2(X).

Theorem 4.8. For any λ > 0, π1, π2 ∈M1
+(F), ǫ > 0, we have

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈M1
+(F),

ρ2R− ρ1R + ρ1r − ρ2r ≤ λ
N
g
(

λ
N

)

(ρ1 ⊗ ρ2)P·,· +
K1,2

λ

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈M1
+(F),

(ρ1 ⊗ ρ2)P·,· ≤
(

1 + λ
2N

)

(ρ1 ⊗ ρ2)P̄·,· +
(1+ λ

2N
)2K1,2

λ
,

where K1,2 , K(ρ1, π1) +K(ρ2, π2) + log(ǫ−1) and g(u) ,
exp(u)−1−u

u2 .

Proof. Apply Theorem 8.1 for G = F×F , µ = ρ1⊗ρ2, ν = π1⊗π2 and successively
for W(f1, f2, Z) = 1Y 6=f1(X) − 1Y 6=f2(X) and W(f1, f2, Z) = −1f1(X)6=f2(X). For

the second inequality, we change the parameter λ ← λ
1− λ

2N

to obtain the desired

formulation. �

As a consequence, we have:

Corollary 4.9. For any λ > 0, π1, π2 ∈ M1
+(F), ǫ > 0, with

(

P⊗N
)

∗-probability
at least 1− 2ǫ, for any ρ1, ρ2 ∈M1

+(F), we have

(4.9) ρ2R− ρ1R+ ρ1r − ρ2r ≤ ā(λ)(ρ1 ⊗ ρ2)P̄·,· + b̄(λ)K1,2

where ā(λ) , λ
N
g( λ

N
)
(

1 + λ
2N

)

and b̄(λ) , 1
λ

[

1 + λ
N
g( λ

N
)
(

1 + λ
2N

)2
]

.

Remark 4.5. To recover a simple formulation, it suffices to note that ā(λ) ≤ 1.1 λ
N

and b̄(λ) ≤ 2.7
λ for any 0 < λ ≤ N .

To localize the KL-terms, we can prove the following result which is similar to
Lemma 4.4 and which is used to justify Algorithm 3.6.
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Lemma 4.10. For any ǫ > 0, ξ ∈]0; 1[ and 0 < λ ≤ 0.39 ξN , with
(

P⊗N
)

∗-
probability at least 1− 2ǫ, for any ρ ∈M1

+(F), we have
(4.10)

K
(

ρ, π−λR

)

≤ 1
1−ξ

[

K
(

ρ, π−λr

)

+ log π−λr exp
(

2λ2

ξN ρP̄·,·
)

+ ξlog(ǫ−1)
]

.

Proof. See Section 9.8. �

5. Compression schemes

5.1. In the transductive setting. The compression schemes were introduced by
Littlestone and Warmuth ([12]). The results presented here are directly inspired
from [7, Chapter 3.1]. The notations are the same as the ones used in Section 3.1.
We have an exchangeable algorithm

f̂ : ∪
n∈N∗

Zn ×X → Y

which produces for any training set L the prediction function f̂L : X → Y . Let

F̂h ,
{

f̂(Xij
,yi)h

j=1
: (i1, . . . , ih) ∈ {1, . . . , 2N}h, yh

1 ∈ Yh
}

. We consider the data-

dependent model F̂ , ∪
2≤h≤N

F̂h.

Theorem 5.1. Let ǫ > 0, α ∈]0; 1[ and L , log[(1− α)−2α4ǫ−1]. With
(

P⊗2N
)

∗-

probability at least 1− ǫ, for any f1, f2 ∈ F̂ , we have

r′(f2)− r′(f1) ≤ r(f2)− r(f1) +

√

8¯̄Pf1,f2
[h1 log(2N|Y|/α)+h2 log(2N|Y|/α)+L]

N
,

where the integers h1 and h2 satisfy f1 ∈ F̂h1
and f2 ∈ F̂h2

.

Proof. Let π be a prior distribution such that it is uniform on each F̂h and π(F̂h) ≥
(1−α)αh−2. We have log |F̂h| = log

[

(2N)h|Y|h
]

= h log
(

2N |Y|
)

. The result comes
from Inequality (8.7) in which we take W[(f1, f2), Z] = 1Y 6=f2(X) − 1Y 6=f1(X) and
ν = π ⊗ π. �

Remark 5.1. This compression scheme can be extended to a family of algorithms
F̂ : ∪+∞

n=0Zn ×Θ×X → Y . In the inductive setting, we will directly give the result
for this family.

5.2. In the inductive setting. Compression schemes in the inductive learning
are not a direct consequence of the one in the transductive learning. Here we adapt
the ideas developed in [7, Chapter 4]. The notations are the one introduced in
Section 3.4.1. Let π̈ : ZN → M1

+(I × Θ × I × Θ) be some regular conditional
probability measure such that

• π̈ZN
1

(I1, I2) is independent from ZN
1 ,

• π̈ZN
1

(dθ1, dθ2|I1, I2) depends only on ZI1 and ZI2

(

and so will be denoted

π̈ZI1
,ZI2

(dθ1, dθ2)
)

.

Theorem 5.2. We still use g(u) ,
exp(u)−1−u

u2 . Introduce N1,2 , |(I1 ∪ I2)c| and

K1,2 , K(ρ1 ⊗ ρ2, π̈) + log(ǫ−1). For any ǫ > 0, λ > 0, we have

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈M1
+(I ×Θ),

ρ2R− ρ1R + ρ1r − ρ2r ≤
(

ρ1 ⊗ ρ2

)

[

λ
N1,2

g
(

λ
N1,2

)

P(I1, θ1, I2, θ2)
]

+
K1,2

λ ,
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• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈M1
+(I ×Θ),

(

ρ1 ⊗ ρ2

)

[

(

1− λ
2N1,2

)

P(I1, θ1, I2, θ2)
]

≤
(

ρ1 ⊗ ρ2

)

P̄(I1, θ1, I2, θ2) +
K1,2

λ .

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any I1, I2 ∈ I and θ1, θ2 ∈ Θ,

R(I2, θ2)−R(I1, θ1) + r(I1, θ1)− r(I2, θ2)
≤

√

2[log π̈−1(I1,θ1,I2,θ2)+log(ǫ−1)]P(I1,θ1,I2,θ2)
N1,2

+ log π̈−1(I1,θ1,I2,θ2)+log(ǫ−1)
3N1,2

,

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any I1, I2 ∈ I and θ1, θ2 ∈ Θ,

P(I1, θ1, I2, θ2) ≤
(√

P̄(I1, θ1, I2, θ2) + log π̈−1(I1,θ1,I2,θ2)+log(ǫ−1)
2N1,2

+
√

log π̈−1(I1,θ1,I2,θ2)+log(ǫ−1)
2N1,2

)2

.

Proof. Apply Theorem 8.7 successively with

Ĝ :
(

Zn
1 , Z

n′
1 , (θ, θ

′), (x, y)
)

7→ 1y 6=F̂Zn
1 ,θ(x) − 1y 6=F̂

Zn′
1

,θ′(x)

and Ĝ :
(

Zn
1 , Z

n′
1 , (θ, θ′), (x, y)

)

7→ −1F̂Zn
1 ,θ(x)6=F̂

Zn′
1

,θ′(x). Then take

{

µ
(

I1, I2, d(θ1, θ2)
)

= ρ1(I1, dθ1)⊗ ρ2(I2, dθ2)
ν
(

I1, I2, d(θ1, θ2)
)

= π̈(I1, dθ1, I2, dθ2)
.

�

6. Some properties of Gibbs estimators

6.1. Concentration of Gibbs estimators. So far, we have looked for controlling
the risk ρ̂r′ and ρ̂R in respectively the transductive and inductive setting. One can
ask whether the randomizing distribution ρ̂ is enough concentrated so that, by
drawing a function f according to this distribution ρ̂, the resulting risk r′(f) or
R(f) has the same order as ρ̂r′ or ρ̂R. In the transductive learning, the following
theorem tends to say that this property holds to the extent that it holds for the
risk r + r′.

Theorem 6.1. Let π and ρ̆ be almost exchangeable distributions. For any ǫ > 0,
λ > 0, with P⊗2N -probability at least 1− ǫ and π−2λr-probability at least 1− ǫ, we
have

(6.1) (r + r′)− ρ̆(r + r′) ≤ 2λ

N
ρ̆ ¯̄P·,· +

− log π exp
{

− 2λ[r − ρ̆r]
}

+ 2log(ǫ−1)

λ
.

Proof. See Section 9.9. �

Inequality (6.1) is to be compared with

π−2λr(r + r′)− ρ̆(r + r′) ≤ 2λ
N

(

π−2λr ⊗ ρ̆
) ¯̄P·,· +

− log π exp {−2λ[r−ρ̆r]}+log(ǫ−1)
λ ,

which directly comes from Theorem 4.1
(

with (ρ2, π2, ρ1, π1) = (π−2λr, π, ρ̆, ρ̆)
)

.
Theorem 6.1 implies that Inequality (6.1) holds with probability at least 1−2ǫ wrt
randomness.

Remark 6.1. For sake of simplicity, the result has been given for the distribution
π−2λr. We can adapt the proof to take into account other Gibbs distributions in

which the variance term ¯̄P·,· appears.
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In the inductive setting, when the prior distribution π is independent from the
data, the previous theorem becomes

Theorem 6.2. For any ǫ > 0, λ > 0, π ∈ M1
+(F) and ρ̃ ∈ M1

+(F), with P⊗2N -
probability at least 1− ǫ and π−λr-probability at least 1− ǫ, we have

(6.2) R − ρ̃R ≤ λ
N g
(

λ
N

)

ρ̃P·,· +
− log π exp {−λ[r−ρ̃r]}+2log(ǫ−1)

λ .

Proof. See Section 9.10. �

This result has to be compared with

π−λrR − ρ̃R ≤ λ
N
g
(

λ
N

)(

π−λr ⊗ ρ̃
)

P·,· +
− log π exp {−λ[r−ρ̃r]}+log(ǫ−1)

λ
,

which comes from Theorem 4.8.

6.2. Bracketing on the efficiency of standard Gibbs estimators. The follow-
ing theorem brackets the efficiency of a standard Gibbs estimator in the transductive
setting.

Theorem 6.3. For any λ > 0,

• for any 0 ≤ ξ < 1, we have

(6.3)
π−λrr

′ ≤ − log π−ξλr′ exp {−(1−ξ)λr′}
(1−ξ)λ +

K(π−λr,π−λr′)
(1−ξ)λ

≤ π−ξλr′r′ +
K(π−λr,π−λr′)

(1−ξ)λ

• for any χ > 0, we have

(6.4)
π−λrr

′ ≥ − log π−λr′ exp (−χλr′)
χλ − K(π−λr,π−λr′)

χλ

≥ π−(1+χ)λr′r′ − K(π−λr,π−λr′)
χλ

These inequalities are completed by the following one: for any ǫ > 0 and 0 < γ < 1,
with

(

P⊗2N
)

∗-probability at least 1− ǫ, we have

(6.5)
K(π−λr, π−λr′) ≤ 1

1−γ log π−λr′ ⊗ π−λr′ exp
(

10λ2

γN P̄′·,·
)

+
(

35 + 375λ2

γ2N2

)

γ
1−γ log(8ǫ−1).

Proof. The first two results come from the Legendre transform of the function
ρ 7→ K(ρ, π−λr′) and Jensen’s inequality. The last one is proved in Section 9.11. �

Remark 6.2. The constants are not very satisfactory since too many concentration
inequalities are piled in the proof. With this respect, the intermediate step

K(π−λr, π−λr′) ≤ 5
1−γ

log π−λ r+r′
2

exp
(

λ2

γN
π−λ r+r′

2

¯̄P·,·
)

+ 20γ
1−γ

log(4ǫ−1).

was tighter. The parameter γ is here to balance the two terms of the RHS. For
instance, for small enough λ

(

at least for λ = o(
√
N)
)

, the optimal γ is o(1).

In the inductive setting, we have

Theorem 6.4. For any λ > 0,

• for any 0 ≤ ξ < 1, we have

(6.6)
π−λrR ≤ − log π−ξλR exp {−(1−ξ)λR}

(1−ξ)λ +
K(π−λr,π−λR)

(1−ξ)λ

≤ π−ξλRR +
K(π−λr,π−λR)

(1−ξ)λ
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• for any χ > 0, we have

(6.7)
π−λrR ≥ − log π−λR exp (−χλR)

χλ
− K(π−λr,π−λR)

χλ

≥ π−(1+χ)λRR− K(π−λr,π−λR)
χλ

These inequalities are completed by the following one: for any ǫ > 0, 0 < γ < 1
and 0 < λ ≤ 0.39 γN , with P⊗N -probability at least 1− ǫ, we have

(6.8) K(π−λr, π−λR) ≤ 4
1−γ log π−λR exp

(

4.1 λ2

γN π−λRP·,·
)

+ 5γ
1−γ log(4ǫ−1).

Proof. The first two results come from the Legendre transform of the function
ρ 7→ K(ρ, π−λR) and Jensen’s inequality. The last one is proved in Section 9.12. �

7. Vapnik’s type bounds

To illustrate the relative data-dependent bounds developed in this paper, we
can use them to recover and improve classical bounds of Vapnik and Chervonenkis

theory. In particular, we will prove VC-bounds involving the pseudo-distance ¯̄P·,·
and localize them. We start with the transductive inference in which results are
much simpler. In Section 7.4, similar bounds are given for the inductive learning.

Let X , X2N
1 and A(X) be the partition of the model F defined by

A(X) ,

{

{

f ∈ F : f(Xi) = σi for any i = 1, . . . , 2N
}

; σ2N
1 ∈ {0; 1}2N

}

.

Let N(X) ,
∣

∣A(X)
∣

∣ =
∣

∣

{

[f(Xk)]2N
k=1 : f ∈ F

}∣

∣ be the number of ways of shattering
X using functions in the model and let πU(X) denotes an exchangeable distribution

uniform on A(X) to the extent that πU(X)(A) = 1
N(X) for any A ∈ A(X).

7.1. Basic bound.

Theorem 7.1. With
(

P⊗2N
)

∗-probability at least 1 − ǫ, for any f1, f2 ∈ F , we
have

r′(f2)− r′(f1) ≤ r(f2)− r(f1) +

√

8 ¯̄Pf1,f2

[

2 logN(X) + log(ǫ−1)
]

N
.

In particular, introducing f̃ ′ , argminF r
′, we obtain

(7.1) r′(f̂ERM)− r′(f̃ ′) ≤ r(f̂ERM)− r(f̃ ′) +

√

8¯̄Pf̂ERM,f̃′ [2 log N(X)+log(ǫ−1)]

N
.

Proof. Let ν[(df1, df2)] , πU(X)(df1)πU(X)(df2). By taking πU(X) such that it put
masses on only one function in each set of the partition A(X), for any functions
f1, f2 ∈ F , there exist functions f ′1, f

′
2 ∈ F such that

• f ′1 and f1 are in the same set of the partition,
• f ′2 and f2 are in the same set of the partition,
• ν[(f ′1, f ′2)] = 1

[N(X)]2 .

The result then follows from Inequality (8.7) applied toW
[

(f1, f2), Z
]

= 1Y 6=f2(X)−
1Y 6=f1(X). �

In particular, when Y = {0; 1}, introduce the local VC-dimension

hX , max
{

|A| : A ⊂ X and |{A ∩ f−1(1) : f ∈ F}| = 2|A|
}

.
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Since logN(X) ≤ hX log
(

2eN
hX

)

, we get

r′(f̂ERM)−minF r′ ≤ 4

√

2hX log
(

2eN
hX

)

+log(ǫ−1)

2N .

Note that this last bound is very rough since we expect the variance term ¯̄Pf̂ERM,f̃ ′

to be much smaller than 1. In Section 7.3, we propose an observable upper bound
of this quantity, and more generally a way of empirically bounding any quantity
depending on f̃ ′.

7.2. Localized VC-bound. For any A ∈ A(X), the empirical risks r and r′ are

constant on the set A. Let rA and r′A denote these values and (r+ r′)A , rA + r′A.

Theorem 7.2. For any λ ≥ 0, define

Cλ(f) , log
∑

A∈A(X) exp
{

− λ
[

(r + r′)A − (r + r′)(f)
]

}

.

Let C(f, g) , minλ≥0

{

Cλ(f) + Cλ(g)
}

. For any ǫ > 0 , with
(

P⊗2N
)

∗-probability at
least 1− ǫ, we have

(7.2) r′(f̂ERM)− r′(f̃ ′) ≤ r(f̂ERM)− r(f̃ ′) +

√

8¯̄Pf̂ERM,f̃′ [C(f̂ERM,f̃ ′)+log(ǫ−1)]

N
.

Proof. The proof is similar to the one of Theorem 7.1. The difference comes from
the choice of the prior distribution. Let r′′ , r + r′ and λ : F × F → R be a
real-valued function possibly depending on the data Z2N

1 in an exchangeable way.
We take the exchangeable prior distribution

ν(df1, df2) ,
exp{−λ(f1,f2)[r

′′(f1)+r′′(f2)]}
πU(X)⊗πU(X) exp{−λ(f1,f2)[r′′(f1)+r′′(f2)]} · πU(X) ⊗ πU(X)(df1, df2).

So for any functions f, g ∈ F such that πU(X)(f) = πU(X)(g) = 1
N(X) , we have

log ν−1(f, g) = Cλ(f,g)(f)+Cλ(f,g)(g). Since the parameter minimizing Cλ(f)+Cλ(g)
(at some small positive constant if the minimum does not exist) depends on the
data in an exchangeable way, we can choose λ(f, g) equal to this parameter. �

For λ = 0
(

i.e. by using that C(f, g) ≤ C0(f) + C0(g)
)

, we recover Inequality

(7.1). By appropriately choosing the parameter λ, we may expect to have C(f̂ERM)

and C(f̃ ′) much smaller than logN(X).

Remark 7.1. To illustrate this assertion, consider the toy example in which we
have X = [0; 1], F = {1[θ;1]; θ ∈ [0; 1]}, Y = 1X≥θ̃ for some θ̃ ∈ [0; 1] and

P(dX) absolutely continuous wrt Lebesgue measure. Then we almost surely have
N(X) = 2N + 1 and for any λ ≥ 0

cλ ,
∑

A∈A(X) exp
(

− λ[rA + r′A]
)

≤ 1 + 2
∑N

k=1 exp
(

− k λ
N

)

= 1 + 2 exp
(

− λ
N

) 1−exp(−λ)

1−exp(− λ
N )
.

Let r̂ , r′(f̂ERM) + r(f̃ ′). Inequality (7.2) gives r̂ ≤ min
λ≥0

√

4r̂[2 log cλ+λr̂+log(ǫ−1)]
N .

Taking λ = N
20 , we obtain

r̂ ≤ min
λ≥0

{

8 log{1+ 2 exp(−λ/N)[1−exp(−λ)]
1−exp(−λ/N) }+4log(ǫ−1)

N−4λ

}

≤ 37+5log(ǫ−1)
N ,
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which has to be compared with r̂ ≤ 8 log(2N+1)+4log(ǫ−1)
N obtained for λ = 0, i.e.

from the non localized bound. So localizing allows to have sharper bounds and in
particular to get rid of the logN which appears in classical VC-bounds. However,
numerically, since the previous minimum does not differ much from its value at
λ = 0 for N ≤ 200, this improvement is not significant for small training samples.

7.3. Empirical VC-bound taking into account the variance term. This
section proposes a way of locating the best function f̃ ′ in the model in a small
subset containing the empirical risk minimizer. This can be useful to give observable

bounds of any quantity depending on f̃ ′, and in particular to upper bound ¯̄Pf̂ERM,f̃ ′ .

Lemma 7.3. Let ǫ > 0 and

F̄ ,

{

f ∈ F : r(f) ≤ r(f̂ERM) +

√

8¯̄Pf̂ERM,f [2 log N(X)+log(ǫ−1)]

N

}

.

With
(

P⊗N
)

∗-probability at least 1− ǫ, we have f̃ ′ ∈ F̄ .

Proof. It directly comes from Inequality (7.1) and r′(f̂ERM)− r′(f̃ ′) ≥ 0. �

As a consequence, Inequality (7.1) leads to

Theorem 7.4. For any ǫ > 0, with
(

P⊗N
)

∗-probability at least 1− ǫ, we have

r′(f̂ERM)− r′(f̃ ′) ≤ sup
f∈F̄

{

r(f̂ERM)− r(f) +

√

8¯̄Pf̂ERM,f [2 log N(X)+log(ǫ−1)]

N

}

To simplify, we can weaken the previous inequality into

r′(f̂ERM)− r′(f̃ ′) ≤
√

8 supF̄
¯̄Pf̂ERM,·[2 log N(X)+log(ǫ−1)]

N .

7.4. In the inductive learning. The following theorem is Theorem 7.1 adapted
to the inductive inference.

Theorem 7.5. With
(

P⊗2N
)

∗-probability at least 1− ǫ, for any functions f1, f2 ∈
F , we have

R(f2)−R(f1) ≤ r(f2)− r(f1) +

√

8P⊗2N [ ¯̄Pf1,f2
|ZN

1 ]{2(P⊗2N )∗[log N(X)|XN
1 ]+log(ǫ−1)}

N .

Proof. The result is similar to the one of Theorem 7.1 except that we use Inequal-
ity (8.9) instead of Inequality (8.7), and we conclude by using Cauchy-Schwarz
inequality. �

In the inductive setting, the variance term P⊗2N [ ¯̄Pf1,f2
|XN

1 ] =
Pf1,f2

+P̄f1,f2

2
and

the complexity term
(

P⊗2N
)∗

[logN(X)|XN
1 ] are not observable and we need extra

concentration inequalities to convert them into observable quantities.

7.4.1. Complexity term. For the complexity term, the following lemma proposes
theoretical and empirical bounds of it.

Lemma 7.6. The conditional expectation
(

P⊗2N
)∗ [

logN(X)


XN
1

]

can be upper
bounded
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• by

(7.3)
sup

x2N
N+1∈XN

logN(XN
1 , x

2N
N+1),

• with
(

P⊗N
)

∗-probability at least 1− ǫ, by

(7.4) 2 logN(XN
1 ) + (log 2)log(ǫ−1)

(

1 +
√

1 +
2 log N(XN

1 )
(log 2)log(ǫ−1)

)

,

• with
(

P⊗2N
)

∗-probability at least 1− 2ǫ, by

(7.5) logN(X2N
1 ) + 2(log 2)log(ǫ−1)

(

6
5

+
√

1 +
2 log N(X2N

1 )
(log 2)log(ǫ−1)

)

,

• with
(

P⊗N
)

∗-probability at least 1− ǫ, by

(7.6)
(

P⊗2N
)∗

logN(X2N
1 ) + (log 2)log(ǫ−1)

3

(

1 +
√

1 +
18(P⊗2N )∗ log N(X2N

1 )
(log 2)log(ǫ−1)

)

.

Proof. The first bound is trivial. For Inequalities (7.4), (7.5) and (7.6), we use fine
concentration inequalities due to Boucheron, Lugosi and Massart ([3]). Let log2 de-

note the binary logarithm: log2 x ,
log x
log 2 for any x > 0. The quantities log2N(XN

1 ),

log2N(X2N
1 ) and

(

P⊗2N
)∗ [

log2N(X2N
1 )|XN

1

]

are self-bounded quantities in the

sense given in [13, p.23]15. By Theorem 15 in [13, p.40] and some computations,
any self-bounded variable Z satisfy

• with probability at least 1− ǫ, Z ≤ EZ + log(ǫ−1)
3

(

1 +
√

1 + 18EZ
log(ǫ−1)

)

,

• with probability at least 1− ǫ, EZ ≤ Z + log(ǫ−1)
(

1 +
√

1 + 2Z
log(ǫ−1)

)

.

From the inequality logN(X2N
1 ) ≤ logN(XN

1 ) + logN(X2N
N+1) and bounding the

expectation of log2N(X2N
N+1) using the previous inequality, we obtain (7.4). Using

both previous concentration inequalities, we link
(

P⊗2N
)∗ [

log2N(X2N
1 )|XN

1

]

with
(

P⊗2N
)∗ [

log2N(X2N
1 )

]

and
(

P⊗2N
)∗ [

log2N(X2N
1 )

]

with log2N(X2N
1 ). After

some computations, we get Inequality (7.5). Inequality (7.6) directly comes from
the first of the two concentration inequalities. �

Remark 7.2. Bound (7.5) is useful only if the user possesses N extra input points
X2N+1, . . . , X2N drawn independently according to the distribution P(dX). Con-
trarily to the transductive setting, these points are not necessarily (the) points to
be classified. In the absence of these extra points, we should use Inequality (7.4)
to give an empirical bound of the complexity term.

7.4.2. Variance term. Let K , P⊗2N [2 logN(X)|ZN
1 ]+log(ǫ−1). We have just seen

how to bound K with an observable or theoretical bound. To deal with the variance
term, we can use the following lemma:

Lemma 7.7. For any ǫ > 0, we have

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any functions f1, f2 ∈ F ,

(7.7) Pf1,f2
≤ P̄f1,f2 + 2

√

K
N

(

P̄f1,f2
+ K

4N

)

+ K
N

15For the self-boundedness of the quantity
(

P⊗2N
)∗ [

log2 N(X2N
1 )|XN

1

]

, we first prove that

for any x2N
N+1 ∈ XN , the quantity log2 N(XN

1 , x2N
N+1) is self-bounded. This can be done by

introducing the quantities log2 N(X1, . . . , Xi−1, Xi+1, . . . , XN , x2N
N+1) for any 1 ≤ i ≤ N and

slightly modifying Han’s inequality ([13, p.31]). Then we take the outer expectations.
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• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any functions f1, f2 ∈ F ,

(7.8) P̄f1,f2 ≤ Pf1,f2
+ 2
√

K
N

(

Pf1,f2
+ K

4N

)

+ K
N

Proof. By using the same prior distribution as in the proof of Theorem 7.1 and by
applying Inequality (8.9) to W[(f1, f2), X ] = 1f1(X)6=f2(X), we obtain

Pf1,f2
− P̄f1,f2

−
(

P⊗2N
)∗
√

4¯̄Pf1,f2
[2 log N(X)+log(ǫ−1)]

N ≤ 0,

hence, setting P =
√

Pf1,f2
+ P̄f1,f2

and using Cauchy-Scwarz inequality, we obtain

P 2 ≤ 2P̄f1,f2
+ P

√

2K
N
.

Solving this quadratic equation leads to the first assertion of the theorem.
For the second inequality, it suffices to take W[(f1, f2), X ] = −1f1(X)6=f2(X)

instead of W[(f1, f2), X ] = 1f1(X)6=f2(X). �

7.4.3. Conclusion. Let f̃ ∈ argminF R. Combining Theorem 7.5, Lemma 7.6 and

Lemma 7.7, we obtain an empirical bound of R(f̂ERM)−R(f̃) except for the P̄f̂ERM,f̃

quantity. This last quantity can be bounded using a locating scheme as the one
given in Section 7.3.

Combining the three previous results, we can also give a theoretical bound of
R(f̂ERM)−R(f̃) except for the Pf̂ERM,f̃ quantity. Under Tsybakov’s margin assump-

tion, this quantity can be bounded with C
[

R(f̂ERM)−R(f̃)
]

1
κ for some κ ≥ 1. This

leads to the following satisfactory theoretical bound:

Theorem 7.8. When F is a VC-class of dimension h, with
(

P⊗N
)

∗-probability at

least 1− ǫ, we have R(f̂ERM)−R(f̃) ≤ C log(eǫ−1)
(

h
N logN

)
κ

2κ−1 .

This is the known optimal convergence rate in this situation up to possibly the
logarithmic factor (see [15, Corollary 2.2] and [1] for more details).

8. General PAC-Bayesian bounds

Let Z1, . . . , ZN be N i.i.d. random variables distributed according to a proba-
bility distribution P on a measurable space (Z,BZ). Let (G,BG) be a measurable
space and M1

+(G) be the set of probability distributions on this space. Let BR
denote the Borel σ-algebra on R.

8.1. A basic PAC-Bayesian bound.

Theorem 8.1. Let W : (G×Z,BG⊗BZ)→ (R,BR) be a measurable function. Let

ǫ > 0, λ > 0, B , sup
G×Z
W, g(u) ,

exp(u)−1−u
u2 , ac(λ) , λ

N g
(

λ
N c
)

and ν ∈ M1
+(G).

We have

• with P⊗N -probability at least 1− ǫ, for any distribution µ ∈M1
+(G),

(8.1) µP̄W − µPW ≤ aB(λ)µPW2 +
K(µ, ν) + log(ǫ−1)

λ
,
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• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any function f ∈ G,

(8.2)

P̄W(f, ·)− PW(f, ·)
≤ infx>0

{

aB(x)PW(f, ·)2 + log ν−1(f)+log(ǫ−1)
x

}

≤
√

2[log ν−1(f)+log(ǫ−1)]PW(f,·)2
N

+ (B ∨ 0) log ν−1(f)+log(ǫ−1)
3N

.

The proof relies on the following lemma and on Legendre transform.

Lemma 8.2. Let W be a random variable bounded by b ∈ R. Then for any η > 0,
we have

logE exp
{

η(W − EW )
}

≤ η2EW 2g(ηb).

Proof. We have
exp (ηW ) = 1 + ηW + η2W 2g(ηW ).

Using that log(1 + x) ≤ x and that g(ηW ) ≤ g(ηb), we obtain

logE exp (ηW ) ≤ ηEW + η2g(ηb)EW 2,

which is the desired result. �

Now let us prove Theorem 8.1. We have
(8.3)

P⊗N

(

sup
µ∈M1

+(G)

{

µ
[

P̄W −PW − aB(λ)PW2
]

− K(µ,ν)+log(ǫ−1)
λ

}

> 0

)

= P⊗N
(

1
λ log

[

ǫν exp
{

λ[P̄W −PW − aB(λ)PW2]
}

]

> 0
)

= P⊗N
(

ǫν exp
{

λ[P̄W −PW − aB(λ)PW2]
}

> 1
)

≤ P⊗N
(

ǫν exp
{

λ[P̄W −PW − aB(λ)PW2]
}

)

= ǫνP⊗N exp
{

λ[P̄W − PW − aB(λ)PW2]
}

= ǫν exp
{

− λaB(λ)PW2
}

(

P exp
{

λ
N [W −PW]

}

)N

≤ ǫ,

where at the last step we use Lemma 8.2.
To prove Inequality (8.2), it suffices to note that when we allow the parameter

λ to depend on f , we get

µ
{

λ
[

P̄W −PW − aB(λ)PW2
]}

≤ K(µ, ν) + log(ǫ−1).

Taking µ = δf , we obtain

P̄W(f, ·)− PW(f, ·) ≤ aB[λ(f)]PW(f, ·)2 + log[ν−1(f)]+log(ǫ−1)
λ(f) .

Choosing λ(f) appropriately, we obtain the first part of Inequality (8.2). To prove

the second part, it suffices to note that for any A ≥ 0, we have16 inf
x>0

{

xg(x)+ A2

2x

}

≤
A+ A2

6 and inf
x>0

{

x
2 + A2

2x

}

≤ A. The last inequality is used when B ≤ 0 since g(u) ≤ 1
2

for u ≤ 0.

16Proof: we have inf
x>0

{

xg(x) + A2

2x

}

≤ log(1 + A)g[log(1 + A)] + A2

2 log(1+A)
= A +

A2

6
− 1+A+ A2

6
log(1+A)

k(A) where k(A) , log(1 + A) − A+ A2

2

1+A+ A2

6

. Since k(0) = 0 and k′(A) =

A4

36(1+A)(1+A+A2/6)2
≥ 0, we get k(A) ≥ 0, hence the result.
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Remark 8.1. In Inequality (8.1), we can replace PW2 with VarPW provided that

B , sup
G×Z
W is replaced with B′ , B − PW. To obtain this result, it suffices to

substitute Lemma 8.2 with: for any random variableW such that b′ , supW−PW ,
we have logP exp

{

η(W −PW )
}

≤ η2VarPWg(ηb′).

Remark 8.2. Inequalities (8.2) can also be proven using a Bennett’s type inequality:
for any i.i.d. random variables Wi upper bounded by B, we have

P⊗N
(
∑N

i=1(Wi−PW )
N

> inf
x>0

{

ug(uB)PW 2 + log(ǫ−1)
Nu

})

≤ ǫ,

and a union bound. The link between both inequalities in (8.2) is similar to the
one between Bennett’s and Bernstein’s inequality (see for instance [10, p.124]).

8.2. Concentration of partition functions. The following result is in particular
useful for localizing and for getting theoretical bounds from data-dependent bounds
and vice versa. We use the same notations as in Theorem 8.1. Let us introduce
A , − inf

G×Z
W.

Theorem 8.3. For any ǫ > 0, λ > 0 and any probability distribution ν ∈M1
+(G),

• for any λ′ > 0, with P⊗N -probability at least 1− ǫ, we have

(8.4) log ν exp
{

− λP̄W
}

≥ log ν exp
{

− λ[PW + aB(λ′)PW2]
}

− λ

λ′
log(ǫ−1),

• for any λ′ ≥ λ, with P⊗N -probability at least 1− ǫ, we have

(8.5) log ν exp
{

− λP̄W
}

≤ log ν exp
{

− λ[PW − aA(λ′)PW2]
}

+
λ

λ′
log(ǫ−1).

Remark 8.3. Recall that ac(λ) , λ
N g
(

λ
N c
)

and g : u 7→ exp(u)−1−u
u2 is a positive

convex increasing function such that g(0) = 1
2 by continuity. Theorems 8.1 and 8.3

trivially hold when A,B and PW2 are replaced with respective upper bounds.

Proof. For the lower bound of log ν exp
{

− λP̄W
}

, the proof is inspired from [6,

Section 3]. Let µ′ , ν−λ[PW+aB(λ′)PW2]. Applying Theorem 8.1 to W and the pair

of distributions (µ′, µ′), we get, with P⊗N -probability at least 1− ǫ,

−µ′[PW + aB(λ′)PW2] ≤ −µ′P̄W +
log(ǫ−1)

λ′
.

So we have

log ν exp
{

− λ[PW + aB(λ′)PW2]
}

= −λµ′[PW + aB(λ′)PW2]−K(µ′, ν)
≤ −λµ′P̄W + λ

λ′ log(ǫ−1)−K(µ′, ν)

≤ sup
µ∈M1

+(G)

{

− λµP̄W + λ
λ′ log(ǫ−1)−K(µ, ν)

}

= log ν exp
{

− λP̄W
}

+ λ
λ′ log(ǫ−1).
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For the upper bound of log ν exp
{

− λP̄W
}

, introduce ν′ , ν−λ[PW−aA(λ′)PW2].
We have

P⊗N
[

log ν exp
{

− λP̄W
}

> log ν exp
{

− λ[PW − aA(λ′)PW2]
}

+ λ
λ′ log(ǫ−1)

]

= P⊗N
(

ν′ exp
{

λ[PW − P̄W − aA(λ′)PW2]
}

> ǫ−
λ
λ′
)

= P⊗N
(

ǫ
[

ν′ exp
{

λ[PW − P̄W − aA(λ′)PW2]
}]

λ′
λ > 1

)

≤ ǫP⊗N
(

[

ν′ exp
{

λ[PW − P̄W − aA(λ′)PW2]
}]

λ′
λ

)

≤ ǫ,
where at the last step we use Jensen’s inequality, Fubini’s theorem and
P⊗N exp

{

λ′[PW − P̄W − aA(λ′)PW2]
}

≤ 1. �

8.3. PAC-Bayesian bounds with almost exchangeable prior.

8.3.1. Basic bound. We still use the same notations as in Theorem 8.1. How-
ever in this section, W are allowed to depend on the data Z2N

1 in an exchange-
able way. Introduce ν: Z2N → M1

+(G) an almost exchangeable (not necessa-

rily BZ⊗2N -measurable) function (see Definition 1.1). We define the distributions

P̄′ , 1
N

∑N
i=1 δZi

and ¯̄P , 1
2N

∑2N
i=1 δZi

.

Theorem 8.4. Let W ,
∑N

i=1[W(·,Zi)−W(·,ZN+i)]
2

N
. For any ǫ > 0 and λ > 0, we

have

• with
(

P⊗2N
)

∗-probability at least 1− ǫ, for any distribution µ ∈M1
+(G),

(8.6) µP̄′W − µP̄W ≤ λ

2N
µW +

K(µ, νZ2N
1

) + log(ǫ−1)

λ
.

• with
(

P⊗2N
)

∗-probability at least 1− ǫ, for any function f ∈ G,

(8.7) P̄′W(f, ·)− P̄W(f, ·) ≤

√

2W(f)
{

log
[

ν−1
Z2N

1
(f)
]

+ log(ǫ−1)
}

N

• with
(

P⊗N
)

∗-probability at least 1− ǫ, we have
(8.8)
(

P⊗2N
)∗
{

sup
µ∈M1

+(G)

[

µP̄′W−µP̄W− λ

2N
µW−

K(µ, νZ2N
1

) + log(ǫ−1)

λ

]







ZN
1

}

≤ 0.

• with
(

P⊗N
)

∗-probability at least 1− ǫ, we have
(8.9)

(

P⊗2N
)∗
{

sup
f∈F

[

P̄′W(f, ·)− P̄W(f, ·)−
√

2W(f)
[

log ν−1

Z2N
1

(f)+log(ǫ−1)
]

N

]









ZN
1

}

≤ 0.

Note that we have W ≤ 4 ¯̄PW2 (and even W ≤ 2 ¯̄PW2 when W is either positive or
negative).

Remark 8.4. To understand how the quantity W behaves, we can compute its
expectation P⊗2NW = 2VarPW and note that, according to Corollary 8.5 with

Zi ← (Zi, ZN+i) and W(g, Z) ← W
(

g, (Z,Z ′)
)

,
[

W(g, Z) − W(g, Z ′)
]2

, the
quantity µW is concentrated around its expectation.
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Proof. • Let F(G;R) be the set of real-valued functions over G. Introduce an
almost exchangeable function17 η : Z2N → F(G;R) such that for any Z2N

1 ∈ Z2N ,
the function η(Z2N

1 ) is BG-measurable.
Let us prove the first inequation. To shorten the inequalities, we introduce

Si(g) ,W(g, ZN+i)−W(g, Zi) for any (g, Z2N
1 , i) ∈ G×Z2N ×{1, . . . , N}. For any

λ > 0, we have
(

P⊗2N
)∗
νZ2N

1

{

exp
[

η(Z2N
1 ) + λ(P̄′W − P̄W)

]

}

=
(

P⊗2N
)∗
νZ2N

1

{

exp
[

η(Z2N
1 ) + λ

N

∑N
i=1 Si

]

}

=
(

P⊗2N
)∗
νZ2N

1

{

exp
[

η(Z2N
1 )

]

ΠN
i=1 cosh

(

λ
N Si

)

}

≤
(

P⊗2N
)∗
νZ2N

1

{

exp
[

η(Z2N
1 ) + λ2

2N2

∑N
i=1 S

2
i

]

}

,

where, at the last step, we use coshx ≤ exp
{

x2

2

}

. Taking the exchangeable function

η(Z2N
1 ) , − λ2

2N W− log(ǫ−1), we obtain
(

P⊗2N
)∗
νZ2N

1

{

exp
[

η(Z2N
1 ) + λ(P̄′W − P̄W)

]

}

≤ ǫ,

hence
(

P⊗2N
)∗ (

log νZ2N
1

{

exp
[

η(Z2N
1 ) + λ(P̄′W − P̄W)

]}

≥ 0
)

≤ ǫ, Introducing

U , sup
µ∈M1

+(G)

{

µη(Z2N
1 ) + λµ(P̄′W − P̄W)−K(µ, νZ2N

1
)
}

,

we have proved
(

P⊗2N
)∗

(U ≥ 0) ≤ ǫ. Therefore, we get Inequality (8.6).
• The second assertion is deduced from the first one by using the same trick as

for Inequality (8.2) and by noting that

infx>0

{

x
2N W(f) + log[ν−1(f)]+log(ǫ−1)

x

}

=

√

2W(f)
{

log[ν−1(f)]+log(ǫ−1)
}

N .

• We have seen that
(

P⊗2N
)∗

exp(U) ≤ ǫ. By Jensen’s inequality, we obtain18

(

P⊗N
)∗

exp
{

(P⊗2N )∗(U |ZN
1 )
}

≤ ǫ, hence
(

P⊗N
)∗{(

P⊗2N
)∗ (

U |ZN
1

)

≥ 0
}

≤ ǫ,

which leads to Inequality (8.8).
•We obtain Inequality (8.9) by using the same argument as for Inequality (8.8).

�

The following corollary shows the interest of Inequality (8.8).

Corollary 8.5. Assume that the functionW does not depend on the data Z2N
1 . For

any ǫ > 0 and λ > 0, with
(

P⊗N
)

∗-probability at least 1 − ǫ, for any µ ∈ M1
+(G),

we have
(8.10)

µPW − µP̄W ≤ λ
2N µP

⊗2N [W|ZN
1 ] +

(P⊗2N)
∗[

K
(

µ,ν
Z2N
1

)

|ZN
1

]

+log(ǫ−1)

λ .

with P⊗2N [W|ZN
1 ] = PW2 + P̄W2−2PWP̄W ≤ 2(PW2 + P̄W2). (This last factor

2 can be omitted when W is either positive or negative).

17to the extent that we have

η
(

Zσ(1), . . . , Zσ(2N), ·
)

= η
(

Z1, . . . , Z2N , ·
)

for any Z2N
1 ∈ Z2N and any permutation σ of {1, . . . , 2N} satisfying {σ(i), σ(N + i)} = {i, N + i}

for any i ∈ {1, . . . , N}.
18Naturally, (P⊗2N )∗(U |ZN

1 ) should be understood as
[

P⊗2N (·|ZN
1 )
]∗

U .
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Proof. We use Inequality (8.8) and note that
(

P⊗2N
)∗ {

µP̄′W|ZN
1

}

= µPW and
(

P⊗2N
)∗ {

µP̄W|ZN
1

}

= µP̄W. �

Remark 8.5. When the prior distribution νZ2N
1

puts masses on a finite set of points

(chosen in an exchangeable way) and when we are in the inductive setting, the
previous corollary is very limited since in general the posterior distribution which
is taken using only the first sample will not be absolutely continuous wrt νZ2N

1
. This

happens in particular for the ERM-algorithm on an uncountable model. However,
with nets and using differently (8.8), we can also deal with this case.

8.3.2. Concentration of partition functions. The following result is an adaptation of
Theorem 8.3 to the exchangeable setting. We use the same notations as in Theorem
8.4.

Theorem 8.6. For any ǫ > 0 and λ > 0,

• for any λ′ > 0, with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have

log ν exp
{

− 2λP̄W
}

≥ log ν exp
{

− 2λ[ ¯̄PW + λ′

N
¯̄PW2]

}

− λ
λ′ log(ǫ−1),

• for any λ′ ≥ λ, with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have

log ν exp
{

− 2λP̄W
}

≤ log ν exp
{

− 2λ[ ¯̄PW − λ′

N
¯̄PW2]

}

+ λ
λ′ log(ǫ−1).

Proof. For the lower bound, let µ′ , ν−2λ[ ¯̄PW+ λ′
N

¯̄PW2]
. Applying Theorem 8.4 toW

and the pair of probability distributions (µ′, µ′), we get, with
(

P⊗2N
)

∗-probability
at least 1− ǫ,

−µ′[P̄′W +
2λ′

N
¯̄PW2] ≤ −µ′P̄W +

log(ǫ−1)

λ′
.

So we have

log ν exp
{

− 2λ[ ¯̄PW + λ′

N
¯̄PW2]

}

= −2λµ′[ ¯̄PW + λ′

N
¯̄PW2]−K(µ′, ν)

≤ −2λµ′P̄W + λ
λ′ log(ǫ−1)−K(µ′, ν)

≤ sup
µ∈M1

+(G)

{

− 2λµP̄W + λ
λ′ log(ǫ−1)−K(µ, ν)

}

= log ν exp
{

− 2λP̄W
}

+ λ
λ′ log(ǫ−1).

For the upper bound of log ν exp
{

− 2λP̄W}, introduce ν′ , ν−2λ[ ¯̄PW−λ′
N

¯̄PW2].

We have

P⊗2N
[

log ν exp
{

− 2λP̄W
}

> log ν exp
{

− 2λ[ ¯̄PW − λ′

N
¯̄PW2]

}

+ λ
λ′ log(ǫ−1)

]

= P⊗2N
(

ν′ exp
{

λ[P̄′W − P̄W − 2λ′

N PW2]
}

> ǫ−
λ
λ′
)

= P⊗2N
(

ǫ
[

ν′ exp
{

λ[P̄′W − P̄W − 2λ′

N
¯̄PW2]

}]
λ′
λ > 1

)

≤ ǫP⊗2N
(

[

ν′ exp
{

λ[P̄′W − P̄W − 2λ′

N PW2]
}]

λ′
λ

)

≤ ǫ,
where at the last step we use Jensen’s inequality and

P⊗2Nν′ exp

{

λ′
[

P̄′W − P̄W − 2λ′

N
¯̄PW2

]}

≤ 1.

�
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8.3.3. Comparison between Theorem 8.4 and Theorem 8.1. For comparison pur-
poses, Theorem 8.1 leads to

µPW − µP̄W ≤ λ

N
g

(

λ

N
sup
G×Z

(−W)

)

µPW2 +
K(µ, ν) + log(ǫ−1)

λ
.

We see that, thanks to the symmetrization argument, we can deal with un-
bounded variablesW. Inequality (8.10) is meaningful when the RHS is not infinite
which is not a strong constraint on the unboundedness of W.

The cost of taking an exchangeable prior is that, since g(x) −→
x→0

1
2 , we roughly

lose a factor 4 in the first term of the upper bound.
IfW is either everywhere positive or everywhere negative, we just lose a factor 2.

Otherwise, we can apply (8.10) to show that P⊗2N [W|ZN
1 ] is concentrated around

its expectation 2VarPW. So even in this case, we lose a factor 2.
This factor 2 comes from the step in which we “take the conditional expectation”

in (8.6) to obtain (8.8). In fact, we believe that Inequality (8.6) is tight since to
some extent the difference P̄W − P̄′W contains twice the deviations of W around
its expectation.

8.4. Compression schemes in the inductive learning. The compression
schemes in the inductive learning was recently developed in [18, 7]. Let Ĝ be
a measurable real-valued function defined on ∪+∞

n=1Zn × ∪+∞
n=1Zn × G × Z upper

bounded by a non negative constant B.
Introduce for any h ∈ N∗, Ih , {1, . . . , N}h. Any set I ∈ Ih can be written

as I = {i1, . . . , ih}. Define Ic , {1, . . . , N} − {i1, . . . , ih} and ZI ,
(

Zi1 , . . . , Zih

)

.

The law of the random variable ZI will be denoted PI .
Let I , ∪

2≤h≤N−1
Ih and ν : ZN →M1

+(I × I × G) be some regular conditional

probability measure such that

• νZN
1

(I1, I2) is independent from ZN
1 ,

• νZN
1

(df |I1, I2) depends only on ZI1 and ZI2

(

and so will be denoted

νZI1
,ZI2

(df)
)

.

For any J ⊂ {1, . . . , N}, introduce P̄J , 1
|J|
∑

i∈J δZi
. Let W be the measurable

real-valued function defined on ZN × I × I × G × Z as

W(ZN
1 , I1, I2, g, Z) = Ĝ(ZI1 , ZI2 , g, Z).

Finally, for any sets I1 and I2 in I, introduce I1,2 , (I1 ∪ I2)c.

Theorem 8.7. Let ǫ > 0, λ > 0 and for any n ∈ N∗, ac,n(λ) , λ
n
g
(

λ
n
c
)

. We have

• with P⊗N -probability at least 1− ǫ, for any µ ∈M1
+(I × I × G),

(8.11) µP̄I1,2W − µPW ≤ µ
[

aB,|I1,2|(λ)PW2
]

+
K(µ, ν) + log(ǫ−1)

λ
,

• with
(

P⊗N
)

∗-probability at least 1− ǫ, for any I1, I2 ∈ I and f ∈ G,

(8.12)

P̄I1,2Ĝ(ZI1 , ZI2 , f, ·)− PĜ(ZI1 , ZI2 , f, ·)
≤ min

x>0

{

aB,|I1,2|(x)PĜ
2(ZI1 , ZI2 , f, ·) + log ν−1(I1,I2,f)+log(ǫ−1)

x

}

≤
√

2[log ν−1(I1,I2,f)+log(ǫ−1)]PĜ2(ZI1
,ZI2

,f,·)
|I1,2| +B log ν−1(I1,I2,f)+log(ǫ−1)

3|I1,2| .
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Proof. • It suffices to modify the proof of Theorem 8.1. Specifically, in Inequali-
ties (8.3), we can no longer use Fubini’s theorem to swap P⊗N and ν. However, we
have

P⊗NνZN
1

(dI1, dI2, df) = ν(dI1, dI2)P
I1∪I2(dZI1∪I2)νZI1

,ZI2
(df)PI1,2(dZI1,2

),

which is sufficient to get the result, since for any (I1, I2, f) ∈ I × I × G we have

PI1,2 exp
{

λ[P̄I1,2W − PW − aB,|I1,2|(λ)PW2]
}

≤ 1.

• We use the same trick as for Inequality (8.2) by considering a parameter λ
depending on (I1, I2, f). �

9. Proofs

9.1. Proof of Theorem 3.1. In this proof, we put ourselves in the event
{

for any f1, f2 ∈ F̂ , r′(f2)− r′(f1) ≤ r(f2)− r(f1) + S(f1, f2)
}

.

From Theorem 5.1, with
(

P⊗2N
)

∗-probability at least 1− ǫ, this event holds.
• Since we have S(fk−1, fk) ≥ 0 and r(fk) − r(fk−1) + S(fk−1, fk) < 0, we

obtain r(fk) < r(fk−1). As a consequence, the iterative is not infinite: there exists
0 ≤ K ≤ N such that fK exists but not fK+1.

We have

r′(fk)− r′(fk−1) ≤ r(fk)− r(fk−1) + S(fk−1, fk).

From the definition of fk, we obtain r′(fk) < r′(fk−1).
• Let us prove the second item by induction. Since f0 has been taken in the set of

smallest complexity, we have necessarily C(f1) ≥ C(f0). When C(fk−1) ≥ C(fk−2),
we will prove that C(fk) ≥ C(fk−1) by contradiction. We have

r(fk−1)− r(fk−2) + S(fk−1, fk−2) < 0,

and

r(fk)− r(fk−1) + S(fk, fk−1) < 0.

Assume that C(fk) < C(fk−1), then, by definition of fk−1, we also have

r(fk)− r(fk−2) + S(fk, fk−2) ≥ 0

and we get

S(fk, fk−2) > S(fk, fk−1) + S(fk−1, fk−2).

Since we have ¯̄Pfk,fk−2
≤ ¯̄Pfk,fk−1

+ ¯̄Pfk−1,fk−2
, for any a, b > 0

√
a+ b ≤ √a+

√
b,

C(fk−2) ≤ C(fk−1) and ¯̄Pfk−2,fk−1
6= 0, we obtain that C(fk) > C(fk−1), hence the

contradiction. This concludes the induction.
• For any f ∈ F̂ , we have r′(fK) ≤ r′(fk(f)) ≤ r′(f)+r(fk(f))−r(f)+S(fk(f), f).

Since by definition of k(f) we have r(f) − r(fk(f)) + S(fk(f), f) ≥ 0, we obtain
r′(fK) ≤ r′(f) + 2S(fk(f), f).

• We have just seen that for any f ∈ F̂ , r′(fk(f)) ≤ r′(f) + 2S(fk(f), f), hence

r′(fk(f)) ≤ 2r′(f)− r′(fk(f)) + 8

√

2¯̄Pf,fk(f)
[C(f)+C(fk(f))+L]

N .

Therefore we have

r′(fK) ≤ sup
g∈F̂:h(g)≤h(f)

{

2r′(f)− r′(g) + 8

√

2¯̄Pf,g [C(f)+C(g)+L]
N

}
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9.2. Proof of Theorem 3.3. • The first assertion holds by continuity.
• Since Sλ(ρ, ρk−1) > 0, we have ρkr < ρk−1r, hence ρkr ≤ ρk−1r − 1

N
. So the

iterative scheme ends at some step K ≤ N .
Consider the event on which Inequality (4.4) holds for ζ =

√
e. Theorem 4.3

ensures that it has a
(

P⊗2N
)

∗-probability at least 1 − ǫ. In the remainder of the

proof, we put ourselves on this event. Consequently, for any k ∈ {1, . . . , K}, we
have

ρkr
′ − ρk−1r

′ ≤ ρkr − ρk−1r + S(ρk, ρk−1) ≤ 0.

• By definition of ρ0, we have ρ0r + K(ρ0,π)
λ0

≤ ρ1r + K(ρ1,π)
λ0

. Since we have

ρ1r ≤ ρ0r − S(ρ0, ρ1), we obtain K(ρ0,π)
λ0

+ S(ρ0, ρ1) ≤ K(ρ1,π)
λ0

, and consequently

K(ρ1, π) > K(ρ0, π).
For any k ∈ {2, . . . , K}, by definition of ρk−1, for any ρ ∈ M1

+(F), we have
either K(ρ, π) ≥ K(ρk−1, π) or

ρr − ρk−2r + S(ρ, ρk−2) ≥ 0.

This last inequality implies that ρr + S(ρ, ρk−2) ≥ ρk−1r + S(ρk−1, ρk−2).
Let us prove the inequality K(ρk, π) ≥ K(ρk−1, π) by induction and contra-

diction. Assume that the inequalities K(ρk, π) < K(ρk−1, π) and K(ρk−1, π) ≥
K(ρk−2, π) hold. Then we have

{

ρkr + S(ρk−1, ρk) ≤ ρk−1r
ρk−1r + S(ρk−2, ρk−1) ≤ ρkr + S(ρk−2, ρk),

hence S(ρk−1, ρk) + S(ρk−2, ρk−1) ≤ S(ρk−2, ρk). Define λk′ ∈ [
√
N ;N ] such that

Sλk′ (ρk′−1, ρk′) = S(ρk′−1, ρk′). Let λ = λk−1 ∧ λk. We have

Sλk
(ρk−1, ρk) + Sλk−1

(ρk−2, ρk−1) ≤ Sλ(ρk−2, ρk).

From the inequality ρk ⊗ ρk−2
¯̄P·,· ≤ ρk ⊗ ρk−1

¯̄P·,· + ρk−1 ⊗ ρk−2
¯̄P·,·, we get

K̃ρk,ρk−1

λk
+
K̃ρk−1,ρk−2

λk−1
≤ K̃ρk,ρk−2

λk∧λk−1
.

Since we have K(ρk−1, π) ≥ K(ρk−2, π), we obtain successively λk ≥ λk−1 and
K(ρk, π) ≥ K(ρk−1, π). So the result is proved by induction and contradiction.

• Let η > 0. Consider λ̃ > 0 such that we have
√

N
2(η+2)

√
e
≤ λ̃ ≤ N

2(η+2)
√

e
and

K(π−λ̃r′ , π) ≥ K(ρ0, π). Define ρ̃ , π−λ̃r′ . Introduce the largest integer k̃ such

that K(ρk̃, π) ≤ K(ρ̃, π). We have min
λ∈[
√

N ;N ]

{

ρ̃r − ρk̃r + Sλ(ρ̃, ρk̃)
}

> 0, hence for

any λ ∈ [
√
N ;N ] and η > 0,

ρk̃r
′ − ρ̃r′ ≤ 2Sλ(ρ̃, ρk̃)

≤ 4λ
N (ρ̃⊗ ρk̃) ¯̄P·,· +

2
√

e
λ

[

(2 + η)K(ρ̃, π) + L
]

− 2
√

eη
λ K(ρk̃, π),

where L , log[log(eN)ǫ−1]. Now let us take λ = 2(η + 2)
√
eλ̃ ∈ [

√
N ;N ] and

introduce ξ ∈ [0; 1[. By Legendre transform, we get

(1− ξ)ρk̃r
′ ≤ −ξρk̃r

′ + 4λ
N (ρ̃⊗ ρk̃) ¯̄P·,· − 2

√
eη

λ K(ρk̃, π)

+ρ̃r′ + 1
λ̃
K(ρ̃, π) + 2

√
e

λ L

≤ η

(η+2)λ̃
log π exp

{

− λ̃(η+2)
η ξr′ + 8λ̃2(η+2)2

√
e

ηN ρ̃ ¯̄P·,·
}

− 1
λ̃

log π exp
(

− λ̃r′
)

+ L
(η+2)λ̃

.
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A natural choice for the parameter ξ is ξ = η
η+2 such that we obtain

ρk̃r
′ ≤ η

2λ̃
log π−λ̃r′ exp

{

8λ̃2(η+2)2
√

e
ηN ρ̃ ¯̄P·,·

}

− 1
λ̃

log π exp
(

− λ̃r′
)

+ L
2λ̃
.

Taking η = 1 to simplify the result, we obtain the last assertion of the theorem
since ρKr

′ ≤ ρk̃r
′.

9.3. Proof of Theorem 3.4.

9.3.1. Preliminary lemma. We will need the following technical lemma.

Lemma 9.1. Let π̃ ∈M1
+(F) possibly depending on Z2N

1 in an exchangeable way.
Let ǫ > 0, λ′ ≥ λ > 0, λ′′ > 0 and α > 0. We have

• with
(

P⊗2N
)

∗-probability at least 1− 2ǫ,

(9.1)
log π−λr exp

(

απ̃ ¯̄P·,·
)

≤ log π−λ r+r′
2

exp
{(

α+ λλ′

2N
+ λλ′′

2N

)

π̃ ¯̄P·,·
}

+
(

1
λ′ + 1

λ′′
)

λlog(ǫ−1),

• for p, q > 1 such that 1
p + 1

q = 1, with
(

P⊗2N
)

∗-probability at least 1− 4ǫ,

(9.2)

log
(

π−λ r+r′
2

⊗ π−λ r+r′
2

)

exp
(

αλ ¯̄P·,·
)

≤ 2
q

log
(

π−λ r+r′
2

⊗ π−λ r+r′
2

)

exp
(

2q+1
2N

[

λ′ + λ′′(1 + α2)
]

λ ¯̄P·,·
)

+ 1
p

log
(

π−λr ⊗ π−λr

)

exp
(

pαλP̄·,·
)

+ q+2
q

(

λ
λ′ + λ

λ′′
)

log(ǫ−1).

Proof. • Let W(f, Z) = 1Y 6=f(X) − π̃1Y 6=·(X). We have

log π−λr exp
(

απ̃ ¯̄P·,·
)

= log π exp
(

− λP̄W + απ̃ ¯̄P·,·
)

− log π exp
(

− λP̄W
)

.

By using Theorem 8.6 for appropriate prior distributions, we obtain

log π−λr exp
(

απ̃ ¯̄P·,·
)

≤ log π exp
{

− λ ¯̄PW +
(

α+ λλ′

2N

)

π̃ ¯̄P·,·
)

+ λ
λ′ log(ǫ−1)

− log π exp
(

− λ ¯̄PW − λλ′′

2N
π̃ ¯̄P·,·

)

+ λ
λ′′ log(ǫ−1)

= log π−λ r+r′
2 −λλ′′

2N π̃ ¯̄P·,·
exp

{(

α+ λλ′′

2N + λλ′′

2N

)

π̃ ¯̄P·,·
}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)

≤ log π−λ r+r′
2

exp
{(

α+ λλ′′

2N + λλ′′

2N

)

π̃ ¯̄P·,·
}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1),

where we used at the last step that

(1) π−λ r+r′
2 − λλ′′

2N π̃ ¯̄P·,·
=
(

π−λ r+r′
2

)

−λλ′′
2N π̃ ¯̄P·,·

(2) for any a > 0, E
( exp(−X)
E exp(−X) exp(aX)

)

≤ E exp(aX)
(

since we have

Cov
(

exp(aX), exp(−X)
)

≤ 0
)

.

• Let us introduce W ′
(

(f1, f2), Z
)

= 1Y 6=f1(X) + 1Y 6=f2(X) − 2π̃1Y 6=·(X) and

W ′′
(

(f1, f2), Z
)

= 1Y 6=f1(X) + 1Y 6=f2(X) − 2π̃1Y 6=·(X) − α1f1(X)6=f2(X). We have

log
(

π−λ r+r′
2

⊗ π−λ r+r′
2

)

exp
(

αλ ¯̄P·,·
)

= log π ⊗ π exp
(

− λ ¯̄PW ′′
)

− log π ⊗ π exp
(

− λ ¯̄PW ′
)

.

From Theorem 8.6 and the inequalities
{ ¯̄PW ′2 ≤ 2α2 ¯̄Pf1,f2

+ 2π̃ ¯̄Pf1,· + 2π̃ ¯̄Pf2,· ≤ 2(1 + α2)π̃
( ¯̄Pf1,· + ¯̄Pf2,·

)

¯̄PW ′′2 ≤ 2π̃
( ¯̄Pf1,· + ¯̄Pf2,·

) ,
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we have

log
(

π−λ r+r′
2
⊗ π−λ r+r′

2

)

exp
(

αλ ¯̄P·,·
)

≤ log π ⊗ π exp
(

− λP̄W ′′ + λλ′′

2N
¯̄PW ′′2

)

+ λ
λ′′ log(ǫ−1)

− log π ⊗ π exp
(

− λ ¯̄PW ′ − λλ′

2N
¯̄PW ′2

)

.+ λ
λ′ log(ǫ−1)

≤ log π ⊗ π exp
{

− λ
[

r(f1) + r(f2)− αP̄f1,f2

]

+ λλ′′(1+α2)
N π̃

( ¯̄Pf1,· + ¯̄Pf2,·
)

}

− log π ⊗ π exp
{

− λ
[

r(f1) + r(f2)
]

− λλ′

N π̃
( ¯̄Pf1,· + ¯̄Pf2,·

)

}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)

≤ log π−λr ⊗ π−λr exp
{

αλP̄f1,f2
+ λλ′′(1+α2)

N π̃
( ¯̄Pf1,· + ¯̄Pf2,·

)

}

− log π−λr ⊗ π−λr exp
{

− λλ′

N π̃
( ¯̄Pf1,· + ¯̄Pf2,·

)}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1).

From Hölder’s inequality and Jensen’s inequality, we get

log
(

π−λ r+r′
2

⊗ π−λ r+r′
2

)

exp
(

αλ ¯̄P·,·
)

≤ 1
p log π−λr ⊗ π−λr exp

(

pαλP̄·,·
)

+1
q

log π−λr ⊗ π−λr exp
{

qλλ′′(1+α2)
N

π̃
( ¯̄Pf1,· + ¯̄Pf2,·

)

}

−2 log π−λr exp
(

− λλ′

N π̃ ¯̄P·,·
)

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)
≤ 1

p log π−λr ⊗ π−λr exp
(

pαλP̄·,·
)

+2
q log π−λr exp

( qλλ′′(1+α2)
N π̃ ¯̄P·,·

)

− 2
q log π−λr exp

(

− qλλ′

N π̃ ¯̄P·,·
)

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)
≤ 1

p
log π−λr ⊗ π−λr exp

(

pαλP̄·,·
)

+2
q log π−λr exp

{

qλ
N

[

λ′ + λ′′(1 + α2)
]

π̃ ¯̄P·,·
}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1).

Now from Inequality (9.1), we have

log π−λr exp
{

qλ
N

[

λ′ + λ′′(1 + α2)
]

π̃ ¯̄P·,·
}

≤ log π−λ r+r′
2

exp
{

qλ
N

[

λ′ + λ′′(1 + α2)
]

π̃ ¯̄P·,· +
[

λλ′

2N + λλ′′

2N

]

π̃ ¯̄P·,·
}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)

≤ log π−λ r+r′
2

exp
{

(2q+1)λ
2N

[

λ′ + λ′′(1 + α2)
]

π̃ ¯̄P·,·
}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1).

Taking π̃ = π−λ r+r′
2

and using Jensen’s inequality, we obtain Inequality (9.2). �

Remark 9.1. Since

• we want the first term in the RHS to be more than compensated by the
LHS,

• the smallest λ′ we are allowed to take is λ,
• we can take λ′′ > 0 as small as necessary (when we do not concentrate on

the confidence level term),

the last assertion of Lemma 9.1 will be interesting when either
{

q ≤ 2
(

2 + 1
q

)

λ
N < α

or

{

q > 2
(

q + 1
2

)

λ
N < α

.

So Inequality (9.2) asserts that for α large enough, with high probability, we have

log
(

π−λ r+r′
2

⊗ π−λ r+r′
2

)

exp
(

αλ ¯̄P·,·
)

≤ log
(

π−λr ⊗ π−λr

)

exp
(

CαλP̄·,·
)

+ confidence level term.
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9.3.2. Proof. • Let us define for any 0 ≤ j ≤ logN , ρj , π−λjr. From Lemma 4.4
and Theorem 4.1 applied to prior distributions of the form π−λj

r+r′
2

, 0 ≤ j ≤ logN ,

with
(

P⊗2N
)

∗-probability at least 1− ǫ, we simultaneously have
{

∀ 0 ≤ j ≤ logN, K
(

ρj , πλj
r+r′

2

)

≤ 2 log ρj exp
(

λ2
j

N
ρj

¯̄P·,·
)

+ L

∀ 0 ≤ i 6= j ≤ logN, ρir
′ − ρjr

′ ≤ ρir − ρjr + S(i ∧ j, i ∨ j)
,

and in particular ρu(k)r
′ − ρu(k−1)r

′ ≤ ρu(k)r − ρu(k−1)r + S
(

u(k − 1), u(k)
)

. Now

we have S
(

u(k), u(k − 1)
)

> 0 and ρu(k)r − ρu(k−1)r + S
(

u(k − 1), u(k)
)

≤ 0. So
we obtain ρu(k)r − ρu(k−1)r < 0 and ρu(k)r

′ − ρu(k−1)r
′ ≤ 0.

• For any 0 ≤ j ≤ logN , there exists k such that u(k) ≤ j. To simplify the
formulae, we will not be too careful on constants. If j = u(k), then we trivially have
ρu(k)r

′ ≤ ρjr
′. Otherwise, by contradiction, we prove ρjr−ρu(k)r+S

(

u(k), j
)

> 0,
hence

ρu(k)r
′ − ρjr

′ ≤ ρu(k)r − ρjr + S
(

u(k), j
)

< 3S
(

u(k), j
)

− ρu(k)r + ρjr

≤ 6λj

N

(

ρu(k) ⊗ ρj

) ¯̄P·,· +
6C[u(k)]+6C(j)+9L

λj
− ρu(k)r + ρjr.

Let C̃(j) , sup0≤i≤j C(i) and π̃j = π−λj
r+r′

2

.

Since we have
(

ρu(k) ⊗ ρj

) ¯̄P·,· ≤
(

ρu(k) ⊗ π̃j

) ¯̄P·,· +
(

π̃j ⊗ ρj

) ¯̄P·,·

and

−ρu(k)r + ρjr =
−K(ρu(k),ρj)+K(ρu(k),π)−K(ρj ,π)

λj
≤ −K(ρu(k),ρj)

λj
,

we obtain

ρu(k)r
′ − ρjr

′ ≤ 6λj

N

(

ρu(k) ⊗ π̃j

) ¯̄P·,· +
6λj

N

(

ρj ⊗ π̃j

) ¯̄P·,· +
12C̃(j)+9L

λj
− K(ρu(k),ρj)

λj

≤ sup
ρ∈M1

+(F)

{

6λj

N

(

ρ⊗ π̃j

) ¯̄P·,· − K(ρ,ρj)
λj

}

+
6λj

N

(

ρj ⊗ π̃j

) ¯̄P·,·

+12C̃(j)+9L
λj

.

By Jensen’s inequality, we get

ρu(k)r
′ − ρjr

′ ≤ 2
λj

log ρj exp
(

6λ2
j

N
π̃j

¯̄P·,·
)

+ 12C̃(j)+9L
λj

.

Now, from the inequality ρi
¯̄P·,f ≤

(

ρi⊗π̃i

) ¯̄P·,·+π̃i
¯̄P·,f which holds for any function

f ∈ F and using once more Jensen’s inequality, we have

C(i) ≤ 2 log ρi exp
(

λ2
i

N π̃i
¯̄P·,·
)

≤ 1
3 log ρi exp

(

6λ2
i

N π̃i
¯̄P·,·
)

.

We obtain

ρu(k)r
′ − ρjr

′ ≤ 6
λj

sup
0≤i≤j

{

log ρi exp
(

6λ2
i

N
π̃i

¯̄P·,·
)}

+ 9L
λj
.

Let ρ′i , π−λir′ . It remains to prove that the quantity log ρi exp
(

6λ2
i

N π̃i
¯̄P·,·
)

behaves like the quantity log ρ′i exp
(

Cλ2
i

N
ρ′iP̄
′
·,·
)

for an appropriate constant C.

To simplify, let us forget the index “i” for a while. From Inequality (9.1) with
(

α, λ′, λ′′
)

=
(

6λ2

N , λ, λ
)

, we have

log π−λr exp
(

6λ2

N
π−λ r+r′

2

¯̄P·,·
)

≤ log π−λ r+r′
2

exp
(

7λ2

N
π−λ r+r′

2

¯̄P·,·
)

+ 2L.
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From Inequality (9.2) with
(

α, λ′, λ′′, p, q
)

=
(

7λ
N , λ, λ

1+( 7λ
N )

2 ,
3
2 , 3
)

, we have

log π−λ r+r′
2

⊗ π−λ r+r′
2

exp
(

7λ2

N
¯̄P·,·
)

≤ 2
3 log π−λ r+r′

2
⊗ π−λ r+r′

2
exp

(

7λ2

N
¯̄P·,·
)

+2
3 log π−λr′ ⊗ π−λr′ exp

(

21λ2

2N P̄′·,·
)

+ 5
3

(

2 + 49λ2

N2

)

L,

hence

log π−λ r+r′
2

exp
(

7λ2

N π−λ r+r′
2

¯̄P·,·
)

≤ log π−λr′ ⊗ π−λr′ exp
(

21λ2

N
P̄′·,·
)

+ 5
(

2 + 49λ2

N2

)

L.

Therefore with
(

P⊗2N
)

∗-probability at least 1− 6 ǫ
log2(eN)

, we have

log ρi exp
(

6λ2
i

N
π̃i

¯̄P·,·
)

≤ log ρ′i ⊗ ρ′i exp
(

21λ2
i

N
P̄′·,·
)

+
(

12 +
245λ2

i

N2

)

L.

Introducing C′(j) , sup0≤i≤j log ρ′i ⊗ ρ′i exp
(

21λ2
i

N
P̄′·,·
)

. With
(

P⊗2N
)

∗-probability

at least 1− 6|Λ| ǫ
log2(eN)

, for any 0 ≤ j ≤ logN , we have

sup
0≤i≤j

{

log ρi exp
(

6λ2
i

N
π̃i

¯̄P·,·
)}

≤ C′(j) + 257L.

Therefore, with
(

P⊗2N
)

∗-probability at least 1− (|Λ|2 + 6|Λ|) ǫ
log2(eN)

, we have

ρu(K)r
′ ≤ ρu(k)r

′ ≤ ρjr
′ + 6C

′(j)
λj

+ 1551 L
λj
.

To finish the proof, we use Theorem 6.3 to replace π−λjrr
′ with π−λj−1r′r′. At

last, by counting the number of deviation inequalities we used, we obtain that all

the previous inequalities hold with probability at least 1 − (|Λ|2+14|Λ|)ǫ
log2(eN)

≥ 1 − 15ǫ.

Setting ǫ← 15ǫ, we get rid of this factor 15 by putting it in the constant of the last
term of the bound.

9.4. Proof of Theorem 3.5. By construction, we have r(Ik, θk) < r(Ik−1, θk−1).
Let π0 ∈M1

+(I) satisfy for any 2 ≤ h ≤ N − 1 and I ∈ Ih

π0(I) ≥ (1−α)αh−2

Nh .

Let π̈ : ZN →M1
+(I ×Θ× I ×Θ) be defined as

π̈(I1, θ1, I2, θ2) , π0(I1)π0(I2)πZI1
(dθ1)πZI2

(dθ2).

By applying the last two inequalities in Theorem 5.2, since we have

log π̈−1(I1, θ1, I2, θ2) ≤ C(I1, θ1) + C(I2, θ2) + log[(1− α)−2α4],

we obtain that with
(

P⊗N
)

∗-probability at least 1 − 2ǫ, for any I1, I2 ∈ I and
θ1, θ2 ∈ Θ, we have

R(I2, θ2)−R(I1, θ1) + r(I1, θ1)− r(I2, θ2)
≤
√

2C1,2P(I1, θ1, I2, θ2) +
C1,2

3

≤
√

2C1,2

(

√

P̄(I1, θ1, I2, θ2) + C1,2/2 +
√

C1,2/2
)

+
C1,2

3

≤ S(I1, θ1, I2, θ2).

By definition of (Ik, θk), we get R(Ik, θk) ≤ R(Ik−1, θk−1).
• The proofs are similar to the ones of Inequalities (3.1) and (3.2).
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9.5. Proof of Theorem 3.6. • For any 0 ≤ i < j ≤ logN we have S(i, j) ≥ 0.
By definition of u(k), the first inequality holds.

Let J = {0 ≤ j ≤ logN}. The second inequality comes from Corollary 4.9
applied |J |2−|J | times for pairs of standard Gibbs estimators (π−λir, π−λjr) with
i 6= j and appropriate prior distributions, Lemma 4.10 applied |J | times and the
definition of u(k).
• We need the following technical lemma.

Lemma 9.2. Let π̃ ∈ M1
+(F) independent from the data. Let ǫ > 0, λ′ ≥ λ > 0,

λ′′ > 0 and α > 0. Define ac(λ) , λ
N g
(

c λ
N

)

and α̃ , α+a1(λ
′)+2(1+α2)a1+α(λ′′).

With P⊗N -probability at least 1− 2ǫ, we have

(9.3) log π−λr exp
(

αλπ̃P̄·,·
)

≤ log π−λR exp
(

α̃λπ̃P·,·
)

+
(

1
λ′ + 1

λ′′
)

λlog(ǫ−1).

Proof. LetW ′(f, Z) , 1Y 6=f(X)−π̃1Y 6=·(X) andW ′′(f, Z) , 1Y 6=f(X)−π̃1Y 6=·(X)−
απ̃1f(X)6=·(X). From Theorem 8.3, with P⊗N -probability at least 1− 2ǫ, we have

log π−λr exp
(

αλπ̃P̄·,·
)

= log π exp
(

− λP̄W ′′
)

− log π exp
(

− λP̄W ′
)

≤ log π exp
{

− λPW ′′ + λa1+α(λ′′)P
(

W ′′2
)}

− log π exp
{

− λPW ′ − λa1(λ
′)P
(

W ′2
)}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)
≤ log π exp

{

− λR + αλπ̃P·,· + 2(1 + α2)λa1+α(λ′′)π̃P·,·
}

− log π exp
{

− λR − λa1(λ
′)π̃P·,·

}

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)
≤ log π−λR−λa1(λ′)π̃P·,· exp

(

λα̃π̃P·,·
)

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1)
≤ log π−λR exp

(

λα̃π̃P·,·
)

+
(

λ
λ′ + λ

λ′′
)

log(ǫ−1).

�

Since we will use the same ideas as in the proof of Theorem 3.4, we will just give
the main lines of the proof. For any 0 ≤ j ≤ logN , there exists k such that u(k) ≤ j.
To shorten the formulae, introduce ai , ā(λi), bj , b̄(λj) and π̃i , π−λiR. We have

ρu(k)R− ρjR ≤ ρu(k)r − ρjr + S
(

u(k), j
)

≤ 3S
(

u(k), j
)

− ρu(k)r + ρjr

≤ 3S
(

u(k), j
)

− K(ρu(k),ρj)

λj

≤ 3aj

(

ρj ⊗ π̃j

)

P̄·,· + 6bjC[u(k)] + 6bjC(j) + 9bjL

+3aj

(

ρu(k) ⊗ π̃j

)

P̄·,· − K(ρu(k),ρj)

λj

≤ 2
λj

log ρj exp
(

3ajλj π̃jP̄·,·
)

+ 12bj sup0≤i≤j C(i) + 9bjL

For any 0 ≤ i ≤ logN , we have 0.5λi

N ≤ ai ≤ 0.6λi

N and 1
λi
≤ bi ≤ 1.2

λi
. By

Jensen’s inequality, we get

C(i) ≤ 2 log ρi exp
(λ2

i

N π̃iP̄·,·
)

≤ 4
3 log ρi exp

(

3aiλiπ̃iP̄·,·
)

.

Therefore we have

ρu(k)R − ρjR ≤ 21.2
λj

sup0≤i≤j log ρi exp
(

1.8
λ2

i

N π̃iP̄·,·
)

+ 10.8L.

Then it remains to use Lemma 9.2 to convert the quantities log ρi exp
(

1.8
λ2

i

N π̃iP̄·,·
)

into log π̃i exp
(

C
λ2

i

N
π̃iP·,·

)

and Theorem 6.4 to replace π−λjrR with π−λj−1RR.
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Then it remains to count the number of concentration inequalities we used, to
check that with probability at least 1− Cǫ, all the previous results hold.

9.6. Proof of Lemma 4.4. Introduce ρ̃ , π−λ
2 [r+r′]. We have

K(ρ, ρ̃) = K(ρ, π)−K(ρ̃, π) + λ
2

[

ρr + ρr′ − ρ̃r − ρ̃r′
]

.

Now, from Theorem 4.1, for any ξ ∈]0; 1[, with
(

P⊗2N
)

∗-probability at least 1− ǫ,
we have ρr′ − ρ̃r′ ≤ ρr− ρ̃r+ λ

ξN
(ρ⊗ ρ̃) ¯̄P·,· +

2ξ
λ
K(ρ, ρ̃) + 2ξ

λ
log(ǫ−1). We get that

(1− ξ)K(ρ, ρ̃) ≤ K(ρ, π) + λρr + ξlog(ǫ−1)− λρ̃r + λ2

2ξN (ρ⊗ ρ̃) ¯̄P·,· −K(ρ̃, π)

≤ K(ρ, π) + λρr + ξlog(ǫ−1)

+ sup
ρ′∈M1

+(F)

{

− λρ′r + λ2

2ξN (ρ′ ⊗ ρ) ¯̄P·,· −K(ρ′, π)
}

= K(ρ, π) + λρr + ξlog(ǫ−1) + log π exp
{

− λ[r − λ
2ξN ρ

¯̄P·,·]
}

= K(ρ, π−λr) + log π−λr exp
{

λ2

2ξN
ρ ¯̄P·,·

}

+ ξlog(ǫ−1).

9.7. Proof of Theorem 4.7. • Let ξ ∈ [0; 1[. Define ρ̃ , π−ξλ[r+r′+ 2λ
N ρ̆ ¯̄P·,·]

. Apply

Theorem 8.4 for W(f, Z) = −1Y 6=f(X) + ρ̆1Y 6=·(X) with (µ, ν) = (ρ, ρ̃) and for

W(f, Z) = 1Y 6=f(X)− ρ̆1Y 6=·(X) with (µ, ν) = (ρ̃, ρ̃), we obtain that with
(

P⊗2N
)

∗-
probability at least 1− 2ǫ, we have

(9.4) ρr′ − ρ̆r′ ≤ ρr − ρ̆r +
2λ

N

(

ρ⊗ ρ̆
) ¯̄P·,· +

K(ρ, ρ̃) + log(ǫ−1)

λ

and

(9.5) ρ̆r′ − ρ̃r′ ≤ ρ̆r − ρ̃r +
2λ

N

(

ρ̃⊗ ρ̆
) ¯̄P·,· +

log(ǫ−1)

λ
.

From this last inequality, we have

(9.6)

log π exp
{

− ξλ[r − ρ̆r + r′ − ρ̆r′ + 2λ
N
ρ̆ ¯̄P·,·]

}

= −ξλρ̃[r − ρ̆r + r′ − ρ̆r′ + 2λ
N ρ̆ ¯̄P·,·]−K(ρ̃, π)

≤ −2ξλ[ρ̃r − ρ̆r] + ξlog(ǫ−1)−K(ρ̃, π)
≤ ξlog(ǫ−1) + log π exp

{

− 2ξλ[r − ρ̆r]
}

.

Now from Inequality (9.4), we have

ρr′ − ρ̆r′ ≤ ρr − ρ̆r + 2λ
N

(

ρ⊗ ρ̆
) ¯̄P·,· + ξρ[r+ r′ + 2λ

N ρ̆ ¯̄P·,·]

+
K(ρ,π)+log π exp{−ξλ[r+r′+ 2λ

N ρ̆ ¯̄P·,·]}+log(ǫ−1)

λ
,

hence

(1− ξ)[ρr′ − ρ̆r′] ≤ (1 + ξ)[ρr− ρ̆r] + (1 + ξ) 2λ
N

(

ρ⊗ ρ̆
) ¯̄P·,·

+
K(ρ,π)+log π exp{−ξλ[r+r′+ 2λ

N ρ̆ ¯̄P·,·]}+log(ǫ−1)

λ

≤ (1− ξ)[ρr− ρ̆r] + (1 + ξ) 2λ
N

(

ρ⊗ ρ̆
) ¯̄P·,·

+
K(ρ,π−2ξλr)+(1+ξ)log(ǫ−1)

λ
,

where, at the last step, we have injected Inequality (9.6).
• For the second inequality, we use the same ideas. Here are the main lines of

the proof. From Theorem 8.6 applied to W(f, Z) = 1Y 6=f(X) − ρ̆1Y 6=·(X), we have
(9.7)

log π exp
(

− ξλ
[

r + r′ + 2λ
N
ρ̆ ¯̄P·,·

])

≤ log π exp
(

− 2ξλr
)

+ ξλρ̆(r − r′) + ξlog(ǫ−1).
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Introduce ρ̃ , π−ξλ[r+r′+ 2λ
N ρ̆ ¯̄P·,·]

. We have successively

ρ̆r′ − ρr′ ≤ ρ̆r − ρr + 2λ
N

(ρ⊗ ρ̆) ¯̄P·,· +
K(ρ,ρ̃)+log(ǫ−1)

λ
,

ρ̆r′ − ρr′ ≤ ρ̆r − ρr + ξρ(r + r′) + (1 + ξ) 2λ
N (ρ⊗ ρ̆) ¯̄P·,·

+
K(ρ,π)+log π exp

(

−ξλ[r+r′+ 2λ
N ρ̆ ¯̄P·,·]

)

+log(ǫ−1)

λ

≤ ρ̆r − ρr + ξ
(

ρr + ρr′ + ρ̆r − ρ̆r′
)

+ (1 + ξ) 2λ
N (ρ⊗ ρ̆) ¯̄P·,·

+K(ρ,π)+log π exp(−2ξλr)+(1+ξ)log(ǫ−1)
λ ,

(1 + ξ)(ρ̆r′ − ρr′) ≤ (1 + ξ)(ρ̆r − ρr) + (1 + ξ) 2λ
N (ρ⊗ ρ̆) ¯̄P·,·

+
K(ρ,π−2ξλr)+(1+ξ)log(ǫ−1)

λ
.

9.8. Proof of Lemma 4.10. A numerical studies of the function b̄ shows that it
decreases on ]0; xmin] and increases on [xmin,+∞[ with 0.82N < xmin < 0.83N .
We obtain that [ 2.56

N ; +∞[⊂ b̄(]0; 0.77N ]). Hence for any λ ∈]0; 0.39 ξN ], there

exists 0 < λ′ ≤ 0.77N such that λ ,
ξ

b̄(λ′)
. Introduce ρ̃ , π−λR. We have

K(ρ, ρ̃) = K(ρ, π)−K(ρ̃, π) + λ[ρR− ρ̃R]. Now, with
(

P⊗N
)

∗-probability at least

1− 2ǫ, we have ρR− ρ̃R ≤ ρr− ρ̃r+ ā(λ′)(ρ⊗ ρ̃)P̄·,·+ b̄(λ′)K(ρ, ρ̃) + b̄(λ′)log(ǫ−1).
We get that

(1− ξ)K(ρ, ρ̃) ≤ K(ρ, π) + λρr + ξlog(ǫ−1)− λρ̃r + λā(λ′)(ρ⊗ ρ̃)P̄·,· −K(ρ̃, π)
≤ K(ρ, π) + λρr + ξlog(ǫ−1)

+ sup
ρ′∈M1

+(F)

{

− λρ′r + λā(λ′)(ρ′ ⊗ ρ)P̄·,· −K(ρ′, π)
}

= K(ρ, π) + λρr + ξlog(ǫ−1) + log π exp
{

− λ
[

r − ā(λ′)ρP̄·,·
]}

= K(ρ, π−λr) + log π−λr exp
{

λā(λ′)ρP̄·,·
}

+ ξlog(ǫ−1).

[This upper bound can also be written K(ρ, π−λ[r−ā(λ′)ρP̄·,·]) + λā(λ′)(ρ⊗ ρ)P̄·,· +
ξlog(ǫ−1).] Since 0 < λ′ ≤ 0.77N , we have ā(λ′) ≤ λ′

N ≤ 2
Nb̄(λ′) ≤

2λ
ξN .

9.9. Proof of Theorem 6.1. Let us apply Theorem 8.6 to the random variable
W = 1Y 6=f(X) − ρ̆1Y 6=·(X) and the exchangeable distribution ν = π2λ[ ¯̄PW− λ

N
¯̄PW2].

We obtain that with
(

P⊗2N
)

∗-probability at least 1− ǫ,
log πλ[(r+r′)−ρ̆(r+r′)− 2λ

N ρ̆ ¯̄P·,·]
exp

{

− 2λ[r − ρ̆r]
}

≤ − log π exp
{

λ
[

(r + r′)− ρ̆(r + r′)− 2λ
N ρ̆ ¯̄P·,·

]

}

+ log(ǫ−1),

hence

(9.8)
log π−2λ[r−ρ̆r] exp

{

λ
[

(r + r′)− ρ̆(r + r′)− 2λ
N ρ̆P·,·

]}

≤ − log π exp
{

− 2λ
[

r − ρ̆r
]}

+ log(ǫ−1).

By Markov’s inequality, with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have

π−2λr

(

(r + r′)− ρ̆(r + r′) > 2λ
N
ρ̆ ¯̄P·,· +

− log π exp {−2λ[r−ρ̆r]}+2log(ǫ−1)
λ

)

≤ π−2λr exp
{

λ
[

(r + r′)− ρ̆(r + r′)− 2λ
N ρ̆ ¯̄P·,· +

log π exp {−2λ[r−ρ̆r]}+2 log ǫ
λ

]}

= ǫ2π exp
{

− 2λ[r − ρ̆r]
}

π−2λ[r−ρ̆r] exp
{

λ
[

(r + r′)− ρ̆(r + r′)− 2λ
N ρ̆ ¯̄P·,·

]

}

≤ ǫ,

where the last step uses Inequality (9.8).
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9.10. Proof of Theorem 6.2. The proof is similar to the one of Theorem 6.1.
Let us apply Theorem 8.3 to the random variable W = 1Y 6=f(X) − ρ̃1Y 6=·(X) and

the probability distribution ν = πλ[PW− λ
N g( λ

N )PW2]. We obtain that with P⊗N -

probability at least 1− ǫ,
log πλ[R−ρ̃R− λ

N g( λ
N )ρ̃P·,·] exp

{

− λ[r − ρ̃r]
}

≤ − log π exp
{

λ
[

R− ρ̃R − λ
N
g
(

λ
N

)

ρ̃P·,·
]

}

+ log(ǫ−1),

hence

(9.9)
log π−λ[r−ρ̃r] exp

{

λ
[

R− ρ̃R − λ
N g
(

λ
N

)

ρ̃P·,·
]}

≤ − log π exp
{

− λ
[

r − ρ̃r
]}

+ log(ǫ−1).

By Markov’s inequality, with P⊗N -probability at least 1− ǫ, we have

π− r
b(λ)

(

R − ρ̃R > λ
N
g
(

λ
N

)

ρ̃P·,· +
− log π exp {−λ[r−ρ̃r]}+2log(ǫ−1)

λ

)

≤ π−λr exp
{

λ
[

R − ρ̃R− λ
N
g
(

λ
N

)

ρ̃P·,· +
log π exp {−λ[r−ρ̃r]}+2 log ǫ

λ

]}

= ǫ2π exp
{

− λ
[

r − ρ̃r
]}

π−λ[r−ρ̃r] exp
{

λ
[

R− ρ̃R − λ
N g
(

λ
N

)

ρ̃P·,·
]}

≤ ǫ,

where the last step uses Inequality (9.9).

9.11. Proof of Inequality (6.5). This is the most technical proof. The basic idea
of the proof is that to go from quantities depending on the first sample to quantities
depending on the second sample, it suffices to know how to go from first sample
quantities to exchangeable quantities. Symbolically, we have P̄W → ¯̄PW → P̄′W.

So we write the KL-divergence as

K(π−λr, π−λr′) = log π exp(−λr) + log π exp(−λr′)− 2 log π exp
(

− λ r+r′

2

)

+2K(π−λr, π−λ r+r′
2

).

Then we use the following lemma.

Lemma 9.3. Let ǫ > 0, 0 < γ ≤ 1 and λ > 0. Introducing π̃ , π−λ r+r′
2

, we have

• with
(

P⊗2N
)

∗-probability at least 1− 2ǫ,

(9.10)
log π exp(−λr) + log π exp(−λr′)− 2 logπ exp

(

− λ r+r′

2

)

≤ 2 log π̃ exp
(

λ2

2γN
π̃ ¯̄P·,·

)

+ 2γlog(ǫ−1),

• with
(

P⊗2N
)

∗-probability at least 1− 2ǫ,

(9.11) K(π−λr, π̃) ≤ 2
1−γ log π̃ exp

(

λ2

γN π̃
¯̄P·,·
)

+ 9 γ
1−γ log(ǫ−1)

Proof. • From Theorem 8.6 applied to W(f, Z) = 1Y 6=f(X) − π̃1Y 6=·(X), for any

λ′ ≥ λ, with
(

P⊗2N
)

∗-probability at least 1− 2ǫ, we have






















log π exp
{

− λ(r − π̃r)
}

≤ log π exp
{

− λ
(

r+r′

2 − π̃ r+r′

2 − λ′

2N π̃
¯̄P·,·
)}

+ λ
λ′ log(ǫ−1)

log π exp
{

− λ(r′ − π̃r′)
}

≤ log π exp
{

− λ
(

r+r′

2 − π̃ r+r′

2 − λ′

2N π̃
¯̄P·,·
)}

+ λ
λ′ log(ǫ−1)

,
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The first assertion then follows by taking λ′ = λ
γ .

• To prove (9.11), we start with the empirical bound of the KL-divergence
K
(

π−λr, π−λ
2 [r+r′]

)

given by Lemma 4.4:

K
(

π−λr, π−λ
2 [r+r′]

)

≤ 1

1− ξ log π−λr exp

{

λ2

2ξN
π−λr

¯̄P·,·

}

+
ξ

1− ξ log(ǫ−1).

Let us introduce ρ̄ , π−λr and ρ̃ , π−λ r+r′
2

. For any f1, f2, f3 ∈ F , we have

¯̄Pf1,f2
≤ ¯̄Pf1,f3

+ ¯̄Pf3,f2
, hence ¯̄Pf1,f2

≤ ρ̃ ¯̄Pf1,· + ρ̃ ¯̄Pf2,·. We get

log ρ̄ exp

{

λ2

2ξN
ρ̄ ¯̄P·,·

}

≤ log ρ̄(df1) exp

{

λ2

2ξN
ρ̄(df2)[ρ̃

¯̄Pf1,· + ρ̃ ¯̄Pf2,·]

}

.

By Jensen’s inequality, we obtain log ρ̄ exp
{

λ2

2ξN ρ̄P̄·,·
}

≤ 2 log ρ̄ exp
{

λ2

2ξN ρ̃
¯̄P·,·
}

.

Introducing
{

L′ , log π exp
{

− λ[r − ρ̃r] + λ2

2ξN ρ̃
¯̄P·,·
}

L′′ , log π exp
{

− λ[r − ρ̃r]
}

,

we have log ρ̄ exp
{

λ2

2ξN ρ̃
¯̄P·,·
}

= L′−L′′. These two quantities can be bounded using

Theorem 8.6 for

W(f, Z) = 1
2

[

1Y 6=f(X) − ρ̃(df ′)1Y 6=f ′(X)

]

.

(We use here that Theorem 8.6 still holds when the quantity W(f, Z) depends
on the data Z2N

1 in an exchangeable way). For any λ′′ ≥ λ and λ′′′ > 0, with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have

L′ ≤ log π exp
{

− λ
2

[

(r + r′)− ρ̃(r + r′)− λ′′

N ρ̃ ¯̄P·,·
]

+ λ2

2ξN ρ̃
¯̄P·,·
}

+ λ
λ′′ log(ǫ−1)

and

−L′′ ≤ − log π exp
{

− λ
2

[

(r + r′)− ρ̃(r + r′) + λ′′′

N ρ̃ ¯̄P·,·
]}

+ λ
λ′′′ log(ǫ−1).

Choosing λ′′ = λ′′′ = λ
2ξ , we obtain

log ρ̄ exp
{

λ2

2ξN ρ̃
¯̄P·,·
}

≤ log π−λ
2 [(r+r′)−ρ̃(r+r′)+ λ

2ξN ρ̃ ¯̄P·,·]
exp

{

λ2

ξN ρ̃
¯̄P·,·
}

+ 4ξlog(ǫ−1)

≤ log π−λ
2 [(r+r′)−ρ̃(r+r′)] exp

{

λ2

ξN
ρ̃ ¯̄P·,·

}

+ 4ξlog(ǫ−1)

= log ρ̃ exp
{

λ2

ξN ρ̃
¯̄P·,·
}

+ 4ξlog(ǫ−1).

Putting the previous results together, we get

K
(

π−λr, π−λ
2 [r+r′]

)

≤ 1
1−ξ log π−λr exp

{

λ2

2ξN π−λr
¯̄P·,·
}

+ ξ
1−ξ log(ǫ−1)

≤ 2
1−ξ

log π−λr exp
{

λ2

2ξN
π−λ r+r′

2

¯̄P·,·
}

+ ξ
1−ξ

log(ǫ−1)

≤ 2
1−ξ log π−λ r+r′

2

exp
{

λ2

ξN π−λ r+r′
2

¯̄P·,·
}

+ 9 ξ
1−ξ log(ǫ−1).

�
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We obtain that for any 0 < γ < 1, with
(

P⊗2N
)

∗-probability at least 1− 4ǫ,

K(π−λr, π−λr′) ≤ 2 log π̃ exp
(

λ2

2γN π̃
¯̄P·,·
)

+ 4
1−γ log π̃ exp

(

λ2

γN π̃
¯̄P·,·
)

+ 20γlog(ǫ−1)
1−γ

≤ 5−γ
1−γ

log π̃ exp
(

λ2

γN
π̃ ¯̄P·,·

)

+ 20γlog(ǫ−1)
1−γ

≤ 1
1−γ log π̃ ⊗ π̃ exp

(

5λ2

γN
¯̄P·,·
)

+ 20γlog(ǫ−1)
1−γ

From Inequality (9.2) with
(

α, λ′, λ′′, p, q
)

=
(

5λ
γN ,

λ
γ ,

λ

9γ
(

1+ 25λ2

γ2N2

) , 4
3 , 4
)

,

with
(

P⊗2N
)

∗-probability at least 1− 4ǫ, we have

log π̃ ⊗ π̃ exp
(

5λ2

γN
¯̄P·,·
)

≤ 3
2 log π−λr′ ⊗ π−λr′ exp

(

20λ2

3γN P̄′·,·
)

+15γ
(

1 + 25λ2

γ2N2

)

log(ǫ−1)

To conclude, with
(

P⊗2N
)

∗-probability at least 1− 8ǫ, we have

K(π−λr, π−λr′) ≤ 1
1−γ log π−λr′ ⊗ π−λr′ exp

(

10λ2

γN P̄′·,·
)

+
(

35 + 375λ2

γ2N2

)

γ
1−γ log(ǫ−1).

9.12. Proof of Inequality (6.8). The proof is just slightly different from the one
of Inequality (9.11). We start with the empirical bound of the KL-divergence given

by Lemma 4.10. Let ρ̄ , π−λr and ρ̃ , π−λR. For any ǫ > 0, ξ ∈]0; 1[ and
0 < λ ≤ 0.39 ξN , with

(

P⊗N
)

∗-probability at least 1− 2ǫ, we have

K
(

ρ̄, ρ̃
)

≤ 1
1−ξ

[

log ρ̄ exp
{

2λ2

ξN ρ̄P̄·,·
}

+ ξlog(ǫ−1)
]

.

Inequality (6.8) is then a consequence of the following lemma.

Lemma 9.4. For any ǫ > 0, ξ ∈]0; 1[ and 0 < λ ≤ 0.39 ξN , with P⊗N -probability
at least 1− 2ǫ, we have

log π−λr exp

(

2λ2

ξN
π−λrP̄·,·

)

≤ 4 log π−λR exp

(

4.1λ2

ξN
π−λRP·,·

)

+ 4ξlog(ǫ−1).

Proof. Let r̃, R̃, P̄·,∼ and P·,∼ respectively denote ρ̃r, ρ̃R, ρ̃(df ′)P̄f ′,· and ρ̃(df ′)Pf ′,·.

Let α , 2λ
ξN ∈]0; 0.78]. For any f1, f2 ∈ F , we have P̄f1,f2

≤ P̄f1,∼+ P̄f2,∼. We get

log ρ̄ exp
{

αλρ̄P̄·,·
}

≤ log ρ̄(df1) exp
{

αλρ̄(df2)

[

P̄f1,∼ + P̄f2,∼
]}

.

By Jensen’s inequality, we obtain log ρ̄ exp
(

αλρ̄P̄·,·
)

≤ 2 log ρ̄ exp
(

αλP̄·,∼
)

. Now,

we have log ρ̄ exp
(

αλP̄·,∼
)

= L′ − L′′, where
{

L′ , log π exp
(

− λ
[

r − r̃ − αP̄·,∼
])

L′′ , log π exp
{

− λ(r − r̃)
} .

These two quantities can be bounded using Theorem 8.3 for
{

W ′(f, Z) , 1Y 6=f(X) − ρ̃(df ′)1Y 6=f ′(X) − ρ̃(df ′)α1f(X)6=f ′(X) ∈ [−(1 + α); 1]

W ′′(f, Z) , 1Y 6=f(X) − ρ̃(df ′)1Y 6=f ′(X) ∈ [−1; 1]
.

Since P[(W ′)2] ≤ (1 + α)2P·,∼ and P[(W ′′)2] ≤ P·,∼, for any λ′′ ≥ λ and λ′′′ > 0,
with P⊗N -probability at least 1− 2ǫ, we have

L′ ≤ log π exp
{

− λ
[

R − R̃
]

+ λ
[

α+ (1 + α)2a1+α(λ′′)
]

P·,∼
}

+ λ
λ′′ log(ǫ−1)
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and

−L′′ ≤ − log π exp
{

− λ
[

R− R̃
]

− λa1(λ
′′′)P·,∼

}

+ λ
λ′′′ log(ǫ−1).

Choosing λ′′ = λ′′′ = λ
ξ
, we obtain

log ρ̄ exp
(

αλP̄·,∼
)

≤ log ρ̃ exp
{

λ
[

α+ (1 + α)2a1+α(λ/ξ)
]

P·,∼
}

− log ρ̃ exp
{

− λa1(λ/ξ)P·,∼
}

+ 2ξlog(ǫ−1)
≤ log ρ̃ exp

{

λ
[

α+ (1 + α)2a1+α(λ/ξ)
]

P·,∼
}

+ log ρ̃ exp
{

λa1(λ/ξ)P·,∼
}

+ 2ξlog(ǫ−1)
≤ 2 log ρ̃ exp

{

λ
[

α+ (1 + α)2a1+α(λ/ξ)
]

P·,∼
}

+ 2ξlog(ǫ−1),

which leads to the desired inequality. �

Appendix A. Optimal coupling

One drawback of the variance term 2λ
N (ρ1⊗ ρ2)

¯̄P·,· in Theorem 4.1 is to be large
when ρ1 and ρ2 are close and not concentrated around a particular function. This
problem can be solved by coupling.

Let us start with some new notations. For any p1, p2 in [0; 1], define

K(p1, p2) , p1 log
(

p1

p2

)

+ (1− p1) log
(

1−p1

1−p2

)

the Kullback-Leibler divergence between two Bernouilli distributions of respective
parameters p1 and p2.

Let π ∈ M1
+(F). Introduce π∆ the associated distribution on the diagonal of

F × F : π∆(df1, df2) , π(df1)δf1
(df2), where δf denote the Dirac distribution on

the function f . In other words, π∆ is the distribution in M1
+(F × F) such that

π∆(f1 = f2) = 1 and π∆(df1) = π(df1).
Let ρ1 and ρ2 be absolutely continuous distributions wrt π. Define the positive

measures ρ1∧ρ2 ,
(

ρ1

π ∧
ρ2

π

)

·π, |ρ1−ρ2| ,
∣

∣

ρ1

π −
ρ2

π

∣

∣·π and (ρ1−ρ2)+ ,
(

ρ1

π −
ρ2

π

)

+
·π.

Let m1,2 , (ρ2 − ρ1)+(F). Then the positive measures (ρ2−ρ1)+
m1,2

, (ρ1−ρ2)+
m1,2

and
ρ1∧ρ2

1−m1,2
are probability distributions. An optimal coupling of ρ1 and ρ2 is defined

as

ρ1 ⊙ ρ2 , (1−m1,2)

(

ρ1 ∧ ρ2

1−m1,2

)

∆

+m1,2

(

(ρ1 − ρ2)+
m1,2

)

⊗
(

(ρ2 − ρ1)+
m1,2

)

.

We obtain

Theorem A.1. For any ǫ > 0, λ > 0 and π1,2 ∈ M1
+(F × F), with

(

P⊗2N
)

∗-
probability at least 1− ǫ, we have for any ρ1, ρ2 ∈M1

+(F)

ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤
2λ

N
(ρ1 ⊙ ρ2)

¯̄P·,· +
K̇1,2

λ

where K̇1,2 , K(ρ1 ⊙ ρ2, π1,2) + log(ǫ−1).

Proof. It suffices to modify the proof of Theorem 4.1 by taking (µ, ν) = (ρ1 ⊙
ρ2, π1,2) instead of (µ, ν) = (ρ1 ⊗ ρ2, π1 ⊗ π2). Then it remains to notice that the
marginals of ρ1 ⊙ ρ2 are respectively ρ1 and ρ2. �

Corollary A.2. For any λ > 0, π ∈ M1
+(F), ǫ > 0, with

(

P⊗2N
)

∗-probability at

least 1− ǫ, we have for any ρ1, ρ2 ∈M1
+(F)

ρ2r
′ − ρ1r

′ + ρ1r − ρ2r ≤
2λ

N
(ρ1 ⊙ ρ2)

¯̄P·,· +
K̇
λ
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where

K̇ , m1,2K
( (ρ1−ρ2)+

m1,2
, π
)

+m1,2K
( (ρ2−ρ1)+

m1,2
, π
)

+(1−m1,2)K
(

ρ1∧ρ2

1−m1,2
, π
)

+K(m1,2,
1
2
) + log(ǫ−1).

Proof. Take π1,2 , 1
2
π⊗ π+ 1

2
π∆ in the previous theorem. The result follows from

(A.1)
K(ρ1 ⊙ ρ2, π1,2) = ρ1 ⊙ ρ2 log ρ1⊙ρ2

π1,2

≤
(

ρ1

π ∧
ρ2

π

)

· π log
(

2ρ1

π ∧
ρ2

π

)

+m1,2

( (ρ1−ρ2)+
m1,2

)

⊗
( (ρ2−ρ1)+

m1,2

)

log

(

2

(

ρ1
π (f1)− ρ2

π (f1)
)

+

m1,2

(

ρ2
π (f2)− ρ1

π (f2)
)

+

m1,2

)

= K(m1,2,
1
2) + (1−m1,2)K

(

ρ1∧ρ2

1−m1,2
, π
)

+m1,2K
( (ρ1−ρ2)+

m1,2
, π
)

+m1,2K
( (ρ2−ρ1)+

m1,2
, π
)

.

Inequality (A.1) is an equality when π∆ and π ⊗ π are mutually singular (i.e. π
diffuse). �

The interest of coupling is to reduce significantly the variance term involving ¯̄P·,·
at least when ρ1 and ρ2 are close to each other. From the last corollary, we see the
impact in the Kullback-Leibler term.

In the worst case (i.e. when ρ1 and ρ2 are mutually singular, equivalently when
ρ1⊙ ρ2 = ρ1⊗ ρ2), we just lose an additive term log 2 in the Kullback-Leibler term

since we get K̇ = K(ρ1 ⊗ ρ2, π ⊗ π) + log 2 in this case. On the contrary, when

ρ1 = ρ2 = ρ, we have K̇ = K(ρ, π) + log 2 = 1
2
K(ρ1 ⊗ ρ2, π ⊗ π) + log 2. Naturally,

ρ1 = ρ2 is not an interesting case since Inequality (4.1) is useless in this situation.
But to look at the Kullback-Leibler term when ρ1 = ρ2 gives an idea of how it
behaves when ρ2 is close to ρ1.

To conclude this section, we see that the basic Inequality (4.1) can be improved
to deal with close posterior distributions which are not concentrated19. However,
the inequalities become less readable and less tractable both for theory and practice.

Appendix B. Optimality of Algorithm 3.2 under (CM) assumptions

We recall that C denotes a positive constant which value may differ from line to
line. By using the same ideas as in the proofs of Lemmas 9.1 and 9.2, we can upper

bound − log π exp
{

− λ[r′ − r′(f̃)]
}

and log π−λr′ exp
(

C λ2

N
π−λr′ ¯̄P·,·

)

by similar
theoretical quantities. Indeed, schematically, by intensively using Theorems 8.6
and 8.3 and Jensen’s inequality, with P⊗2N -high probability, for any λ ≤ cN for
a small enough universal constant c > 0 and any prior distribution π independent
from the data, we have

− log π exp
{

− λ[r′ − r′(f̃)]
}

≤ − log π exp
(

− λ[R−R(f̃)]− C λ2

N P·,f̃
)

+ . . .

≤ − log π exp
{

− λ[R −R(f̃)]
}

+ log π−λR exp
(

C λ2

N
P·,f̃

)

+ . . .

19When they are concentrated and close, the variance term is already small.
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and

log π−λr′ exp
(

C λ2

N π−λr′ ¯̄P·,·
)

≤ log π−λr′ exp
(

C λ2

N π−λ r+r′
2

¯̄P·,·
)

+ . . .

≤ log π−λ r+r′
2

exp
(

C λ2

N π−λ r+r′
2

¯̄P·,·
)

+ . . .

≤ log π−λr exp
(

C λ2

N
π−λrP̄·,·

)

+ . . .

≤ log π−λR exp
(

C λ2

N π−λRP·,·
)

+ . . .

≤ log π−λR exp
(

C λ2

N P·,f̃
)

+ . . .

Let

Gth
C (λ) , − 1

λ log π exp
{

− λ[R−R(f̃)]
}

+ 1
λ log π−λR exp

(

C λ2

N P·,f̃

)

+C log[log(eN)ǫ−1]
λ

and Λ ,
{√

Ne
j
2 ; 0 ≤ j ≤ logN

}

. The precise result is that for any ǫ > 0 and

λ ≤ cN , with
(

P⊗2N
)

∗-probability at least 1− ǫ, we have G(λ)− r′(f̃) ≤ Gth
C (λ),

hence with
(

P⊗2N
)

∗-probability at least 1− ǫ, for any λ ∈ Λ, we have

G(λ)− r′(f̃) ≤ Gth
C (λ).

Then it remains to check that for a parameter λ ∈ Λ close to N
κ

2κ−1+q and a prior
distribution satisfying20

π
(

P·,f̃ ≤ Č1N
− 1

2κ−1+q

)

≥ exp
(

− Č2N
− q

2κ−1+q

)

,

we have Gth
C (λ) ≤ C log(eǫ−1)N−

κ
2κ−1+q .
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CLASSIFICATION UNDER POLYNOMIAL ENTROPY AND

MARGIN ASSUMPTIONS AND RANDOMIZED ESTIMATORS

J.-Y. AUDIBERT

Université Paris VI and CREST

Abstract. The aim of this paper is two-fold. First we want to develop the

PAC-Bayesian point of view [13, 3, 4, 1] and show how the efficiency of a Gibbs
estimator relies on the weights given by the prior distribution to the balls

centered at the best function in the model and associated with the pseudo-

distance (f1, f2) 7→ P[f1(X) 6= f2(X)].
Secondly, we show how to recover and improve results under empirical

and non empirical polynomial entropy assumptions and Tsybakov’s margin

assumption. We also study the links between empirical and non empirical nets
and give an observable version of the integral entropy [6, 9, 14].
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1. Setup and notations

We assume that we observe an i.i.d. sample ZN
1 , (Xi, Yi)

N
i=1 of random vari-

ables distributed according to a product probability measure P⊗N , where P is a
probability distribution on (Z,BZ) , (X ⊗ Y ,BX ⊗ BY), (X ,BX ) is a measurable
space called the pattern space, Y = {1, . . . , |Y|} is the (finite) label space and BY
is the sigma algebra of all subsets of Y . Let P(dY |X) denote a regular version
of the conditional probabilities (which we will use in the following without further
mention).

Let F(X ,Y) denote the set of all measurable functions mapping X into Y . The
aim of a classification procedure is to build a function f ∈ F(X ,Y) from the learning
sample such that f(X) predicts the label Y associated with X . The quality of the
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prediction is measured by the expected risk

R(f) , P[Y 6= f(X)].

A function f∗P such that for any x ∈ X ,

f∗P(x) ∈ argmax
y∈Y

P(Y = y|X = x)

minimizes the expected risk. This function is not necessarily unique. We assume
that there exists a measurable one. We will once for all fix it, refer to it as the
Bayes classifier and often denote it f∗ to shorten. Since we have no prior information
about the distribution P of (X, Y ), this classifier is unknown.

Since there is generally no measurable estimator f̂ : ZN → F(X ,Y) such that

lim
N→+∞

sup
P∈M1

+(Z)

{

P⊗(N+1)
[

YN+1 6= f̂(ZN
1 )(XN+1)

]

− inf
f∈F(X ,Y)

P[Y 6= f(X)]
}

= 0,

we have to work with a prescribed set of classification functions F , called the model.
This set is just some subset of the set of all measurable functions F(X ,Y). Let us

denote f̃ the best function in the model, i.e. a function minimizing the expected
risk:

f̃ ∈ argmin
F

R.

For sake of simplicity, we assume that it exists1. Let

P̄ ,
1

N

N
∑

i=1

δ(Xi,Yi)

be the empirical distribution. The empirical risk

r(f) , P̄[Y 6= f(X)]

gives an estimate of the expected risk : from the law of large numbers, for any
measurable function, it tends to the expected risk almost surely. An estimator
which minimizes the empirical risk

f̂ERM ∈ argmin
F

r

is called an ERM2-classifier. The regression function will be denoted

η∗(x) , P(Y |X = x).

In the binary classification setting (Y = {0; 1}), we have η∗(x) = P(Y = 1|X = x).
Since we will study randomized estimators, we assume that we have a σ−algebra

T such that (F , T ) is a measurable space containing the sets {f} for any f ∈ F
and such that the function

F × X → Y
(f, x) 7→ f(x)

is measurable. A randomized estimator consists in drawing a function in F accord-
ing to some random distribution ρ̂ : ZN → M1

+(F), where M1
+(F) is the set of

probability distributions on the measurable space (F , T ).

1Otherwise we would have to introduce some small positive real β and consider f̃ as an esti-

mator minimizing the expected risk up to β. This real β would then appear in all the equations

related to this function and make things needlessly messy.
2ERM = Empirical Risk Minimization
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To shorten, we will use µh to denote the expectation of the random variable
h under the probability distribution µ: µh ,

∫

h(x)dµ(x). The Kullback-Leibler

divergence between two probability distributions is defined as K(µ, ν) = µ log dµ
dν

when µ is absolutely continuous with respect to ν and K(µ, ν) = +∞ otherwise.
The symbol C will denote a positive universal constant whose value may differ

from line to line whereas the symbol C̆ will denote a positive constant whose value
depends on other constants and may also differ from line to line.

We define

πh ,
exp(h)

π exp(h)
· π

for any measurable real function h such that exp(h) is π-integrable. The random-
ized estimators associated with the posterior distributions π−Cr will be called the
standard Gibbs estimators with temperature 1

C
.

1.1. Measurability. Finally, to circumvent some measurability problems, we will
consider inner and outer expectations. Let (A,A, µ) be a measure space and C(A;R)
be the class of real measurable functions. For any (measurable or not) function f ,

its inner and outer expectation wrt µ are respectively µ∗(h) , sup
{

µ(g) : g ∈
C(A;R), g ≤ h

}

and µ∗(h) , inf
{

µ(g) : g ∈ C(A;R), g ≥ h
}

. Naturally, for
any set B ⊂ A, µ∗(B) and µ∗(B) are defined by µ∗(B) = µ∗(1B) and µ∗(B) =
µ∗(1B). Note that µ∗ and µ∗ are not measures but satisfy µ∗(B) + µ∗(Bc) = 1
and µ∗(B1 ∪ B2) ≤ µ∗(B1) + µ∗(B2). Besides, if µ∗(h) < +∞, then there exists
a random variable h∗ such that µ∗(h) = µ(h∗). For more details on properties of
inner and outer expectations, see [17].

1.2. Covering, packing and bracketing nets and entropies. Let Q denote a
probability distribution on the measurable space (X ,BX ). The mapping Q·,· from
F × F into R+ defined as

Qf1,f2
, Q[f1(X) 6= f2(X)] for any f1, f2 ∈ F

is a pseudo-distance. For any u ≥ 0, a set of measurable functions G ⊂ F(X ,Y)
such that

sup
f∈F

inf
g∈G

Qf,g ≤ u

is called a u−covering net of the set F wrt the pseudo-distance Q.
The log-cardinal H(u,F ,Q·,·) of the smallest u−covering net (possibly infinite)

is called the u−covering entropy. A u−covering net with log-cardinal equal to
H(u,F ,Q·,·) is called a minimal u−covering net3.

In bracketing nets, we require in addition that any function in F can be en-
capsulated by two functions of the net. Specifically, for any u ≥ 0, a set of mea-
surable functions G ⊂ F(X ,Y) such that for any function f ∈ F , there exist
fL, fU ∈ G satisfying fL ≤ f ≤ fU and QfL,fU

≤ u, is called a u−bracketing net

of the set F wrt the pseudo-distance Q. The log-cardinal H [ ](u,F ,Q·,·) of the
smallest u−bracketing net (possibly infinite) is called the u−bracketing entropy.
A u−bracketing net with log-cardinal equal to H [ ](u,F ,Q·,·) is called a minimal
u−bracketing net.

3Here the functions in the net can be taken outside F . This is not so important since it is

well-known that a 2u−covering net with functions in F can be constructed from any u−covering
net.
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Packing nets are covering nets such that for any functions f1, f2 in the net, we
have Qf1,f2

> u. The packing entropy Hp(u,F ,Q·,·) is the log-cardinal of a minimal
packing net.

We have H(u,F ,Q·,·) ≤ Hp(u,F ,Q·,·) ≤ H(u
2
,F ,Q·,·). Any u−bracketing net

is a u−covering net. The converse is false since it is easy to find a set F with finite
u−covering entropy and infinite u−bracketing entropy.

Finally, we will say that a family of uN -nets, N ∈ N, is almost minimal when the
log-cardinal of the size of the uN -net has the same order as the (uN ,F ,P·,·)-entropy.

The paper is organized as follows. Section 2 recalls some PAC-Bayesian con-
centration inequalities which are extracted from [1]. In Section 3, we assume that
we have Tsybakov’s margin assumption and that the P·,·-entropies are polynomial.
In this setting, we study the convergence rate of standard Gibbs estimators and
classifiers minimizing the empirical risk on P·,·-covering nets. In particular, we
stresses on the influence of the chaining trick and the differences between brack-
eting and covering entropy assumptions. Section 4 tries to answer the questions:
what happens when we relieve the polynomial P·,·-entropy assumption? Can we
give an empirical equivalent (i.e. with P̄·,·-entropies) of the previous results? Sec-
tion 5 gives a version of Assouad’s lemma dedicated to classification. The proofs
are gathered in Section 6.

2. Known PAC-Bayesian bounds

In this section, we recall some results of [1] which will be useful in this paper.

Theorem 2.1. Let g(u) ,
exp(u)−1−u

u2 for any u > 0. For any λ > 0, ǫ > 0 and

π1, π2 ∈ M1
+(F), with

(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈ M1
+(F),

we have
(2.1)

ρ2R− ρ1R + ρ1r − ρ2r ≤ λ
N g
(

λ
N

)

(ρ1 ⊗ ρ2)P·,· +
K(ρ1,π1)+K(ρ2,π2)+log(ǫ−1)

λ

As a consequence, with
(

P⊗N
)

∗-probability at least 1− ǫ, for any ρ1, ρ2 ∈ M1
+(F),

(2.2)

ρ2R − ρ1R+ ρ1r − ρ2r ≤ min
λ∈[
√

N ;N ]

{

0.8 λ
N (ρ1 ⊗ ρ2)P·,·

+1.7K(ρ1,π1)+K(ρ2,π2)+log[log(eN)ǫ−1]
λ

}

.

Besides, let S1 and S2 be finite subsets of F , with
(

P⊗N
)

∗-probability at least 1− ǫ,
for any (f1, f2) ∈ S1 × S2, we have

(2.3) R(f2)−R(f1) + r(f1)− r(f2) ≤
√

2 log(|S1||S2|ǫ−1)Pf1,f2

N + log(|S1||S2|ǫ−1)
3N .

Proof. The first part comes from Theorem 4.8 in [1]. Then the second part is

obtained by a union bound on the set of parameters Λ ,
{√

Nek/2; 0 ≤ k ≤
logN

}

(see Section 4.2 in [1] for details). The third part comes from Theorem 8.1

in [1] applied to W
[

(f1, f2), Z
]

= 1Y 6=f2(X) − 1Y 6=f1(X) and ν equal to the uniform
measure on S1 × S2. �

The following theorem ([1, Theorem 6.4]) brackets the efficiency of a standard
Gibbs classifier
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Theorem 2.2. For any λ > 0 and 0 < χ ≤ 1, we have

π−(1+χ)λRR− K(π−λr,π−λR)
χλ

≤ π−λrR ≤ π−(1−χ)λRR + K(π−λr,π−λR)
χλ

,

and for any ǫ > 0, 0 < γ < 1
2

and 0 < λ ≤ 0.39 γN , with P⊗N -probability at least
1− ǫ, we have

(2.4)
K(π−λr, π−λR) ≤ 4

1−γ log π−λR exp
(

4.1 λ2

γN π−λRP·,·
)

+ 5γ
1−γ log(4ǫ−1)

≤ 16 log π−λR exp
(

4.1 λ2

γN
P·,f̃

)

+ 10γ log(4ǫ−1).

3. Convergence rate of classifiers under complexity and margin
assumptions

3.1. Complexity and margin assumptions. The following assumptions have
the same form as the one used in the pioneering work of Mammen and Tsybakov
([11]). The margin assumption appears to be the key assumption to obtain fast
rates of convergence (i.e. N−β with β > 1

2 ).

3.1.1. Complexity assumptions. Let q ≥ 0. Define

hq(u) ,

{

log(eu−1) when q = 0
u−q when q > 0

.

We will alternatively use the following complexity assumptions.
(CA1) : there exists C′ > 0 such that the covering entropy of the model F for the
distance P·,· satisfies for any u > 0, H(u,F ,P·,·) ≤ C′hq(u).
(CA2) : there exists C′ > 0 such that the bracketing entropy of the model F for
the distance P·,· satisfies for any u > 0, H [ ](u,F ,P·,·) ≤ C′hq(u).
(CA3) : there exist C′ > 0 and π ∈M1

+(F) such that for any t > 0, for any f ′ ∈ F ,

we have π
(

P·,f ′ ≤ t
)

≥ exp [−C′hq(t)].

We have4: (CA2) ⇒ (CA1) ⇔ (CA3). Let t and C′ be positive reals. We will
say that a probability distribution π satisfies (t, C′)-(CA3) when we have

π
(

P·,f̃ ≤ t
)

≥ exp [−C′hq(t)].

Note that this last assumption is, unlike the others, a local complexity assumption.

3.1.2. Margin assumptions. We will consider variants of Tsybakov’s margin as-
sumption ([11, 15]). Let α ∈ R+ ∪ {+∞} and κ ∈ [1; +∞]. We define

∆R(f) , R(f)−R(f̃).

(MA1) : Y = {0; 1} and there exists C′′ > 0 such that for any t > 0,

P
(

0 < |η∗(X)− 1/2| ≤ t
)

≤ C′′tα.
(MA2) : there exists C′′ > 0 such that for any function f ∈ F ,

Pf,f̃ ≤ C′′
[

∆R(f)
]

1
κ .

(MA3) : there exist c′′, C′′ > 0 such that for any function f ∈ F ,

(3.1) c′′
[

∆R(f)
]

1
κ ≤ Pf,f̃ ≤ C′′

[

∆R(f)
]

1
κ .

4To prove (CA1) ⇒ (CA3): for any k ∈ N∗, introduce πk the uniform distribution on a

(2−k,F ,P·,·)−minimal covering net. The prior distribution π ,
∑

k≥1
πk

k(k+1)
satisfies the claim.
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(MA4) : there exist c′′, C′′ > 0 such that P·,f̃ ≤ C′′[∆R]
1
κ , and for any t > 0,

π(∆R ≤ t) ≥ c′′π
(

P·,f̃ ≤ C′′t
1
κ

)

5.
This last assumption makes sense only in the bayesian context where a prior

distribution π is put on the model. It is easy to check the following implications:
(MA3) ⇒ (MA4) ⇒ (MA2). Besides when f∗ ∈ F (= no bias assumption), we
have: (MA1) ⇒ (MA2) for κ = 1+α

α . When κ = +∞, Assumption (MA2) is empty6

and Assumptions (MA3) and (MA4) are not satisfied by non-trivial models. The
margin Assumptions (MA1) and (MA2) are all the stronger as κ is small. When
κ = 1, the lower bound in inequality (3.1) holds trivially for c′′ = 1 and we have:
(MA3) ⇔ (MA4) ⇔ (MA2).

Remark 3.1. For sake of simplicity, we have assumed that there exists a function
f̃ ∈ F such that R(f̃) = infF R. Then, under Assumption (MA2), this function
needs to be unique. In fact this is not more necessary than the existence of the
minimum. To be more specific, the results in this paper under Assumption (MA2)
will still hold when this assumption is replaced with: there exists k ∈ N∗ such that
for any β > 0, there exists f1, . . . , fk ∈ F

∀f ∈ F , ∃i ∈ {1, . . . , k}, Pf,fi
≤ C′′

[

R(f)− infF R
]

1
κ + β.

Note that this implies that for any i ∈ {1, . . . , k}, R(fi)− infF R ≤ β. Similarly, we
can give weakened versions of Assumptions (MA3) and (MA4). Naturally, the value
of k will influence the value of the constants in the results under Assumption (MA2).

3.2. Gibbs classifier.

3.2.1. Under Assumptions (MA4) and (CA3) for q > 0. In this paper, we will
often consider prior distributions π(N) which may depend on N . To shorten, we
will simply write it π. The following lemma guarantees the efficiency of the standard
Gibbs estimator for a temperature appropriately chosen.

Lemma 3.1. Let π be a probability distribution such that

(3.2) π
[

∆R ≤ Č1N
− κ

2κ−1+q
]

≥ e−Č2N
q

2κ−1+q

and λN have the same order as N
κ+q

2κ−1+q , i.e. such that

(3.3) Č3N
κ+q

2κ−1+q ≤ λN ≤ Č4N
κ+q

2κ−1+q

for some positive constants Či, i = 1, . . . , 4. Then, under Assumption (MA2), the
standard Gibbs classifier in which the prediction function is drawn according to the
posterior distribution π−λN r has the convergence rate N−

κ
2κ−1+q to the extent that

P⊗Nπ−λN rR−R(f̃) ≤ C̆N− κ
2κ−1+q

for some constant C̆ > 0 (depending only on c′′, C′′, κ and Či, i = 1, . . . , 4).
More precisely, with P⊗N -probability at least 1 − ǫ, with π−λN r-probability at

least 1− ǫ, we have

(3.4) R−R(f̃) ≤ C̆log(eǫ−1)N−
κ

2κ−1+q ,

for some constant C̆ > 0 (depending on C′′, κ and Či, i = 1, . . . , 4).

5As a consequence, π(∆R ≤ t) has the same order as π(P·,f̃ ≤ C′′t
1
κ ).

6since the inequality trivially holds for C′′ = 1
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Proof. See Section 6.1. �

Theorem 3.2. Let π be a distribution satisfying Assumptions (MA4) and
(

Č1N
− 1

2κ−1+q , Č2

)

-(CA3) for q > 0 and λN be a real satisfying inequality (3.3)

for given positive constants Či, i = 1, . . . , 4. Then we have

P⊗Nπ−λN rR−R(f̃) ≤ C̆N− κ
2κ−1+q

for some constant C̆ > 0 (depending only on c′′, C′′, κ and Či, i = 1, . . . , 4).

Proof. It suffices to check that, under these assumptions, we can apply Lemma 3.1.
�

Remark 3.2. To make the link with previous works about non randomized sieve
estimators, one can choose π as the uniform distribution on an almost minimal
(

Č1N
− 1

2κ−1+q ,F ,P·,·
)

-covering net. Then Assumption (CA1) implies that the

distribution π satisfies Assumption
(

Č1N
− 1

2κ−1+q , Č2

)

-(CA3) for some constant

Č2 > 0
(

depending on Č1, on the almost minimality constant and on the constant

C′ involved in (CA1)
)

. Note that, as in Mammen and Tsybakov’s work ([11, 15]),
the computation of the estimator requires that, without knowing P(dX) exactly,
one can construct a (t,F ,P·,·)-net with log-cardinality of order H(t,F ,P·,·).

The convergence rate of the standard Gibbs estimator in Theorem 3.2 is optimal
since the following lower bound holds.

Theorem 3.3. Let q ≥ 0 and κ ∈ [1; +∞]. There exist an input space (X ,BX ), a
model F and a set P be the set of probability distributions satisfying

• for any P ∈ P, f∗P ∈ F
• Assumptions (CA2), (MA3) and (MA1) with α = 1

κ−1 ∈ [0; +∞]

such that for any measurable estimator f̂ : ZN → F(X ,Y),

sup
P∈P

{

P⊗NR(f̂)−R(f̃)
}

≥ CN− κ
2κ−1+q .

Proof. See Section 6.2. �

Remark 3.3. In [15], the same result is proved (using the classes of boundary frag-
ments) for the set of probability distributions such that the Bayes classifier is in
the model and Assumptions (CA2) and (MA1) with α = 1

κ−1 hold.

Remark 3.4. The previous theorem is stronger than what is required to prove that
the convergence rate obtained in Theorem 3.2 is optimal since the set P in Theo-
rem 3.3 is smaller than the set of probability distributions P such that there exists

a distribution π satisfying Assumptions (MA4) and
(

Č1N
− 1

2κ−1+q , Č2

)

-(CA3).

3.2.2. Under Assumptions (MA2) and (CA3) for q = 0. Using the same tools as
in the previous section, we can prove

Theorem 3.4. Let π be a distribution satisfying Assumption
(

Č1N
− κ

2κ−1 , Č2

)

-
(CA3) for q = 0 and λN be a real satisfying

(3.5) Č3N
κ

2κ−1 ≤ λN ≤ Č4N
κ

2κ−1

for given positive constants Či, i = 1, . . . , 4. Under Assumption (MA2), we have

P⊗Nπ−λN rR−R(f̃) ≤ C̆(logN)N−
κ

2κ−1

for some constant C̆ > 0 (depending only on C′′, κ and Či, i = 1, . . . , 4).
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Proof. We use Lemma 6.1 and the inequalities










T2(π) ≤ C̆λ
(

λ
N

)
κ

κ−1

T1(π) ≤ − log
[

π
(

∆R ≤ Č1N
− κ

2κ−1
)]

+ λČ1N
− κ

2κ−1

≤ − log
[

π
(

P·,f̃ ≤ Č1N
− κ

2κ−1
)]

+ λČ1N
− κ

2κ−1

.

�

From Theorem 3.3, since we have (CA2) ⇒ (CA3) and (MA3) ⇒ (MA2), this
convergence rate is optimal up to the logN factor.

3.2.3. Under Assumption (MA2) and a local complexity assumption. The following
theorem considers a local complexity assumption and its first and second parts
respectively complete Theorem 3.4 and Lemma 3.1.

Theorem 3.5. Let ǫ > 0, s ≥ 0, C′ > 0, C′′′ ∈ R and 1 ≤ κ ≤ +∞. Consider λ
depending on N such that λ →

N→+∞
+∞ and that Assumption (MA2) holds.

First, assume that log π−1
{

R − R(f̃) ≤ x
}

= −C′ log x + C′′′ + o
x→0

(xs). Then

we have

• for λ = o
N→+∞

(

N
κ

2κ−1
)

, with P⊗N -probability at least 1− ǫ,

π−λrR = C′

λ + 1
λ

{

o
N→+∞

(

λ−
s
2

)

+ O
N→+∞

(

λ
(2κ−1)C′

2(2κC′+κ−1)N
− κC′

2(2κC′+κ−1)

)

log(eǫ−1)
}

• when λ = cN
κ

2κ−1 : for any β > 0, there exist c > 0 and N0 > 0 such that
for any N > N0, with P⊗N -probability at least 1− ǫ, :

C′−β
λ
≤ π−λrR ≤ C′+β

λ
.

Secondly, assume that log π−1
{

R − R(f̃) ≤ x
}

= C′x−
q
κ + C′′′ + o

x→0
(1) with

q > 0 and κ 6= +∞. Then we have

• for λ = o
N→+∞

(

N−
κ+q

2κ−1+q
)

, with P⊗N -probability at least 1− ǫ,

π−λrR =
( qC′+o(1)

κλ

)
κ

κ+q + O
N→+∞

(1) log(ǫ−1)
λ

• when λ = cN−
κ+q

2κ−1+q : for any 0 < β ≤ qC′, there exist c > 0 and N0 > 0
such that for any N > N0, with P⊗N -probability at least 1− ǫ, :

(

qC′−β
κλ

)
κ

κ+q ≤ π−λrR ≤
(

qC′+β
κλ

)
κ

κ+q .

Proof. See Section 6.3. �

It is interesting to note that this asymptotic behaviour only depends on the local
complexity given by the weight of the sets

{

f ∈ F : R(f)−R(f̃) ≤ x
}

when x→ 0.

Had we had Pf,f̃ ∼
x→0

C′′
[

R − R(f̃)
]

1
κ on these sets, the complexity assumption

would be similar to the ones introduced in Section 3.1.1 to the extent that we would
have log π−1

(

P·,f̃ ≤ x
)

∼
x→0

C̆hq(x).

In Theorems 3.2 and 3.4, we have seen how to choose the parameter λ depending
on N such that the Gibbs classifier has the optimal convergence rate. The previous
result shows that for λ smaller than these “optimal” parameters and a slightly
modified complexity assumption, we can tightly bracket the efficiency of standard
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Gibbs classifiers. For larger λ, the picture is not clear: it seems that the KL-
divergence term in Theorem 2.2 becomes the leading term. This KL-divergence
will in general explode for λ≫ N , and finally we just know that

π−λrR →
λ→+∞

π|r=minF rR ,

∫

F 1r(f)=minF rR(f)dπ(f)
∫

F 1r(f)=minF rdπ(f)
.

Remark 3.5. The confidence level ǫ does not appear in the main terms of the
expansions of π−λrR, hence the asymptotic orders of π−λrR hold with exponential
probability.

3.2.4. Adaptive choice of the temperature. Here we consider that Assumption
(MA3) holds for an unknown margin parameter κ and we prove that under assump-
tion (CA3) a standard Gibbs classifier with an appropriately chosen temperature is
adaptive wrt this parameter, i.e. without prior knowledge of κ, the generalization
error of the randomized estimator is upper bounded by C̆N

κ
2κ−1+q when q > 0 and

by C̆(logN)N
κ

2κ−1 when q = 0. The adaptation to the margin problem has also
been studied in [15, 16]. In particular, in [16], Tsybakov and van de Geer proposed
an adaptive penalized classifier using wavelets.

Theorem 3.6. Under Assumptions (MA3) and (CA3), the algorithm given in
Section 3.4.2 of [1] achieves an adaptive choice of the temperature of the standard
Gibbs classifier wrt the margin parameter κ.

Proof. See Section 6.4. �

3.3. Empirical risk minimization on nets.

3.3.1. Under Assumptions (MA3) and (CA1) for q > 0. This section shows that,
by using inequality (2.1), we can recover results on sieve estimators given in [11, 15].
These results have to be compared with the ones in Section 3.2.1

(

recall that (MA3)

⇒ (MA4) and (CA1) ⇔ (CA3)
)

.

Theorem 3.7. Under Assumptions (MA3) and (CA1) for q > 0, for any classifier

f̂ minimizing the empirical risk among a uN -covering net NuN
such that

(3.6) Č1N
− 1

2κ−1+q ≤ uN ≤ Č2N
− 1

2κ−1+q

and

(3.7) log
∣

∣NuN

∣

∣ ≤ Č3hq(uN )

for some positive constants Či, i = 1, . . . , 3, we have

P⊗N
[

R(f̂)−R(f̃)
]

≤ C̆N− κ
2κ−1+q

for some constant C̆ > 0 (depending only on C′, c′′, C′′ and Či, i = 1, . . . , 3).

Proof. See Section 6.5. �

Remark 3.6. Inequality (3.7) just says that the net NuN
is almost minimal.
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3.3.2. Under Assumptions (MA2) and (CA1) for q = 0. Since (CA1) ⇔ (CA3),
this section gives results to be compared with the ones in Section 3.2.2.

Theorem 3.8. Under Assumptions (MA2) and (CA1) for q = 0, for any classifier

f̂ minimizing the empirical risk among a uN -covering net NuN
such that

(3.8) N−Č1 ≤ uN ≤ Č2(logN)N−
κ

2κ−1

and

(3.9) log
∣

∣NuN

∣

∣ ≤ Č3h0(uN )

for some positive constants Či, i = 1, . . . , 3, we have

P⊗N
[

R(f̂)−R(f̃)
]

≤ C̆(logN)N−
κ

2κ−1

for some constant C̆ > 0 (depending only on c′′, C′′ and Či, i = 1, . . . , 3).

Proof. It follows the lines of Section 6.5. This time, we take
(

λ
N

)
κ

κ−1 and log(eu−1)
λ

of the same order and greater than u. This is realized when inequality (3.8) is

satisfied and λ = N
κ

2κ−1 . �

3.4. Chaining. When a class of functions has a polynomial entropy, there is a
trick called the chaining ([6]) which allows us to improve the previous results.
This technique is used to get tighter upper bounds of the difference R(f1)−R(f2)
between the expected risk at two different functions f1 and f2. It is based on finer
and finer approximations of these functions. The advantage of considering rough
approximation of these functions is that the set of all possible rough approximations
is small (in other words, has a small complexity). On the contrary, the set of fine
approximations is big, but the distance between the fine approximation and the
function approximated is small. So there is a kind of bias/variance trade-off and
for polynomial entropy classes of functions, it is interesting to have this trade-off
on a sequence of links and not directly on the big link f1 · · · f2.

Let us give some results due to this technique. Consider the context of The-
orem 3.7. Let us see what happens if we replace the margin Assumption (MA3)
with Assumption (MA2). Then we can no longer upper bound ∆R with CstPκ

·,f̃
(

inequality which is used to obtain (6.8)
)

. We only have ∆R ≤ P·,f̃ . This leads to

the convergence rate N−
κ

2κ−1+qκ instead of N−
κ

2κ−1+q . Using the chaining trick, we
will prove (see Theorem 3.10) that this rate is suboptimal and that, by minimizing

the empirical risk on well chosen nets, we can still reach the rate N−
κ

2κ−1+q when

0 < q < 1 and the rate N−
1

1+q when q > 1.

Remark 3.7. The convergence rate N−
κ

2κ−1+qκ is optimal under Assumption
(MA2) and the complexity assumption H(uN ) ≤ C′hq(uN ) for the radius

uN = N−
κ

2κ−1+qκ . The lower bound comes from Lemma 5.1 applied to a
(

N
qκ

2κ−1+qκ , N−
1+qκ

2κ−1+qκ , 1
2
N−

κ−1
2κ−1+qκ

)

-constant hypercube. By slightly modifying
the proof of Theorem 3.7, we can obtain that, under the previous margin and

complexity assumptions, any classifier f̂ minimizing the empirical risk among a
uN -almost minimal net satisfies

P⊗N
[

R(f̂)−R(f̃)
]

≤ C̆N− κ
2κ−1+qκ .
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The chaining technique appears to be the only tool which allows to take into
account an entropy assumption which holds for any radius such as (CA1) and
(CA2).

The chaining trick may also be used to prove that the empirical risk can be
minimized on tighter nets (provided that they are still minimal, or at least almost
minimal, under polynomial entropy assumptions).

Before giving results concerning nets, one can illustrate the chaining technique
by considering randomized posteriors concentrated on small balls of fixed radius.

For any u > 0, introduce Bf,u ,
{

f ′ ∈ F : Pf,f ′ ≤ u
}

and πf,u ,
1Bf,u

π(Bf,u) ·π. Define

h(v) , sup
f∈F

log π−1(Bf,v) and h+(v) , h(v) ∨ 1.

Theorem 3.9. Let u > 0, L ,
log(2/u)

log 2 , C1 ,

√

4h+(u)
3Nu and C0 , 2

√
3[1 +2g(C1)].

For any ǫ > 0, with P⊗N -probability at least 1 − ǫ, for any f1, f2 ∈ F such that
Pf1,f2

> u, we have

πf2,uR− πf1,uR + πf1,ur − πf2,ur

≤ C0√
N

∑

k∈N:u2k<Pf1,f2

√

u2kh+(u2k) + 6

√

Pf1,f2

N log[Lǫ−1]

≤ 2C0√
N

∫ Pf1,f2

u/2

√

h+(v)
v

dv + 6

√

Pf1,f2

N
log[Lǫ−1].

Proof. See Section 6.6. �

Had we not chained inequality (2.1), we would have obtained

πf2,uR− πf1,uR + πf1,ur − πf2,ur ≤ λ
N g
(

λ
N

)(

Pf1,f2
+ 2u

)

+ 2h(u)+log(ǫ−1)
λ

This upper bound is greater than infλ>0

{

λ
2N Pf1,f2

+ 2h(u)
λ

}

= 2

√

Pf1,f2
h(u)

N , which

is much bigger than the chained bound for polynomial entropies h(u) ≈ u−q, q > 0

when7 N−
1

1+q ≤ u≪ Pf1,f2
.

The following result is an extension of Theorems 3.7 and 3.8.

Theorem 3.10. We assume that Assumptions (MA2) and (CA1) hold. When
Assumption (MA3) also holds, we define

(vN , aN) ,







(

[

log N
N

]
κ

2κ−1 , exp
{

− Č1(logN)
κ

4κ−2N
κ−1
4κ−2

})

for q = 0
(

N−
κ

2κ−1+q , Č1N
− (κ−1)1q≤1+q

q(2κ−1+q)

)

for q > 0

and bN , Č2(vN )
1
κ .

When Assumption (MA3) does not hold, we define

(vN , aN) ,































(

[ log(eN1/κ)
N

]
κ

2κ−1 , exp
{

− Č1(log[eN1/κ])
κ

4κ−2N
κ−1
4κ−2

})

for q = 0
(

N−
κ

2κ−1+q , Č1N
− κ−1+q

q(2κ−1+q)

)

for 0 < q < 1
(

(logN)N−
1
2 , Č1(logN)−

1
2N−

1
2

)

for q = 1
(

N−
1

1+q , Č1N
− 1

1+q

)

for q > 1

and bN , Č2vN .

7The quantity C0 behaves as a constant only when
h+(u)

Nu
≤ C, so when u ≥ CN

− 1
1+q .
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For any classifier minimizing the empirical risk among a uN -covering net NuN

such that

(3.10) aN ≤ uN ≤ bN

and

(3.11) log
∣

∣NuN

∣

∣ ≤ Č3hq(uN )

for some positive constants Či, i = 1, . . . , 3, we have

P⊗N
[

R(f̂)−R(f̃)
]

≤ CvN

for some constant C > 0
(

depending on C′′, Či, i = 1, . . . , 3 [and also on c′′ under

Assumption (MA3)]
)

.

Proof. See Section 6.7. �

Remark 3.8. When q = 0 and κ = +∞ (i.e. no margin assumption), the logN
factor in log(eN1/κ) disappears. The suppression of the logarithmic factor, obtained
by chaining, is similar to what occurs for VC classes (see Corollary 4.6). The
difference is just that the complexity assumption concerns P-nets here instead of
empirical nets.

From Theorems 3.3 and the following theorem, these convergence rates are op-
timal (up to the logarithmic factor when we have q ∈ {0; 1}).
Theorem 3.11. There exist an input space (X ,BX ), a model F and a set P of
probability distributions satisfying Assumptions (CA2) and (MA2) such that for

any measurable estimator f̂ : ZN → F(X ,Y),

sup
P∈P

{

P⊗NR(f̂)−R(f̃)
}

≥ CN− 1
1+q .

Proof. Apply Lemma 5.1 for a set P equal to a
(

N
q

1+q , N−1, 1
2

)

-constant hypercube

and take F ,
{

f∗P : P ∈ P
}

. �

In Theorem 3.10, we consider classifiers which minimize the empirical risk on an
almost minimal net N . The following result just asserts that the same convergence
rate holds for randomized estimators which “roughly” minimizes the empirical risk.

Theorem 3.12. For any randomized classifier ρ̂ : ZN → M1
+(NuN

) such that

there exists a function f̆ ∈ F satisfying

• Pf̆ ,f̃ ≤ CuN ,

• for any ǫ > 0, with P⊗N -probability at least 1−ǫ, ρ̂r ≤ r(f̆)+C log(eǫ−1)vN ,

we have

P⊗N ρ̂R−R(f̃) ≤ C̆vN .

Proof. It suffices to modify slightly the proof of Theorem 3.10. Let f̃N be the

nearest neighbour of f̆ in NuN
. We have Pf̃N ,f̆ ≤ C̆uN . From inequality (2.3) with

S1 = {f̆} and S2 = {f̃N}, with P⊗N -probability at least 1− ǫ, we have

r(f̆) ≤ r(f̃N ) + C̆
√

uN log(ǫ−1)
N + C̆ log(ǫ−1)

N + sup
P·,f̃≤C̆uN

∆R,
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hence r(f̆) ≤ r(f̃N ) + C̆ log(eǫ−1)vN . We obtain that ρ̂r ≤ r(f̃N ) + C̆ log(eǫ−1)vN .
From this inequality and by using the last bound in Corollary 6.6, we obtain a new
version of inequality (6.12) from which the convergence rate follows. �

As a consequence, the Gibbs estimators π−λr in which the prior distribution is
the uniform distribution on a net N perform as well as an (ERM,N )-algorithm
(i.e. a classifier which minimizes the empirical risk on the net N ) as soon as the
inverse temperature parameter λ is sufficiently large. This is not surprising to the
extent that the Gibbs estimator π−λr when λ → +∞ classifies, roughly speaking,
as an (ERM,N )-algorithm.

The following theorem completes Theorem 3.10.

Theorem 3.13. Let NuN
be a uN -covering net such that inequations (3.10) and

(3.11) hold, let λN ≥ Č4
hq(uN )

vN
, and let π be a probability distribution on the net

NuN
satisfying (uN , Č5)-(CA3) for some positive constants Či, i = 1, . . . , 5. Then

we have
P⊗N

[

π−λN rR −R(f̃)
]

≤ C̆vN

for some constant C̆ > 0
(

depending on C′′, Či, i = 1, . . . , 5 [and also on c′′ under

Assumption (MA3)]
)

.

Proof. Introduce the function f̃N in the net NuN
such that Pf̃ ,f̃N

≤ uN . By

Assumption (uN , Č5)-(CA3) and inequality (3.11), we can choose the function f̃N
such that we also have π({f̃N}) ≥ e−(Č5+Č3)hq(uN ). So we have

π−λN rr − r(f̃N ) ≤ log[π(f̃N )−1)]

λN
≤ C̆ hq(uN )

λN
≤ C̆vN .

The result then follows from Theorem 3.12. �

3.5. Bracketing entropy. To minimize the empirical risk over all the model F
can lead to inconsistency even for models with small covering entropy. For instance,
define the set X = [0; 1], the functions f0 ≡ 0 and f1 ≡ 1, and the probability distri-
bution P such that P(dX) = U([0; 1])(dX) (uniform law over X ) and Y = 1X≥ 3

4
.

Consider the model formed by f1 and all the functions equal to f0 except on a
finite number of points. For any u < 1, we have H(u,F ,P·,·) = log 2. However,
in general, the ERM-algorithm will classify poorly8. (On the contrary, the clas-
sifier based on the ERM-principle over a (u,F ,P·,·)-net for small u is efficient).
This phenomenon occurs since the covering entropy does not suitably measures the
complexity of models. In this section, we will see that the bracketing entropy does
not suffer from this drawback.

Under polynomial bracketing entropy conditions, the empirical data contain
what happens in expectation to the extent that two functions close for the dis-
tance P·,· are also close for the distance P̄·,·.

Recall that if G is a u-bracketing net of the set F , then for any function f ∈ F ,
there exist fL, fU ∈ G satisfying fL ≤ f ≤ fU and PfL,fU

≤ u. Let us define the
mappings nL, nU : F → G such that nL(f) = fL and nU (f) = fU (from the axiom
of choice, they exist).

The following theorem, to be compared with Theorem 3.10, shows the influence
of considering bracketing entropy assumptions instead of covering ones.

8That is why, in Theorem 3.10, we need to consider almost minimal nets (inequality (3.7)).



CLASSIFICATION UNDER COMPLEXITY AND MARGIN ASSUMPTIONS 139

Theorem 3.14. Let us define

wN ,























[

log(eN1/κ)
N

]
κ

2κ−1

under Assumptions (MA2)+(CA2) for q = 0

N−
κ

2κ−1+q under Assumptions (MA2)+(CA2) for 0 < q < 1

(logN)N−
1
2 under Assumptions (MA2)+(CA2) for q = 1

N−
1

1+q under Assumptions (MA2)+(CA2) for q > 1

.

For any classifier f̂ERM,N minimizing the empirical risk in a uN , Č1wN -covering

net N for some positive constant Č1, we have

P⊗N
[

R(f̂ERM,N )−R(f̃)
]

≤ C̆wN

for some constant C̆ > 0
(

depending on C′, C′′ and Č1

)

.

Proof. Let N ′ be a uN -minimal bracketing net of the net N . Let f̃N ′ be the nearest
neighbour of the function f̃ in the net N ′. By definition of the set N ′,

• we have log |N ′| ≤ C′hq(uN ),

• there exists a function fN such that nL(fN ) = f̃N ′ or nU (fN ) = f̃N ′ ;

consequently, we have r(fN ) ≤ r(f̃N ′) + uN ,

• there exists a classifier f̂N ′ : ZN → N ′
(

f̂N ′ , nL(f̂ERM,N ) for instance
)

such that we have r(f̂N ′) ≤ r(f̂ERM,N ) + uN and

(3.12) R(f̂ERM,N ) ≤ R(f̂N ′) + uN .

So the estimator f̂N ′ : ZN → N ′ satisfies

r(f̂N ′) ≤ r(f̂ERM,N ) + uN ≤ r(fN ) + uN ≤ r(f̃N ′) + 2uN .

Then the result follows from Theorem 3.12 and inequality (3.12). �

Remark 3.9. Since we have (CA2) ⇒ (CA1), Theorem 3.10 can be applied when
the assumptions of Theorem 3.14 hold. We see that, under bracketing entropy
assumptions, the ERM on nets containing a huge (possibly infinite) number of
functions has also the optimal convergence rate. This was not the case under
covering entropy assumptions.

Remark 3.10. The same convergence rate holds for classifiers minimizing the em-
pirical risk up to an additive factor CwN .

The following theorem completes the previous one.

Theorem 3.15. Let λN ≥ Č1
hq(wN )

wN
and π be a probability distribution satisfying

(Č2wN , Č3)-(CA3) for some positive constants Či, i = 1, . . . , 3. Then we have

P⊗N
[

π−λN rR−R(f̃)
]

≤ C̆wN

for some constant C̆ > 0 (depending on C′′, Či, i = 1, . . . , 3).

Proof. See Section 6.8. �

Remark 3.11. From the previous theorem, the inverse temperature parameter λN

should be taken as

λN ≥ C



















(logN)N
κ

2κ−1 under Assumptions (MA2)+(CA2) for q = 0

N
κ(1+q)
2κ−1+q under Assumptions (MA2)+(CA2) for 0 < q < 1
N

(log N)2 under Assumptions (MA2)+(CA2) for q = 1

N under Assumptions (MA2)+(CA2) for q > 1

.
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The threshold value is all the smaller as the model is small9 (i.e for small q) and
the margin assumption is weak10 (i.e for large κ).

Finally, the following theorem shows that, under polynomial bracketing entropy
assumption, with high probability, the empirical covering nets are similar to the
covering nets wrt the pseudo-distance P(dX).

Theorem 3.16. Let Č be positive constant and define

(αq, βq) =

{

(

1
N
, log N

N

)

when q = 0
(

exp
{

−N q
1+q
}

, N−
1

1+q
)

when q > 0
.

With P⊗N -probability at least 1 − (αq)
Č, there exists C̆1, C̆2, C̆3, C̆4 > 0 such that

for any u ≥ C̆1βq,

• a (u,F ,P·,·)-covering net is a (C̆3u,F , P̄·,·)-covering net,

• a (u,F , P̄·,·)-covering net is a (C̆2u,F ,P·,·)-covering net,

• H(u,F , P̄·,·) ≤ C̆4hq(u).

Proof. See Section 6.9. �

Therefore under polynomial bracketing entropy assumption, we can classify op-
timally by using the minimizer of the empirical risk on an empirical net of radius
less than CwN . Note that another way of proving this result consists in saying
that this classifier minimizes the empirical risk on the set F up to an additive CwN

factor.

4. Classification under empirical complexity assumptions

In this section, we will see that if we replace the complexity assumption con-
cerning P-entropies with a similar assumption on the empirical entropies, the same
kind of convergence rates appear. VC-classes are a special case in which for any
u > 0 and any training set, we have H(u,F , P̄·,·) ≤ CV h0(u) where V is the
VC-dimension of F .

4.1. Concentration of the empirical entropies. In general, the link between
the P-entropies and P̄-entropies is not known. However, thanks to recent work by
Boucheron, Bousquet, Lugosi and Massart, we are able to prove that the empirical
entropies are concentrated.

Theorem 4.1. For any ǫ > 0 and u ≥ 0

• with P⊗N -probability at least 1− ǫ, we have
(4.1)

H(u,F , P̄) ≤ P⊗NH(u,F , P̄) +
(log 2)log(ǫ−1)

3

(

1 +

√

1 +
18P⊗NH(u,F , P̄)

(log 2)log(ǫ−1)

)

9This might be explained by looking at the size of the sets
{

f ∈ F : r(f) − minF r = k
N

}

.

Indeed, when the model becomes larger and larger, the weight on these sets increases much more
for small k than for very small k, hence we need to have larger λ to get rid of functions having a

not-so-small empirical risk.
10This is not surprising since the stronger the margin assumption is, the smaller the optimal

convergence rate is, and consequently the more selective we need to be.
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equivalently

P⊗NH(u,F , P̄) ≥ H(u,F , P̄) +
2(log 2)log(ǫ−1)

3

(

1−
√

1 +
9H(u,F , P̄)

2(log 2)log(ǫ−1)

)

• with P⊗N -probability at least 1− ǫ,

H(u,F , P̄) ≥ P⊗NH(u,F , P̄)−
√

2(log 2)log(ǫ−1)P⊗NH(u,F , P̄)

equivalently

(4.2) P⊗NH(u,F , P̄) ≤ H(u,F , P̄) + (log 2)log(ǫ−1)

(

1 +

√

1 +
2H(u,F , P̄)

(log 2)log(ǫ−1)

)

• with P⊗2N -probability at least 1− 2ǫ,

(4.3) H(u,F , P̄′) ≤ H(u,F , P̄) + 2(log 2)log(ǫ−1)

(

6

5
+

√

1 +
2H(u,F , P̄)

(log 2)log(ǫ−1)

)

Proof. See Section 6.10. �

The previous result shows that the empirical entropies behave with high proba-
bility as the non empirical quantity P⊗NH(u,F , P̄). Specifically, by using a union
bound on the different possible radius, we obtain that for any Č′ > 0 there exists
C̆ > 0 such that with probability at least 1− 1

NČ′ , for any u > 0, we have11















P⊗NH(u,F , P̄·,·) ≤ C̆[H(u,F , P̄·,·) + logN ]

H(u,F , P̄·,·) ≤ C̆[P⊗NH(u,F , P̄·,·) + logN ]

H(u,F , ¯̄P·,·) ≤ C̆[H(u,F , P̄·,·) + logN ]

H(u,F , P̄·,·) ≤ H(u/2,F , ¯̄P·,·)

.

4.2. Chaining empirical quantities...

4.2.1. ...in the transductive learning. In this section, we assume that we possess
two samples of size N . The first sample is labeled: {(X1, Y1), . . . , (XN , YN )}. The
second one {XN+1, . . . , X2N} has to be labeled: the outputs {YN+1, . . . , Y2N} are
unknown. We will use the following notations:



























P̄ , 1
N

∑N
i=1 δ(Xi,Yi)

P̄′ , 1
N

∑2N
i=N+1 δ(Xi,Yi)

¯̄P , 1
2N

∑2N
i=1 δ(Xi,Yi)

r(f) , 1
N

∑N
i=1 1Yi 6=f(Xi) = P̄[Y 6= f(X)]

r′(f) , 1
N

∑2N
i=N+1 1Yi 6=f(Xi) = P̄′[Y 6= f(X)]

Let us start with a basic result which is not “chained”.

Lemma 4.2. Let S1 and S2 be two finite sets of functions from X into Y possibly
depending on the data Z2N

1 in an exchangeable way. For any ǫ > 0, with P⊗2N -
probability at least 1− ǫ, for any functions f1 ∈ S1 and f2 ∈ S2, we have

r′(f2)− r′(f1) + r(f1)− r(f2) ≤
√

8¯̄Pf1,f2
log(|S1||S2|ǫ−1)

N

11For the third inequality, we use the inequality H(u,F , ¯̄P·,·) ≤ H(u,F , P̄·,·) + H(u,F , P̄′
·,·)

and inequality (4.3). The fourth inequality always holds.
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Proof. The result comes from inequality (8.7) in [1] in which we take ν equal to the
uniform distribution on S1 × S2 and W[(f1, f2), Z] = 1Y 6=f2(X) − 1Y 6=f1(X). �

By chaining this inequality, we obtain:

Theorem 4.3. Let U ∈ N∗ and u , 2−U . Let N be an u-minimal covering net.
For any k ∈ N∗, let Hk be an upper bound of H(2−k,F , ¯̄P)∨1. For any ǫ > 0, with
P⊗2N -probability at least 1− ǫ, for any f1, f2 ∈ N ,

r′(f2)− r′(f1) + r(f1)− r(f2)
≤ ∑

k∈N∗:u≤2−k≤ ¯̄Pf1,f2
∨u

4
√

6×2−k{2Hk+log[3k(k+1)]+log(ǫ−1)}
N

.

Proof. See Section 6.11. �

Remark 4.1. The previous result can also be written in terms of integral. For

instance, for Hk = H(2−k,F , ¯̄P) ∨ 1, the previous RHS is upper bounded by12

28√
N

∫ (¯̄Pf1,f2
∨u)∧ 1

2
u
2

(

√

H(x,F, ¯̄P)∨1
x

+
√

log(4 log x−1)
x

)

dx+ 34

√

(¯̄Pf1,f2
∨u) log(3ǫ−1)

N
.

4.2.2. ...in the inductive learning. The empirical bound for the inductive learning
is derived from the one for the transductive learning and from the concentration
properties of the pseudo-distances and the empirical entropies.

Theorem 4.4. Let ǫ > 0 and H∞ , 16 logN(XN
1 ) + 20 log(5 logN) + 12log(ǫ−1).

With P⊗2N -probability 1− 3ǫ, for any functions f1 and f2 in the set F , we have

r′(f2)− r′(f1) + r(f1)− r(f2)
≤ 10√

N

∑

k∈N∗:
1

2N≤2−k≤ 5
4 P̄f1,f2

+ H∞
N

√

8H(2−k,F , P̄·,·) + 6 log[k(k + 1)ǫ−1] + 1 .

Proof. See Section 6.12. �

The previous theorem gives, for instance, a guarantee of misclassification rate of
the ERM-classifier on N new input data to classify. We recall that the leading term
in the square root is generally the entropy one. Once more, we can upper bound
the associated sum with the integral entropy

C√
N

∫
5
4 P̄f1,f2

+ H∞
N

1
4N

√

H(x,F,P̄·,·)
x dx

Note that this result is less general than the one for transductive learning since
the integral starts from 1

4N
, which means that the largest complexity terms are

taken into account. In Section 3, we have seen that for polynomial entropies with

q ≥ 1, the optimal convergence rate (which was of order N−
1

1+q up to the loga-
rithmic factor) was proved since the largest complexities were not in the integral
entropy.

On the contrary, for q < 1, we can recover the same convergence rates under
the assumption H(u,F , P̄) ≤ C′hq(u) for any u > 0, as under the polynomial
bracketing entropy assumption. The following section deals with a special case of
the case q = 0.

12Proof at the end of Section 6.11.
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4.3. Application to VC-classes. At first sight, it is not obvious that Theorem 4.3
gives a tighter bound than Lemma 4.2 applied to (S1,S2) = (N ,N ). We will see in
this section that for V C-classes, the two bounds gives the same convergence rate
for the ERM-classifier, except when we have no margin assumption. In this last
case, the chained result allows to get rid of a logarithmic factor.

Let us consider the binary classification setting: Y = {0; 1}. Introduce the shat-

tering number N(X2N
1 ) ,

∣

∣

{

[f(Xk)]
2N
k=1 : f ∈ F

}∣

∣ = H(u,F , ¯̄P) for any u < 1
2N .

Let V be the VC-dimension of the set F
V , max

{

|A| : A ∈ X 2N such that |{A ∩ f−1(1) : f ∈ F}| = 2|A|
}

.

The empirical entropies satisfy13

H(u,F , ¯̄P) ≤
{

V log
(

2Ne
V

)

V log
(

4e
u

) .

Let f̂ERM be the minimizer of the empirical risk on the set F and f̃ ′ be the
minimizer on F of either r′ or R. From Lemma 4.2, with P⊗2N -probability at least
1− ǫ, we have

r′(f̂ERM) ≤ inf
f∈F

{

r′(f) + 4

√

¯̄Pf̂ERM,f [V log( 2eN
V )+ 1

2
log(ǫ−1)]

N

}

,

and consequently, after some standard computations:

(4.4) P⊗NR(f̂ERM)−R(f̃) ≤ 4

√

V P⊗2N ¯̄Pf̂ERM,f̃

N
log
(

2eN
V

)

+ 2

√

2P⊗2N ¯̄Pf̂ERM,f̃

N
.

To compare, from Theorem 4.3, we obtain

Corollary 4.5. For any ǫ > 0, with P⊗2N -probability at least 1− ǫ, we have

r′(f̂ERM) ≤ inf
f∈F

{

r′(f) + 47

√

(V +1)¯̄Pf̂ERM,f

N
log
(

8e
¯̄Pf̂ERM,f

)

+ 34

√

¯̄Pf̂ERM,f log(ǫ−1)

N

}

and, consequently,

(4.5)
P⊗NR(f̂ERM)−R(f̃) ≤ 47

√

(V +1)P⊗2N ¯̄Pf̂ERM,f̃

N
log
(

8e

P⊗2N ¯̄Pf̂ERM,f̃

)

+34

√

P⊗2N ¯̄Pf̂ERM,f̃

N .

Proof. See Section 6.13. �

As a consequence, we obtain

Corollary 4.6. Under assumption (MA2), for any set F of VC-dimension V , the
ERM-classifier satisfies

P⊗NR(f̂ERM)−R(f̃) ≤ C̆
{
(

V
N logN

)
κ

2κ−1 when 1 ≤ κ < +∞
√

V
N when κ = +∞

.

Proof. See section 6.14. �

13The first inequality is well-known consequence of Sauer’s lemma; the second one comes from

Haussler’s formula ([7]), which asserts that for any u > 0, H(u,F , ¯̄P) ≤ V log
(

2e
u

)

+log[e(V +1)].
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Remark 4.2. This is an improvement of Massart and Nédélec results [12, Corol-

lary 2.2] to the extent we do not have an extra additive term R(f̃)−R(f∗), where
f∗ is the Bayes classifier. The second part of the corollary is a well-known result
which is given with a simple proof in [5, p.31].

Remark 4.3. By comparing Inequalities (4.4) and (4.5), we see that the constants in
chained inequalities are not satisfactory. The gap between the upper bound (6.23)
and the lower bound (see Theorem 5.2) is the factor 8× 83 ! We do not know how
to chain inequalities with significantly tighter constants.

5. Assouad’s lemma

Definition 5.1. Let m ∈ N∗, w ∈]0; 1], b ∈]0; 1] and b′ ∈]0; 1]. A (m,w, b, b′)-
hypercube of probability distributions is a family

{

P~σ ∈ M1
+(Z) : ~σ , (σ1, . . . , σm) ∈ {−1; +1}m

}

of 2m probability distributions having the same first marginal:

P~σ(dX) = P(+1,...,+1)(dX) , µ for any ~σ ∈ {−1; +1}m,
and such that there exists a partition X0, . . . ,Xm of X satisfying

• for any j ∈ {1, . . . , m}, we have µ(Xj) = w
• for any j ∈ {0, . . . , m}, for any X ∈ Xj , we have

P~σ(Y = 1|X) =
1+σjξ(X)

2 = 1−P~σ(Y = 0|X),

where σ0 , 1 and ξ : X → [0; 1] is such that for any j ∈ {1, . . . , m},
{

b =

√

1−
(

µ
[
√

1− ξ2(X)
∣

∣X ∈ Xj

])2

b′ = µ
[

ξ(X)|X ∈ Xj

]
.

When ξ is constant on Xj , j = 1, . . . , m (which implies ξ ≡ b′ = b on X − X0), the
hypercube will be said a (m,w, b)-constant hypercube. The hypercube will be said
noiseless when ξ ≡ 1 on X0.

The following lemma is Assouad’s lemma adapted to the classification framework.

Lemma 5.1. If a set P of probability distributions contains a (m,w, b, b′)-
hypercube, then for any measurable estimator f̂ : ZN → F(X ,Y), we have

sup
P∈P

{

P⊗NRP(f̂)−RP(f∗P)
}

≥ 1−b
√

Nw
2

mwb′.

Proof. See Section 6.15. �

Lemma 5.1 gives a very simple strategy to obtain a lower bound for a given set
P of probability distributions: it consists in looking for the (m,w, b, b′)-hypercube

which is contained in the set P and for which 1−b
√

Nw
2

mwb′ is maximized.
In general, the order of the bound is given by the quantity mwb′ and w, b are

taken such that
√
Nwb = Cst < 1. To obtain this order, we do not need the

sophisticated computations detailed in the proof of the lemma. We can use two
well-known lemmas instead (Birgé’s lemma and Huber’s lemma) as it is proved in
Appendix E.

Lemma 5.1 implies lower bounds for VC-classes with decent constants. The
following result is to be compared with Theorems 14.1 and 14.5 in [5].
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Theorem 5.2. For any model F , define PL as the set of probability distributions
such that inff∈F RP(f) = L for a fixed L ∈ [0; 1/2].
• When L = 0:
for any classification model F of VC-dimension V ≥ 2, for any measurable estima-

tor f̂ : ZN → F(X ,Y), we have

sup
P∈P0

{

P⊗NRP(f̂)−RP(f∗P)
}

≥
{

V−1
2e(N+1) when N ≥ (V − 2) ∨ 1
1
2

(

1− 1
V−1

)N .

• When 0 < L ≤ 1/2:
for any classification model F of VC-dimension V ≥ 2, for any measurable estima-

tor f̂ : ZN → F(X ,Y), we have

sup
P∈PL

{

P⊗NRP(f̂)−RP(f∗P)
}

≥







√

L(V−1)
32N ∨ V−1

16N when (1−2L)2N
V−1 ≥ 1

4

( 1
2 − L)

√

L
2 otherwise

.

Proof. See Appendix F. �

Remark 5.1. It is a well known result that, when inff∈F RP(f) is of order 1/N and
when the complexity of the class is not too high, there exists an estimator such that

P⊗NRP(f̂)− inff∈F RP(f) = O
(

1
N

)

. The previous theorem gives a corresponding
lower bound.

6. Proofs

6.1. Proof of Lemma 3.1. Let T1(π) , − log π exp (−λ∆R) and

T2(π) , 0 ∨ log π exp
(

8.2λ2

N
P·,f̃ − λ∆R

)

.

We start with the following lemma.

Lemma 6.1. For any ǫ > 0 and 0 < λ ≤ 0.19N , with P⊗N -probability at least
1− ǫ, we have π−λrR ≤ C

λ

[

T1(π) + T2(π) + log(4ǫ−1)
]

.

Proof. Taking χ = 1
2 and γ = 1

2 in Theorem 2.2, we get

π−λr∆R ≤ π−λ
2 R∆R+ 2

λ

[

16 log π−λR exp
(

8.2λ2

N P·,f̃

)

+ 5 log(4ǫ−1)
]

≤ − 2
λ

log π exp
(

−λ
2
∆R

)

+ 32
λ

log π−λR exp
(

8.2λ2

N
P·,f̃

)

+ 10
λ

log(4ǫ−1)

≤ −34
λ log π exp (−λ∆R) + 32

λ log π exp
(

−λ∆R + 8.2λ2

N P·,f̃

)

+10
λ

log(4ǫ−1).

�

Remark 6.1. In order to explain the assumptions used in Lemma 3.1, let us give
upper bounds for the quantities T1 and T2 using the strong complexity and margin
Assumptions (CA1) and (MA3) for a well chosen distribution π. Under Assumption
(CA1)

(

which is equivalent to Assumption (CA3)
)

, there exists a distribution π(t)

such that for any f ′ ∈ F , π(t)
(

P·,f ′ ≤ t
)

≥ e−C′t−q

.
For any 0 < t < 1, we have

T1

[

π(c′′t1/κ)
]

≤ − log
[

π(c′′t1/κ)(∆R ≤ t)e−λt
]

(by Markov’s inequality)

≤ − log
[

π(c′′t1/κ)(P·,f̃ ≤ c′′t
1
κ )
]

+ λt
(

according to (MA3)
)

≤ C′c′′−qt−
q
κ + λt

(

by definition of π(t)
)

.
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Assumption (MA2)
(

recall that (MA3) ⇒ (MA2)
)

implies that for any λ > 0

8.2λ2

N P·,f̃ − λ∆R ≤ 8.2C′′ λ
2

N (∆R)
1
κ − λ∆R

≤ λ sup
x≥0

{

8.2C′′ λ
N x

1
κ − x

}

= (κ− 1)λ
(

8.2C′′λ
κN

)
κ

κ−1

,

hence T2(π) ≤ C̆λ
(

λ
N

)
κ

κ−1 for any distribution π and a constant C̆ > 0 depending

on C′′ and κ.
(

Note that for the limit case κ = 1, we have T2 = 0 for any λ ≤ N
8.2C′′ .

)

Therefore, with
(

P⊗N
)

∗-probability at least 1− 4ǫ, we have

{

π(c′′t1/κ)}
−λr

R −R(f̃) ≤ C̆
[

t+
t−

q
κ + log(ǫ−1)

λ
+
( λ

N

)
κ

κ−1

]

,

where the constant C̆ > 0 depends on C′, c′′ and κ. The sum t+ t−
q
κ

λ +
(

λ
N

)
κ

κ−1 has

the minimal order N−
κ

2κ−1+q when λ has the order of N
κ+q

2κ−1+q and t has the order
of N−

κ
2κ−1+q . This computation explains the choice of Assumptions (3.2) and (3.3).

From inequality (3.2), we have T1(π) ≤ C̆N
q

2κ−1+q + λNN
− κ

2κ−1+q . From As-

sumption (MA2), we have seen in the previous remark that T2(π) ≤ C̆λN

(

λN

N

)
κ

κ−1 .
From inequality (3.3), we obtain the desired convergence rate.

Now let us prove the sharper result: inequality (3.4). Let a(λ) , λ
N g
(

λ
N

)

. From
Theorem 6.2 in [1] and the same computations as for the quantity L′′ in Section

9.12 of [1] to upper bound − log π exp
{

− λ[r − r(f̃)]
}

, we obtain :

Lemma 6.2. For any ǫ > 0, λ > 0 and ξ > 0, with P⊗N -probability at least 1−2ǫ,
with π−λr-probability at least 1− ǫ, we have

∆R ≤ a(λ)P·,f̃ +
− log π exp{−λ∆R−λa( λ

ξ )P·,f̃}+(2+ξ)log(ǫ−1)

λ .

Taking ξ = 1 and λ = λN , using the margin assumption P·,f̃ ≤ C′′(∆R)
1
κ and

noting that a(λN ) ≤ g(Č4)
λ
N , we get

∆R ≤ C̆ λN

N (∆R)
1
κ + 3log(ǫ−1)

λN
+ sup

x≥0

{

C̆ λN

N x
1
κ − x

}

− log π exp(−2λN∆R)
λN

,

where the constant C̆ > 0 only depends on C′′ and Č4. Now from the same
computations as in Remark 6.1, when the Inequalities (3.2) and (3.3) hold, we get

∆R ≤ C̆
[

λN

N
(∆R)

1
κ +N−

κ
2κ−1+q

]

+
3log(ǫ−1)

λN
.

We obtain successively

∆R ≤ C̆
[

N
1−κ

2κ−1+q (∆R)
1
κ + log(eǫ−1)N−

κ
2κ−1+q

]

and

∆R ≤ C̆ log(eǫ−1)N−
κ

2κ−1+q .
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6.2. Proof of Theorem 3.3. A standard idea to prove lower bounds is to consider
an adequate hypercube of probability distributions and to use Assouad’s lemma (see
Section 5 for the definition of the hypercube of distributions).

Consider a
(

N
q

2κ−1+q , N−
1+q

2κ−1+q , aN−
κ−1

2κ−1+q
)

-constant noiseless hypercube of

probability distributions
{

P~σ : ~σ ∈ {−1; +1}m
}

, where a > 0 is a constant which
will be chosen later.

Had we replaced Assumption (MA3) with Assumption (MA2) in Theorem 3.3,
the result would have been a direct consequence of Lemma 5.1 applied to this
hypercube with a = 1

2
.

In this proof, we will not apply Assouad’s lemma but Fano’s lemma since As-
sumption (MA3) is not satisfied by the whole hypercube. First let us state the
following classical result on the hypercube which is a refined version of Varshamov-
Gilbert bound (1962).

Lemma 6.3 (Huber,[8, p.256]). Let δ(Σ,Σ′) denote the Hamming distance between

Σ and Σ′ in {−1, 1}m: δ(Σ,Σ′) ,
∑m

i=1 1Σi 6=Σ′
i
. There exists a subset S of the

hypercube {−1, 1}m such that

• for any Σ 6= Σ′ in S, we have δ(Σ,Σ′) ≥ m
4

• log |S| ≥ m
8
.

Proof. It suffices to upper bound the number of points in the ball centered at a point
σ of the hypercube and of radius m

4 . Consider the uniform distribution ν(dΣ) on
the hypercube {−1, 1}m. Specifically, we have

ν

(

δ(Σ, σ) ≤ m

4

)

≤ νem
4 −δ(Σ,σ) = e

m
4

(

νe−1Σi 6=σi

)m

=

(

e
1
4 (1 + e−1)

2

)m

≤ e−m
8 ,

which leads to the desired result. �

Let S ⊂ {−1; +1}m such that |S| = ⌊em
8 ⌋ and for any Σ 6= Σ′ in S, δ(Σ,Σ′) ≥ m

4 .
From inequality (5.1) in [2], Birgé’s version of Fano’s lemma can be stated as

Lemma 6.4. Given a non-trivial (i.e. cardinal ≥ 2) finite family D of probability
measures on some measurable set (E, ξ) and a random variable X̄ with an unknown
distribution in the family, we have

inf
T̂

sup
P∈D

P
[

T̂ (X̄) 6= P
]

≥ 0.36 ∧
(

1− KD
|D| log |D|

)

,

where KD , inf
P∈D

∑

Q 6=PK(Q,P) and the infimum is taken over all measurable

(possibly randomized) estimators based on X̄ with values in the finite set D.

Define D′ ,
{

P~σ : ~σ ∈ S
}

. Let us apply Birgé’s lemma to the set of probability
distributions

D ,
{

P⊗N : P ∈ D′
}

.

With any estimator f̂ : ZN → F(X ,Y), we can associate an estimator T̂ : ZN → D
defined as T̂ (ZN

1 ) = P⊗N , where P ∈ D′ minimizes µ[ξ(X)1f∗
P
(X)6=f̂(ZN

1 )(X)], where

f∗P denotes the Bayes classifier associated with the distribution P.

By Birgé’s lemma, we have sup
Q∈D

Q
[

T̂ (ZN
1 ) 6= Q

]

≥ 0.36 ∧
(

1− KD
|D| log |D|

)

. Now,

when T̂ (ZN
1 ) 6= P⊗N , we have µ(f∗P 6= f̂) ≥ m

8
w, hence RP(f̂) − RP(f∗P) ≥ m

8
wβ.
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Therefore, we get

(6.1) sup
P⊗N∈D

P⊗NRP(f̂)−RP(f∗P) ≥ m

8
wβ

[

0.36 ∧
(

1− KD
|D| log |D|

)]

.

For any P 6= Q ∈ D, we have K(P,Q) ≤ Nmwβ log
(

1+β
1−β

)

. Since we have

|D| = ⌊em
8 ⌋, we obtain KD

|D| log |D| ≤ 1

log⌊e m
8 ⌋
Nmwβ log

(

1+β
1−β

)

≤ 20Nwβ2 for m large

enough and β small enough. In our case, we have m = N
q

2κ−1+q , w = N−
1+q

2κ−1+q and

β = aN−
κ−1

2κ−1+q . So for N large enough, we have KD
|D| log |D| ≤ 20a2. Let us choose a

such that 20a2 = 0.64. We obtain sup
P∈D′

P⊗NRP(f̂)−RP(f∗P) ≥ 0.008N−
κ

2κ−1+q for

N sufficiently large.
Finally it remains to check that the set of distributions D′ is included in P. For

any P ∈ D′, the complexity Assumption (CA2) is satisfied since

• for u < mw, H(u,F ,P·,·) ≤ log |F| ≤ Cu−q for some constant C > 0.
• for u ≥ mw, H(u,F ,P·,·) = 0 ≤ Cu−q.

For any P ∈ D′, the margin Assumption (MA3) is satisfied since for any functions

f ∈ F − {f̃}, Pf,f̃ has the order of mw = N−
1

2κ−1+q and ∆R(f) has the order of

mwβ = aN−
κ

2κ−1+q . The margin Assumption (MA1) also holds since we have

P
(

0 < |η∗(x)− 1
2
| ≤ t

)

=

{

0 when t < β
mw when β ≤ t < 1

2

Remark 6.2. The proof also holds when q = 0. In this case, we take m = 1,

w = N−
1

2κ−1 and β =
√

0.64
20 N

− κ−1
2κ−1 .

6.3. Proof of Theorem 3.5.

6.3.1. First case: log π−1(∆R ≤ x) = −C′ log x+ C′′′ + o(xs). Since we have14

(6.2) π−λR∆R =
C′+ o

λ→+∞
(λ−s)

λ ,

from Theorem 2.2, for any 0 ≤ χ < 1, we get










π−λrR ≤
C′+ o

N→+∞
(λ−s)+ O

N→+∞
(χ)

λ
+

K(π−λr,π−λR)
χλ

π−λrR ≥
C′+ o

N→+∞
(λ−s)+ O

N→+∞
(χ)

λ
− K(π−λr,π−λR)

χλ

.

Taking χ =
√

K(π−λr, π−λR), we obtain

(6.3) λπ−λrR = C′ + o
N→+∞

(λ−s) + O
N→+∞

(

√

K(π−λr, π−λR)
)

.

First subcase: λ = o
(

N
κ

2κ−1
)

. Assume that λ = o
N→+∞

(

N
κ

2κ−1
)

. Then there exists

γ ∈]0; 1
2 ] such that γ = o

N→+∞
(1) and λ

(

λ
γN

)
κ

κ−1 = o
N→+∞

(1). We have15

(6.4)

log π−λR exp
{

C λ2

γN
(∆R)

1
κ

}

= o
N→+∞

(λ−s) + O
N→+∞

(

[

λ
(

λ
γN

)
κ

κ−1

]

(κ−1)C′
κC′+κ−1

)

.

14See Appendix A.
15Proof in Appendix B.
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Let L , log(eǫ−1). From Theorem 2.2, for any 0 < γ < 1
2 and 0 < λ ≤ 0.39 γN ,

with P⊗N -probability at least 1− ǫ, we have

K(π−λr, π−λR) ≤ log π−λR exp
{

C λ2

γN
(∆R)

1
κ

}

+ CγL

= o
N→+∞

(λ−s) + O
N→+∞

(

[

λ
(

λ
N

)
κ

κ−1

]

(κ−1)C′
κC′+κ−1

γ−
κC′

κC′+κ−1 + γL

)

.

Taking γ = λ
(2κ−1)C′
2κC′+κ−1N−

κC′
2κC′+κ−1L−

κC′+κ−1
2κC′+κ−1 , we obtain

(6.5)

K(π−λr, π−λR) = O
N→+∞

(

λ
(2κ−1)C′
2κC′+κ−1N−

κC′
2κC′+κ−1L

κC′
2κC′+κ−1

)

+ o
N→+∞

(λ−s),

which, combined with equality (6.3), gives the desired result.

Second subcase: λ = cN
κ

2κ−1 for a small enough c.
Then the previous computations can be adapted and we obtain that for any β > 0

there exist c > 0 and N0 > 0 such that for any N > N0 with P⊗N -probability at
least 1− ǫ, :

C′−β
λ ≤ π−λrR ≤ C′+β

λ .

6.3.2. Second case: log π−1(∆R ≤ x) = C′x−
q
κ + C′′′ + o(1). Since we have16

(6.6) π−λR∆R ∼
λ→+∞

(

qC′

κλ

)
κ

κ+q ,

from Theorem 2.2, for any 0 ≤ χ < 1, we get






π−λrR ≤
(

qC′

κλ

)
κ

κ+q
[

1 + o
N→+∞

(1) + O
N→+∞

(χ)
]

+
K(π−λr,π−λR)

χλ

π−λrR ≥
(

qC′

κλ

)
κ

κ+q
[

1 + o
N→+∞

(1) + O
N→+∞

(χ)
]

− K(π−λr,π−λR)
χλ

.

Taking χ = λ−
q

2(κ+q)
√

K(π−λr, π−λR), we obtain

π−λrR =
(

qC′

κλ

)
κ

κ+q

[

1 + o
N→+∞

(1) + O
N→+∞

(

λ−
q

2(κ+q)
√

K(π−λr, π−λR)
)]

.

First subcase: λ = o
(

N−
κ+q

2κ−1+q
)

. From Theorem 2.2, for any 0 < λ ≤ 0.19N , with

P⊗N -probability at least 1− ǫ, we have

K(π−λr, π−λR) ≤ log π−λR exp
{

C λ2

N
(∆R)

1
κ

}

+ C log(eǫ−1).

We can prove17 that for any α ≤ c̆λ− κ−1
κ+q for c̆ small enough, we have

(6.7) log π−λR exp
{

λα(∆R)
1
κ

}

= O
λ→+∞

(

λ
q

κ+q αλ
κ−1
κ+q

)

,

Let us assume that λ = o
N→+∞

(

N−
κ+q

2κ−1+q

)

. Then we have λ
N λ

κ−1
κ+q = o

N→+∞
(1),

hence

K(π−λr, π−λR) ≤ o
N→+∞

(

λ
q

κ+q
)

+ C log(eǫ−1).

16See Appendix C.
17See Appendix D.



150 J.-Y. AUDIBERT

So we obtain that for λ = o
N→+∞

(

N−
κ+q

2κ−1+q

)

,

π−λrR =
(

qC′

κλ

)
κ

κ+q

[

1 + o
N→+∞

(1)
]

.

Second subcase: λ = cN−
κ+q

2κ−1+q for a small enough c.
Once more, the previous computations can be adapted in order to obtain that

for any β > 0 there exist c > 0 and N0 > 0 such that for any N > N0 with
P⊗N -probability at least 1− ǫ, :

(

qC′−β
κλ

)
κ

κ+q ≤ π−λrR ≤
(

qC′+β
κλ

)
κ

κ+q .

6.4. Proof of Theorem 3.6. For any 0 ≤ j ≤ logN , introduce λj , 0.19
√
Ne

j
2 .

Define L , log[log(eN)ǫ−1]. In [1, Section 3.4.2], an algorithm is proposed to choose
the temperature of the standard Gibbs classifier. The associated generalization
error is bounded by

G , min
1≤j≤log N

{

π−λj−1RR+
sup

0≤i≤j

{

log π−λiR⊗π−λiR exp
(

Cλ2
i

N P·,·
)}

λj
+ C L

λj

}

.

Under Assumptions (MA3) and (CA1), for any 1 ≤ j ≤ logN and t > 0, by
Jensen’s inequality, we have

G ≤ − log π exp(−λj−1R)
λj−1

+
sup

0≤i≤j

{

log π−λiR exp
(

Cλ2
i

N P·,f̃

)}

λj
+ C L

λj

≤ − log π exp(−λj−1R)
λj−1

+
sup

0≤i≤j

{

log π exp
(

−λi∆R+
Cλ2

i
N (∆R)

1
κ

)}

λj

+ sup
0≤i≤j

{

− log π exp(−λi∆R)
λj

}

+ C L
λj

≤ R(f̃)− 2
√
e

log π exp(−λjR)
λj

+
sup

0≤i≤j;x≥0

{

−λix+
Cλ2

i
N x

1
κ

}

λj
+ C L

λj

≤ R(f̃)− 2
√
e

log[π(∆R≤t) exp(−λjt)]
λj

+ C
(λj

N

)
κ

κ−1 + C L
λj

≤ R(f̃) + C
hq(t1/κ)

λj
+ Ct+ C L

λj
.

Taking j such that λj is of order N
κ+q

2κ−1+q and t minimizing C
hq(t1/κ)

λj
+ Ct, we

obtain the desired rates (the ones given in Theorems 3.2 and 3.4). So the algorithm
is adaptive wrt the margin parameter κ.

6.5. Proof of Theorem 3.7. We will prove the result for a minimal net. It is
easy to generalize it to almost minimal nets. Let u > 0. Let π be the uniform
distribution on a minimal (u,F ,P·,·)-net denoted Nu. Let f̃u be the the nearest

neighbour of f̃ in the net Nu. Define a(λ) , λ
N
g
(

λ
N

)

. From inequality (2.1) for
(

ρ2, π2, ρ1, π1

)

=
(

δf̂ , π, δf̃u
, δf̃u

)

, with
(

P⊗N
)

∗-probability at least 1− ǫ, we have

R(f̂)−R(f̃u) + r(f̃u)− r(f̂) ≤ a(λ)Pf̂ ,f̃u
+
H(u,F ,P·,·) + log(ǫ−1)

λ
,

When f̂ = f̂ERM,u minimizes the empirical risk over the net Nu, we obtain

R(f̂)−R(f̃u) ≤ a(λ)Pf̂ ,f̃u
+
H(u,F ,P·,·) + log(ǫ−1)

λ
,
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hence

R(f̂)−R(f̃) ≤ R(f̃u)−R(f̃) + a(λ)Pf̂ ,f̃ + a(λ)Pf̃ ,f̃u
+
H(u,F ,P·,·) + log(ǫ−1)

λ
.

Let C̆ > 0 denote a constant (possibly depending on c′′, C′′, C′, Č1 and Č2) whose
value may differ from line to line. For any 0 < λ ≤ N , we have

(6.8)
∆R(f̂) ≤ C̆

(

Pκ
f̃,f̃u

+ λ
N ∆R

1
κ (f̂) + λ

N Pf̃ ,f̃u
+ u−q+log(ǫ−1)

λ

)

≤ C̆
(

λ
N ∆R

1
κ (f̂) + uκ + λ

N u+ u−q+log(ǫ−1)
λ

)

.

Let us take u and λ such that λ
N u, u

κ and u−q

λ have the same orders. This is

realized when Inequalities (3.6) hold and λ = N
κ+q

2κ−1+q . We obtain

∆R(f̂) ≤ C̆
[

N−
κ−1

2κ−1+q ∆R
1
κ (f̂) + log(eǫ−1)N−

κ

2κ−1+q
]

.

Simple computations lead to

∆R(f̂) ≤ C̆ log(eǫ−1)N−
κ

2κ−1+q

and, then, to P⊗N∆R(f̂) ≤ C̆N− κ
2κ−1+q .

6.6. Proof of Theorem 3.9. The chaining idea comes from [6] and is well pre-

sented also, for instance, in [5, p.19-21]. Let ∂(ρ1, ρ2) , ρ2R − ρ1R + ρ1r − ρ2r.

Let uk = u2k. Let ck , h+(uk). To shorten, denote πi,k , πfi,uk
. Let K be the

nonnegative integer such that
Pf1,f2

2
≤ uK < Pf1,f2

. The integer K exists as soon

as Pf1,f2
> u. Let L′ be the nonnegative integer such that 1

2 ≤ uL′ < 1. Let
λ1, . . . , λL′+1 be real positive parameters to be chosen. We apply inequality (2.1)
for this L′ + 1 parameters and for π1 = π2 = π.

With
(

P⊗N
)

∗-probability at least 1− (L′ + 1)ǫ, we have

∂(π1,0, π2,0)

= ∂(π1,K, π2,K) +
∑K

k=1

{

∂(π1,k−1, π1,k) + ∂(π2,k, π2,k−1)
}

≤ λK+1

N g
(λK+1

N

)

4uK +
K(π1,K ,π)+K(π2,K,π)+log(ǫ−1)

λK+1

+
∑K

k=1

{

2λk

N g
(

λk

N

)

(uk−1 + uk) +
2log(ǫ−1)+

∑ 2
i=1

∑k
k′=k−1

K(πi,k′ ,π)

λk

}

≤ λK+1

N
g
(λK+1

N

)

4uK + 2cK+log(ǫ−1)
λK+1

+
∑K

k=1

{

6λk

N g
(

λk

N

)

uk−1 +
2log(ǫ−1)+4ck−1

λk

}

≤ ∑K+1
k=1

{

6λk

N g
(

λk

N

)

uk−1 +
2log(ǫ−1)+4ck−1

λk

}

.

Let us choose the λk’s such that they do not depend on ǫ and they roughly minimize

the RHS of the last bound. Taking λk =
√

4Nck−1

3uk−1
for k ≥ 1, we obtain

∂(π1,0, π2,0) ≤ ∑K+1
k=1

[

1 + 2g
(

λk

N

)]

√

12ck−1uk−1

N +
∑K+1

k=1
2log(ǫ−1)

λk

≤ ∑K+1
k=1

[

1 + 2g
(

λk

N

)]

√

12ck−1uk−1

N + 2log(ǫ−1)
√

3u
4N

∑K+1
k=1

√
2

k−1
.
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For any k ∈ {1, . . . , L′+1}, we have λk

N ≤
√

4c0

3Nu , C1. Since C0 = 2
√

3[1+2g(C1)],

we obtain

∂(π1,0, π2,0) ≤ 2C0√
N

∑K+1
k=1 (uk−1 − uk−2)

√

ck−1

uk−1
+

√

6Pf1,f2

N
log(ǫ−1)√

2−1

≤ 2C0√
N

∫ Pf1,f2

u/2

√

h+(v)
v dv + 6

√

Pf1,f2

N log(ǫ−1).

Remark 6.3. We have used the “global bayesian entropy” h(v) , sup
f∈F

log π−1(Bf,v)

since it was convenient to have an (almost) optimal λ’s which do not depend on the
functions f1 and f2. Had we done a union bound on the parameters λ, we would
have been able to make it depend on the functions f1, f2. Then the global bayesian
entropy would have been replaced with the local ones h(v, f1) and h(v, f2) where

h(v, f) , log π−1(Bf,v). In other words, the quantity ∂(π1,0, π2,0) is mainly driven

by the two integrals
∫ Pf1,f2

u/2

√

h(v,f1)
vN

dv and
∫ Pf1,f2

u/2

√

h(v,f2)
vN

dv.

6.7. Proof of Theorem 3.10.

6.7.1. First step: upper bounds due to the chaining technique. We start with the
following chained result which is slightly different from Theorem 3.9 to the extent
that we chained functions belonging to covering nets instead of chaining balls. Had
we been interested in results for packing nets, Theorem 3.9 applied to an appropriate
prior distribution18 would have been sufficient. Let H(u) , H(u,F ,P·,·).

Theorem 6.5. Let u > 0, N a minimal u−covering net and L ,
log(2u−1)

log 2
. We

have

• for any ǫ > 0, with P⊗N -probability at least 1− ǫ, for any f1, f2 ∈ Nu,

(6.9)

R(f2)−R(f1) + r(f1)− r(f2)
≤ 8
√

3
N

∫ Pf1,f2
∨u

u/2

√

H(v)
v
dv + 8

3N

∫ Pf1,f2
∨u

u/2
H(v)

v
dv

+17
√

log(3Lǫ−1)
N

√

Pf1,f2
∨ u+ 2L log(3Lǫ−1)

3N
,

• for any ǫ > 0, for any f1 ∈ Nu, with P⊗N -probability at least 1− ǫ, for any
f2 ∈ Nu,

R(f2)−R(f1) + r(f1)− r(f2)
≤ 4
√

3
N

∫ Pf1,f2
∨u

u/2

√

H(v)
v dv + 4

3N

∫ Pf1,f2
∨u

u/2
H(v)

v dv

+8.5
√

log(2Lǫ−1)
N

√

Pf1,f2
∨ u+ L log(2Lǫ−1)

3N

Proof. The proof is similar to the one of Theorem 3.9. Instead of chaining balls, we
will chain on covering nets. Let ∂(f1, f2) , R(f2)−R(f1)+r(f1)− r(f2), uk = u2k

and ck , H+(uk). Introduce P , Pf1,f2
∨ u and let 0 ≤ K ≤ L′ be integers such

that
Pf1,f2

2
< uK ≤ P and 1

2
< uL′ ≤ 1.

Consider the family
(

Nk

)

k={0,...,L′} of minimal nets of radius uk. For any (j, k) ∈
{1, 2} × {0, . . . , L′}, introduce fj,k ∈ argminN

u2k
P·,fj

a nearest neighbour of fj in

18Let Np be a u-packing net. Using the notation of Section 6.6, an appropriate prior dis-

tribution is π = 1
L′+1

∑L′
k=0 πk, where πk is the uniform distribution on a uk-minimal packing

net of the set F built using points in Np. The log-cardinal of such a set is upper bounded by

H(uk−1,F ,P·,·), hence h(uk) ≤ H(uk−1,F ,P·,·) + log(L′ + 1).
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Nu2k . Since f1, f2 ∈ Nu, we have f1,0 = f1 and f2,0 = f2. Let πk be the uniform
distribution on the net Nk.

Let l , log[(3L′ + 1)ǫ−1]. By applying 3L′ + 1 times inequality (2.3), we obtain
that with P⊗N -probability at least 1− ǫ, for any functions f1, f2 in Nu, we have
(6.10)

∂(f1, f2) = ∂(f1,K, f2,K) +
∑K

k=1

{

∂(f1,k−1, f1,k) + ∂(f2,k, f2,k−1)
}

≤
√

2[2H(uK)+l]Pf1,K,f2,K

N + 2H(uK)+l
3N

+
∑K

k=1

{

√

2[H(uk−1)+H(uk)+l]Pf1,k−1,f1,k

N
+

H(uk−1)+H(uk)+l
3N

+

√

2[H(uk−1)+H(uk)+l]Pf2,k−1,f2,k

N
+ H(uk−1)+H(uk)+l

3N

}

≤ 2
∑K+1

k=1

{

√

6[2H(uk−1)+l]uk−1

N +
2H(uk−1)+l

3N

}

≤ 2
∑K+1

k=1

{

√

12H(uk−1)uk−1

N +
√

6luk−1

N +
2H(uk−1)

3N

}

+ 2(K+1)l
3N

≤ 2
√

6lu
N

√
2

K+1

√
2−1

+ 2(K+1)l
3N + 2

∑K+1
k=1

{

√

12H(uk−1)uk−1

N +
2H(uk−1)

3N

}

Now the last sum can be upper bounded using integrals since the function v 7→ H(v)
is non increasing on R∗+. We obtain

∂(f1, f2) ≤ 4√
2−1

√

3lP
N + 2l

3N

log( 2P
u )

log 2 + 8
√

3
N

∫ P

u/2

√

H(v)
v dv + 8

3N

∫ P

u/2
H(v)

v dv.

For the second part of Theorem 6.5, it suffices to modify slightly the previous
argument. This time, the functions f2,k are defined as previously. The functions

f1,k are defined as f1,k , f1. Therefore we have ∂(f1,k−1, f1,k) = 0, hence the
modification of the constants. �

Consider that Assumption (CA1) holds. Let cq > 0 such that for any 0 < u ≤ 1,
∑L′

k=0 3e−cqhq(uk) ≤ 1. In the previous proof, we used a uniform union bound over
the 3L′ + 1 inequalities coming from (2.3). If we are just interested in the order
of the bounds, we can weight the inequalities associated with ∂(f1,k−1, f1,k) and

∂(f2,k, f2,k−1) with e−cqhq(uk−1) and those corresponding to ∂(f2,k, f2,k−1) with at

least weight e−cqhq(uk).
Then, in Inequalities (6.10), we may replace 2H(uK)+l and H(uk−1)+H(uk)+l

with respectively 2H(uK)+cqhq(uK)+log(ǫ−1) andH(uk−1)+H(uk)+cqhq(uk−1)+
log(ǫ−1), so that we obtain
(6.11)

∂(f1, f2) ≤ C̆
∑K+1

k=1

{

√

[hq(uk−1)+log(ǫ−1)]uk−1

N +
hq(uk−1)+log(ǫ−1)

N

}

≤ C̆
√

P log(ǫ−1)
N

+ C̆ log(eu−1)log(ǫ−1)
N

+ C̆
∫ P

u/2

(

√

hq(v)
Nv

+
hq(v)
Nv

)

dv.

Corollary 6.6. Let N denote a minimal u−net, where u is a positive real. Define
U , sup

f :Pf,f̃≤u

{

R(f)−R(f̃)
}

. Introduce a function f̃N ∈ N such that Pf̃N ,f̃ ≤ u. Let

γu :]u; 1]→ R and Γu :]u; 1]→ R be non decreasing concave functions respectively

upper bounding the functions
∫ ·

u
2

√

H(v)
v dv and

∫ ·
u
2

H(v)
v dv..
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For any ǫ > 0, with P⊗N -probability at least 1− ǫ, for any function f ∈ N , we
have

R(f)−R(f̃) ≤ r(f)− r(f̃N ) + C̆√
N

{

γu(Pf,f̃ + u) +
√

(Pf,f̃ + u)log(ǫ−1)
}

+ C̆
N

{

Γu

(

Pf,f̃ + u
)

+ log(eu−1)log(ǫ−1)
}

+ U

Consequently, for any ρ ∈ M1
+(N ), we have

ρR−R(f̃) ≤ ρr − r(f̃N ) + C̆√
N

{

γu(ρP·,f̃ + u) +
√

(ρP·,f̃ + u)log(ǫ−1)
}

+ C̆
N

{

Γu

(

ρP·,f̃ + u
)

+ log(eu−1)log(ǫ−1)
}

+ U

Proof. The first inequality comes mainly from inequalities (6.11) and the decom-

position: R(f)−R(f̃) = R(f)− R(f̃N ) +R(f̃N )−R(f̃). The second inequality is
then deduced from Jensen’s inequality. �

6.7.2. Second step: determining the radius of the nets. Corollary 6.6 implies that

for any ǫ > 0, for any classifier f̂ minimizing the empirical risk over the net N ,
with

(

P⊗N
)

∗-probability at least 1− ǫ, we have

(6.12)
∆R(f̂) ≤ U + C̆√

N

{

γu

(

Pf̂ ,f̃ + u
)

+
√

(

Pf̂ ,f̃ + u
)

log(ǫ−1)
}

+ C̆
N

{

Γu

(

Pf̂ ,f̃ + u
)

+ log(eu−1)log(ǫ−1)
}

.

Now we have

U ≤
{

C̆uκ under Assumption (MA3)
2u in any case

,

and we can take

γu(x) ,



















C̆
√

log(e2x−1)x under Assumption (CA1) for q = 0

C̆x
1−q
2 under Assumption (CA1) for 0 < q < 1

C̆ log
(

2x
u

)

under Assumption (CA1) for q = 1

C̆u
1−q
2 under Assumption (CA1) for q > 1

and

Γu(x) ,

{

C̆[log(eu−1)]2 under Assumption (CA1) for q = 0

C̆u−q under Assumption (CA1) for q > 0
.

Then we have eight cases corresponding to the different complexity and margin
assumptions. When we have q > 0, inequality (6.12) implies

∆R(f̂) ≤ U + C̆ log(eǫ−1)√
N

γu

(

Pf̂ ,f̃ + u
)

+ C̆ log(eǫ−1)
N u−q.

Under Assumptions (MA2) and (CA1) for q = 0

Let ∆ , ∆R(f̂) to shorten. Inequality (6.12) becomes

∆ ≤ C̆
[

log(eǫ−1)N−
1
2

(

√

log(e2∆−
1
κ )∆

1
2κ +

√

log(e2u−1)u
)

+ u+ [log(eu−1)]2

N

]

.

We obtain ∆ ≤ C̆ log(eǫ−1)(log[eN1/κ])
κ

2κ−1N−
κ

2κ−1 when19

√

log(e2u−1)u
N

+ u+ [log(eu−1)]2

N
≤ C̆(log[eN1/κ])

κ
2κ−1N−

κ
2κ−1 ,

19We use log[eN1/κ] since the logarithmic factor disappears for κ = +∞. For κ < +∞, the

factor log[eN1/κ] can be simplified into log N for N ≥ 2.
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hence when there exists Č1, Č2 > 0 such that

exp
{

− Č1(log[eN1/κ])
κ

4κ−2N
κ−1
4κ−2

}

≤ u ≤ Č2(log[eN1/κ])
κ

2κ−1N−
κ

2κ−1 .

Under Assumptions (MA3) and (CA1) for q = 0 and κ < +∞
Inequality (6.12) gives

∆ ≤ C̆
[

log(eǫ−1)N−
1
2

(

√

log(e2∆−
1
κ )∆

1
2κ +

√

log(e2u−1)u
)

+ uκ + [log(eu−1)]2

N

]

.

We obtain ∆ ≤ C̆ log(eǫ−1)(logN)
κ

2κ−1N−
κ

2κ−1 when
√

log(e2u−1)u
N + uκ + [log(eu−1)]2

N ≤ C̆(logN)
κ

2κ−1N−
κ

2κ−1 ,

so when there exists Č1, Č2 > 0 such that

exp
{

− Č1(logN)
κ

4κ−2N
κ−1
4κ−2

}

≤ u ≤ Č2(logN)
1

2κ−1N−
1

2κ−1 .

Under Assumptions (MA2) and (CA1) for 0 < q < 1

Inequality (6.12) becomes

∆ ≤ C̆
[

u+ log(eǫ−1)N−
1
2

(

∆
1−q
2κ + u

1−q
2

)

+ C̆
log(eǫ−1)

N
u−q

]

.

This leads to ∆ ≤ C̆ log(eǫ−1)N−
κ

2κ−1+q when the inequality

N−
1
2u

1−q
2 + u+ C̆ log(eǫ−1)

N u−q ≤ C̆N− κ
2κ−1+q

holds, hence when there exist Č1, Č2 such that Č1N
− κ−1+q

q(2κ−1+q) ≤ u ≤ Č2N
− κ

2κ−1+q .
Similarly, we deal with the five other cases. To finish the proof, we just have to

notice that, when for any ǫ > 0 and some real function φ, with P⊗N -probability at
least 1− ǫ, we have ∆ ≤ log(eǫ−1)φ(N), then we have P⊗N∆ ≤ 2φ(N).

Remark 6.4. Once more, for sake of simplicity, we have done the proof for minimal
nets without explicit values of the constants. It is easy to adapt the proof to almost
minimal nets and to get an explicit constant C̆ in terms of the other constants of
the problem.

6.8. Proof of Theorem 3.15. Let uN = Č2wN . Let N ′ be a uN -minimal brack-
eting net of the model F . Let A , {f ∈ F : Pf,f̃ ≤ uN}. There exists a posterior

distribution ρ̂N ′ : ZN →M1
+(N ′)

(

for instance, ρ̂N ′ , π−λN r ◦ n−1
L

)

such that we
have ρ̂N ′r ≤ π−λN rr + uN and

(6.13) π−λN rR ≤ ρ̂N ′R+ uN .

We have

(6.14) ρ̂N ′r ≤ π−λN rr + uN ≤ π|Ar +
K(π|A, π)

λN
+ uN

and

(6.15) K(π|A, π) = log[π(A)−1] ≤ C̆hq(uN ) ≤ C̆λNuN .
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From inequality (2.1) for
(

ρ2, π2, ρ1, π1

)

=
(

δf̃ , δf̃ , π|A, π|A
)

and λ = N , with P⊗N -

probability at least 1− ǫ, we have π|Ar−r(f̃) ≤ π|AR−R(f̃)+uN + log(ǫ−1)
N , hence

(6.16) π|Ar − r(f̃) ≤ 2uN +
log(ǫ−1)

N
≤ C log(eǫ−1)wN .

Combining Inequalities (6.14), (6.15) and (6.16), with P⊗N -probability at least

1 − ǫ, we obtain ρ̂N ′r ≤ r(f̃) + C̆ log(eǫ−1)wN . The result follows from Theorem
3.12 and inequality (6.13).

6.9. Proof of Theorem 3.16. Let C̆1 > 0, u ≥ C̆1βq and N be a
(

u,F ,P
)

-
minimal bracketing net. Let π be the uniform distribution on this net. From
inequality (8.2) in [1] for W

(

(f1, f2), X
)

= 1f1(X)6=f2(X) and ν = π ⊗ π, we obtain

that with P⊗N -probability at least 1− ǫ, for any function f ′1, f
′
2 in the net N and

any λ > 0, we have

P̄f ′
1,f ′

2
≤
[

1 + λ
N
g
(

λ
N

)]

Pf ′
1,f ′

2
+ 2 log |N|+log(ǫ−1)

λ

Recall that C̆ is a constant (possibly depending on the other constants of the
problem) which value may differ from line to line. Taking ǫ = (αq)

C and λ = N ,
we obtain that with probability at least 1 − (αq)

C , for any functions f1, f2 in the
set F , we have

P̄f1,f2
≤ P̄f1,nL(f1) + P̄nL(f1),nL(f2) + P̄nL(f2),f2

≤ P̄nL(f1),nU (f1) + P̄nL(f1),nL(f2) + P̄nL(f2),nU (f2)

≤ (e− 1)PnL(f1),nL(f2) +
6C′hq(C̆1βq)+3C log(α−1

q )

N
+ 2u

≤ (e− 1)PnL(f1),nL(f2) + C̆βq + 2u

≤ (e− 1)Pf1,f2
+ C̆u.

By applying inequality (8.2) in [1] to W
(

(f1, f2), X
)

= −1f1(X)6=f2(X), we can

similarly proved that with probability at least 1− (αq)
C , for any functions f1, f2 in

the set F , we have (3− e)Pf1,f2
≤ P̄f1,f2

+ C̆u. (The constants e−1 and 3− e have
nothing fundamental and we can make them as close as 1 as we want provided that
we change the other constants.) These two inequalities allows to prove respectively

the first two items of the theorem for one radius u ≥ C̆1βq. To get a result uniform
wrt the radius, it suffices to make a union bound for radius in a geometric grid of
[C̆1βq; 1].

For the last item, when we have u ≥ C̆1βq for a sufficiently large C̆1, there exists

a small constant Č′ satisfying

H(u,F , P̄) ≤ Hp(u,F , P̄) ≤ Hp(Č
′u,F ,P) ≤ H(Č′u/2,F ,P) ≤ C̆hq(u).

6.10. Proof of Theorem 4.1. The proof is adapted from the proof of the con-
centration of N(XN

1 ) [10, p.42]. First, we prove that for any k ∈ N, the quantity
H( k

N ,F,P̄·,·)
log 2

is a self-bounded quantity in the sense given in [10, p.23]. Let Nk be a
(

k
N ,F , P̄

)

-minimal net. Define the probability distribution

P̄(i) ,
δZ1

+···+δZi−1
+δZi+1

+···+δZN

N−1 .

Let H(i) be the logarithm of the cardinal of the smallest
(

k
N−1 ,F , P̄(i)

)

-net using
only functions in the net Nk. We have

0 ≤ H( k
N ,F , P̄·,·)−H(i) ≤ H( k

N ,F , P̄·,·)−H( k
N−1 ,F , P̄(i)) ≤ log 2.
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Let V =
(

f(X1), . . . , f(XN)
)

be the random vector induced by the uniform distrib-

ution on the netNk. The Shannon entropy of this vector is log |Nk| = H( k
N
,F , P̄·,·).

Define V(i) ,
(

f(X1), . . . , f(Xi−1), f(Xi+1), . . . , f(XN)
)

. Since the uniform distri-

bution maximizes the entropy, we have H(i) ≥ H(V(i)). Then, using Han’s in-

equality (see for instance [10, p.31]), we obtain that
H( k

N ,F,P̄·,·)
log 2

is a self-bounded

quantity.
Therefore, we can apply Corollary 5 in [10, p.43]. To shorten, we write until the

end of the proof H(k) for H( k
N ,F , P̄·,·). For any η > 0, we have

(6.17) P⊗N
[

H(k) ≥ P⊗NH(k) + (log 2)η
]

≤ e
− η2

2P⊗N H(k)
log 2

+
2η
3

and

(6.18) P⊗N
[

H(k) ≤ P⊗NH(k)− (log 2)η
]

≤ e−
η2

2P⊗N H(k) .

Introducing ǫ = e
− η2

2P⊗N H(k)
log 2

+
2η
3 , equivalently

η2 −
(

2P⊗NH(k)

log 2
+

2η

3

)

log(ǫ−1) = 0,

η =
log(ǫ−1)

3

(

1 +

√

1 +
18P⊗NH(k)

(log 2)log(ǫ−1)

)

,

we obtain that for any ǫ > 0,

P⊗N

{

H(k) ≥ P⊗NH(k) +
(log 2)log(ǫ−1)

3

(

1 +

√

1 +
18P⊗NH(k)

(log 2)log(ǫ−1)

)}

≤ ǫ,

which is the first assertion of the lemma. The second inequality of the lemma is
a direct consequence of inequality (6.18). The following two inequalities in the
lemma comes similarly from inequality (6.17). Finally, inequality (4.3) comes from
combining Inequalities (4.1) and (4.2).

6.11. Proof of Theorem 4.3. For any k ∈ {0, . . . , U}, let Nk be a 2−k-minimal

covering net of F for the pseudo-distance ¯̄P. For any (i, k) ∈ {1, 2} × {0, . . . , U},
let fi,k be a nearest neighbour of fi in the set Nk. Let 0 ≤ K ≤ U be the integer

satisfying
¯̄Pf1,f2

∨u

2
< 2−K ≤ ¯̄Pf1,f2

∨ u.
Since we have

∂(f1; f2) = ∂(f1,K; f2,K) +
∑U

k=K+1

{

∂(f1,k; f1,k−1) + ∂(f2,k−1; f2,k)
}

,

we need to apply Lemma 4.2 to (S1,S2) ∈ ∪1≤k≤U

{

(Nk−1,Nk) ∪ (Nk,Nk−1) ∪
(Nk,Nk)

}

and to do a union bound on the associated 3U inequalities. Let wk,
k ∈ N∗ be positive integers such that

∑

k≥1wk = 1. With probability at least 1−ǫ,
for any k ∈ N∗, for any (f ′1, f

′
2) ∈ (Nk−1×Nk)∪ (Nk×Nk−1)∪ (Nk×Nk), we have

∂(f ′1; f
′
2) ≤

√

8¯̄Pf′
1,f′

2
log(3|Nk|2w−1

k ǫ−1)

N

For any (i, k) ∈ {1, 2} × {1, . . . , U}, we have Pfi,k−1,fi,k
≤ 3× 2−k. Denote

Bk ,

√

24×2−k log(3|Nk|2w−1
k ǫ−1)

N



158 J.-Y. AUDIBERT

We have Pf1,K ,f2,K
≤ 4×2−K and f1,0 = f2,0. Chaining the inequalities, we obtain

that, with P⊗2N -probability at least 1− ǫ,
∂(f1; f2) ≤ 2BK1K>0 + 2

∑U
k=K+1Bk ≤ 2

∑U
k=K∨1Bk,

hence

∂(f1; f2) ≤ 4
∑U

k=K∨1

√

6×2−k[2Hk+log(3w−1
k )+log(ǫ−1)]

N .

We want that the union bound term log(3w−1
k ) remains negligible wrt the

complexity term 2Hk. This leads to choose, for instance, wk = 1
k(k+1) since

∑

k≥1
1

k(k+1) = 1 and for small classes of functions (i.e. VC-classes), the entropy

Hk has the order of k, hence log(3w−1
k )≪ Hk. We obtain

∂(f1; f2) ≤
∑

k∈N∗:u≤2−k≤ ¯̄Pf1,f2
∨u

4

√

6×2−k{2Hk+log[3k(k+1)]+log(ǫ−1)}
N .

Remark 6.5. The previous result can also be written in terms of integral. Introduce

the set E ,
{

k ∈ N : 2−k ≤ ( ¯̄Pf1,f2
∨ u)∧ 1

2

}

and take Hk = H(2−k,F , ¯̄P)∨ 1. We
get

∂(f1; f2) ≤ 16
√

3
N

∑

k∈E

√

Hk

2−k

(

2−k − 2−k−1
)

+ 4
√

6 log(3ǫ−1)
N

∑

k∈E

(
√

2)−k

+4
√

6
N

∑

k∈E

(
√

2)−k
√

log[k(k + 1)]

≤ 16
√

3
N

∫ (¯̄Pf1,f2
∨u)∧ 1

2
u
2

√

H(x,F, ¯̄P)∨1
x dx

+4
√

6 log(3ǫ−1)
N

√
2√

2−1

√

¯̄Pf1,f2
∨ u+ 4

√

6
N

∑

k∈E

(
√

2)−k
√

2 log(k + 1).

Let ϕ(x) , 1√
x

√

log
(

e log x−1

log 2

)

for any 0 < x ≤ 1
2 . The function ϕ is decreasing on

[

0; 1
2

]

. The last term can be written as

8
√

3
N

∑

k∈E

2
(

2−k−2−k−1
)

√
2−k

√

log(k + 1) ≤ 16
√

3
N

∫ (¯̄Pf1,f2
∨u)∧ 1

2
u
2

ϕ(x)dx.

6.12. Proof of Theorem 4.4. Let us take U ∈ N such that 2−U < 1
2N . From

Theorem 4.3, for any ǫ > 0, with P⊗2N -probability at least 1− ǫ, for any functions
f1 and f2 in the set F ,
(6.19)

r′(f2)− r′(f1) + r(f1)− r(f2)
≤ ∑

k∈N: 1
2N≤2−k≤ ¯̄Pf1,f2

∧ 1
2

4

√

6×2−k{2Hk+log[3k(k+1)]+log(ǫ−1)}
N .

Let N be a ( 1
3N ,F , ¯̄P·,·)-minimal covering net. From Theorem 8.4 in [1] apply to

W
(

(f1, f2), X
)

= 1f1(X)6=f2(X), we obtain that with P⊗N -probability at least 1− ǫ,
for any function f1, f2 in the net F , we have

P̄′f1,f2
≤ P̄f1,f2

+ 2

√

¯̄Pf1,f2
log[N2(X2N

1 )ǫ−1]

N ,

hence

¯̄Pf1,f2
≤ P̄f1,f2

+

√

¯̄Pf1,f2
log[N2(X2N

1 )ǫ−1]

N .
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Let Ǩ ,
2 log N(X2N

1 )+log(ǫ−1)
N . By solving the previous inequation, we obtain

(6.20) ¯̄Pf1,f2
≤ P̄f1,f2 +

√

ǨP̄f1,f2
+ Ǩ2

4 + Ǩ
2 .

From inequality (4.3), we have

H(u,F , P̄′) ≤ H(u,F , P̄) + (log 2)log(ǫ−1)
(

12
5 + 1 + 2H(u,F,P̄)

(log 2)log(ǫ−1)

)

= 3H(u,F , P̄) + 17 log 2
5 log(ǫ−1),

hence

H(u,F , ¯̄P) ≤ 4H(u,F , P̄) + 17 log 2
5 log(ǫ−1).

Taking a union bound with weight 1
k(k+1)

, we obtain that with P⊗2N -probability

at least 1− ǫ, for any k ≥ 1, we have

(6.21) H(2−k,F , ¯̄P) ≤ 4H(2−k,F , P̄·,·) + 2.4 log[k(k + 1)ǫ−1].

Let H ′k , 4H(2−k,F , P̄·,·)+2.4 log[k(k+1)ǫ−1]. Rigorously, we cannot apply The-

orem 4.3 for Hk = H ′k since H ′k is not always an upper bound of H(2−k,F , ¯̄P) ∨ 1.
However we can modify the proof of Theorem 4.3 to take into a “probably approx-
imatively correct” inequality. Therefore, combining Inequalities (6.19), (6.20) and

(6.21), letting K̄ ,
2H′

U +log(ǫ−1)
N and

Ē ,

{

k ∈ N∗ : 1
2N ≤ 2−k ≤ P̄f1,f2

+
√

K̄P̄f1,f2
+ K̄2

4 + K̄
2

}

,

we obtain that with P⊗2N -probability at least 1− 3ǫ, for any functions f1, f2 in F ,
we have

r′(f2)− r′(f1) + r(f1)− r(f2) ≤
∑

k∈Ē

4

√

6×2−k{2H′
k+log[3k(k+1)]+log(ǫ−1)}

N .

To obtain the announced result, we simplify this formula by using
(6.22)

P̄f1,f2
+
√

K̄P̄f1,f2
+ K̄2

4
+ K̄

2
≤ P̄f1,f2

+
√

K̄P̄f1,f2
+ K̄ ≤ 5

4
P̄f1,f2

+ 2K̄,

log[U(U + 1)] ≤ log
[(

2 + log N
log 2

)(

3 + log N
log 2

)]

≤ log 6 + 2 log
(

e
2 log 2 logN

)

and

2H ′k + log[3k(k + 1)ǫ−1] ≤ 8H(2−k,F , P̄·,·) + 6 log[k(k + 1)ǫ−1] + 1.

6.13. Proof of Corollary 4.5. Let f ∈ F . If ¯̄Pf̂ERM,f = 0, then we trivially

have r′(f̂ERM) ≤ r′(f). Otherwise, we have ¯̄Pf̂ERM,f ≥ 1
2N
. Let K ∈ N such that

¯̄Pf̂ERM,f

2
< 2−K ≤ ¯̄Pf̂ERM,f . From Theorem 4.3, with P⊗2N -probability at least 1−ǫ,

we have

r′(f̂ERM)− r′(f) ≤ ∑

k≥K

4

√

6×2−k{2V log(e2k+2)+log[3k(k+1)]+log(ǫ−1)}
N

≤ ∑

k≥K

4

√

6×2−k{(2V +1) log(e2k+2)+log(ǫ−1)}
N

≤ 4
√

6(2V +1)
N

∑

k≥K

√

2−k log(e2k+2) + 4
√

6log(ǫ−1)
N

∑

k≥K

(
√

2)−k
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Now, for any k ≥ K ≥ 0 and V ≥ 1, we have log(e2k+2)
log(e2K+2)

≤ (k−K)(log 2)
1+2 log 2 +1. Therefore

we get

r′(f̂ERM)− r′(f) ≤ 4
√

6(2V +1)2−K log(e2K+2)
N

∑

k≥0

√

2−k
(

k log 2
1+2 log 2 + 1

)

+4
√

6log(ǫ−1)
N (

√
2)−K

√
2√

2−1

≤ 4
√

6(2V +1)2−K log(e2K+2)
N

∑

k≥0

√

2−k
(

k log 2
1+2 log 2 + 1

)

+4
√

6log(ǫ−1)
N

(
√

2)−K
√

2√
2−1

≤ 47
√

V +1
N

√

¯̄Pf̂ERM,f log
(

8e
¯̄Pf̂ERM,f

)

+ 34

√

¯̄Pf̂ERM,f log(ǫ−1)

N

For the second assertion of the corollary, we use Jensen’s inequality and the
concavity of x 7→

√

x log(8ex−1) in order to obtain that for any function f ∈ F ,

P⊗NR(f̂ERM) ≤ R(f) + 47

√

(V +1)P⊗2N ¯̄Pf̂ERM,f

N log
(

8e

P⊗2N ¯̄Pf̂ERM,f

)

+34

√

P⊗2N ¯̄Pf̂ERM,f

N
.

6.14. Proof of Corollary 4.6. For κ = +∞ (i.e. no margin assumption), the
result comes from inequality (4.5) since the function x 7→ x log(8e/x) is an increa-
sing function on [0; 1], hence upper bounded by its value for x = 1. Specifically, we
obtain

(6.23) P⊗NR(f̂ERM)−R(f̃) ≤ 83
√

V +1
N + 34√

N
.

Note that it is thanks to the chaining that we get rid of the logN factor.
For κ < +∞, chained and unchained results lead to the same convergence rate:
(

V
N logN

)
κ

2κ−1 .
To obtain this rate from the previous bounds, we just need to link the variance

term P⊗2N ¯̄Pf̂ERM,f̃ with P⊗NPf̂ERM,f̃ in order to use the margin assumption.

Combining Inequalities (6.20) and (6.22), we obtain

¯̄Pf̂ERM,f̃ ≤ 5
4 P̄f̂ERM,f̃ +

4 log N(X2N
1 )+2log(ǫ−1)

N

≤ 5
4
P̄f̂ERM,f̃ +

4V log( 2eN
V )+2log(ǫ−1)

N
,

hence

(6.24) P⊗2N ¯̄Pf̂ERM,f̃ ≤ 5
4
P⊗NPf̂ERM,f̃ +

4V log( 2eN
V )+2

N
.

Now, by the margin assumption and Jensen’s inequality, we have

(6.25) P⊗NPf̂ERM,f̃ ≤ C′′P⊗N
(

∆
1
κ

)

≤ C′′
(

P⊗N∆
)

1
κ .

The convergence rate then follows from (6.24), (6.25) and either (4.4) or (4.5).

6.15. Proof of Lemma 5.1. Let ~σj,r , (σ1, . . . , σj−1, r, σj+1, . . . , σm) for any
r ∈ {−1, 0,+1}. The distribution P~σj,0

is such that P~σj,0
(dX) = µ(dX) and

P~σj,0
(Y = 1|X) =

{

1
2 for any X ∈ Xj

P~σ(Y = 1|X) otherwise
.
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Introduce the quantities πr,j ,
P

⊗N
~σj,r

P⊗N
~σj,0

(ZN
1 ) =

∏N
i=1

[

1 + r1Xi∈Xj
(2Yi − 1)ξ(Xi)

]

for

any r ∈ {−1; +1}. Let ν denote the distribution of a Rademacher variable:

ν(σ = +1) = ν(σ = −1) =
1

2
.

The variational distance between two probability distributions P1 and P2 is defined
as V (P1,P2) , sup

A measurable set

{

P1(A) − P2(A)
}

. When the distributions P1 and

P2 are absolutely continuous wrt a probability distribution P0, we have

V (P1,P2) = 1
2

∫
∣

∣

P1

P0
− P2

P0

∣

∣dP0 = 1−
∫ (

P1

P0
∧ P2

P0

)

dP0.

We have successively

(6.26)

sup
P∈P

{

P⊗NP[f̂(X) 6= Y ]− P[f∗P(X) 6= Y )
}

≥ sup
~σ∈{−1;+1}m

{

(

P⊗N
~σ

)

P~σ[f̂(X) 6= Y ]− P~σ[f∗P~σ
6= Y ]

}

= sup
~σ∈{−1;+1}m

{

(

P⊗N
~σ

)

P~σ

(

ξ(X)1f̂(X)6=f∗
P~σ

(X)

)

}

= sup
~σ∈{−1;+1}m

{

P⊗N
~σ

(

∑m
j=1 µ

[

ξ(X)1
f̂(X)6= 1+σj

2 ;X∈Xj

]

)

}

≥ Eν⊗m

∑m
j=1 P

⊗N
~σ

[

µ
[

ξ(X)1
f̂(X)6= 1+σj

2 ;X∈Xj

]

]

= Eν⊗m

∑m
j=1 P

⊗N
~σj,0

(

P⊗N
~σ

P⊗N
~σj,0

µ
[

ξ(X)1
f̂(X)6= 1+σj

2 ;X∈Xj

]

)

= Eν⊗(m−1)(dσ1,...,dσj−1,dσj+1,...,dσm)

∑m
j=1 P

⊗N
~σj,0

Eν(dσj)
(

P⊗N
~σ

P
⊗N
~σj,0

µ
[

ξ(X)1
f̂(X)6= 1+σj

2 ;X∈Xj

]

)

≥ Eν⊗(m−1)(dσ1,...,dσj−1,dσj+1,...,dσm)

∑m
j=1 P

⊗N
~σj,0

[

(π−1,j ∧ π+1,j)Eν(dσj)µ
[

ξ(X)1
f̂(X)6= 1+σj

2 ;X∈Xj

]

]

= Eν⊗(m−1)(dσ1,...,dσj−1,dσj+1,...,dσm)

∑m
j=1

1
2µ
[

ξ(X)1X∈Xj

]

[

1− V
(

P⊗N
~σj,−1

,P⊗N
~σj,+1

)]

= mw
2
µ
[

ξ(X)


X ∈ Xj

]

[

1− V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)]

.

Now let us prove

(6.27) V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)

≤ b
√
Nw.

First, we have

(6.28) V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)

=

N
∑

l=1

(

N

l

)

wl(1− w)N−lVl,

where Vl , V
(

P⊗l
−1,P

⊗l
+1

)

and Pσ , Pσ,1,...,1(·|X ∈ X1) for any σ ∈ {−1,+1}. By

simple computations, we get V1 = µ[ξ(X)|X ∈ Xj ]. From Jensen’s inequality, by

the concavity of x 7→
√

1− x2, we have
√

1− b2 = µ
[√

1− ξ2(X)


X ∈ Xj

]

≤
√

1− {µ[ξ(X)|X ∈ Xj ]}2,
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hence V1 ≤ b.
For l ≥ 2, we upper bound the variational distance by the Hellinger distance.

By definition, the Hellinger distance H(P,Q) satisfies 1 − H2(P,Q)
2 =

∫
√
dP
√
dQ.

Hence the tensorization equality is 1− H2(P⊗l,Q⊗l)
2

=
(

1− H2(P,Q)
2

)l
. We have

Vl ≤ H
(

P⊗l
−1,P

⊗l
+1

)

=

√

2
(

1−
[

1− H2(P−1,P+1)
2

]l)

and 1− H2(P−1,P+1)
2 = µ

[√

1− ξ2(X)|X ∈ X1

]

=
√

1− b2, by definition of b. Now,

for any l ≥ 2 and x ≥ 0, 2
(

1 −
[

1 − x2
]

l
2

)

≤ lx2. Finally, for any l ≥ 1, we have

Vl ≤ b
√
l. Putting this result in equality (6.28), we get

V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)

≤ b
N
∑

l=0

P

( N
∑

i=1

ǫi = l

)√
l,

where the ǫi are i.i.d. random variables such that P(ǫi = 1) = w = 1− P(ǫi = 0).

So we have V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)

≤ bP
√

∑N
i=1 ǫi ≤ b

√

P
∑N

i=1 ǫi = b
√
Nw.

Remark 6.6. The last inequality in (6.26) is an equality when for any j ∈ {1, . . . , m},
f̂ = argmax

r∈{−1;+1}
P⊗N

~σj,r
on Xj , i.e. when f̂ is the maximum likelyhood estimator on

the set X − X0.

Appendix A. Proof of inequality (6.2)

For any r > 0, define Γ(r) ,
∫ +∞
0

ur−1 exp(−u)du. Integrating by parts, we
obtain the well-known property Γ(r + 1) = rΓ(r).
• We have

(A.1)

π exp
(

− λ∆R
)

=
∫ +∞
0

π
{

exp
(

− λ∆R
)

≥ u
}

du

= exp(−λ) +
∫ 1

exp(−λ)
π
{

exp
(

− λ∆R
)

≥ u
}

du

= exp(−λ) +
∫ 1

0
λ exp

(

− λx
)

π
(

∆R ≤ x
)

dx

Let us introduce A′ , exp(−C′′′). Since we have π(∆R ≤ x) = xC′[
A′+η(x)

]

with

η(x) = o
x→0

(xs) and η(x) ≤ x−C′
and

∫ +∞
0

λ exp
(

− λx
)

xC′
dx = Γ(C′+1)

λC′ , we get

∣

∣

∣
π exp

(

− λ∆R
)

− A′ Γ(C′+1)

λC′ − exp(−λ)
∣

∣

∣

=
∫ 1

0
λ exp

(

− λx
)

xC′
η(x)dx+ A′

∫ +∞
1

λ exp
(

− λx
)

xC′
dx

Since we have
∫ 1

0
λ exp

(

− λx
)

xC′
η(x)dx

=
∫

1√
λ

0 λ exp
(

− λx
)

xC′+s o
x→0

(1)dx+
∫ 1

1√
λ

λ exp
(

− λx
)

xC′
η(x)dx

≤ o
λ→+∞

(

λ−(C′+s)
)

+
∫ 1

1√
λ

λ exp
(

− λx
)

dx

= o
λ→+∞

(

λ−(C′+s)
)

and
∫ +∞
1

λ exp
(

− λx
)

xC′
dx = o

λ→+∞

(

λ−(C′+s)
)

, we obtain

(A.2) π exp
(

− λ∆R
)

= A′
Γ(C′+1)+ o

λ→+∞
(λ−s)

λC′
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• From equalities (A.1), we have
(A.3)

π
[

∆R exp
(

− λ∆R
)]

= exp(−λ) +
∫ 1

0
(λx− 1) exp

(

− λx
)

π
(

∆R ≤ x
)

dx.

We have just seen that
∫ 1

0
exp

(

− λx
)

π
(

∆R ≤ x
)

dx = A′
Γ(C′+1)+ o

λ→+∞
(λ−s)

λC′+1 . Be-
sides, from the same argument as above, we have

∫ 1

0
λx exp

(

− λx
)

π
(

∆R ≤ x
)

dx = A′
Γ(C′+2)+ o

λ→+∞
(λ−s)

λC′+1 .

Since Γ(C′ + 2) = (C′ + 1)Γ(C′ + 1), we obtain

π
[

∆R exp
(

− λ∆R
)]

= A′
C′Γ(C′+1)+ o

λ→+∞
(λ−s)

λC′+1 .

• Combining the previous results, we obtain π−λR∆R =
C′+ o

λ→+∞
(λ−s)

λ .

Appendix B. Proof of inequality (6.4)

Let α > 0 depend on λ such that λα
κ

κ−1 →
λ→+∞

0. Then there exists 0 < ζ < 1

depending on λ such that ζ →
λ→+∞

1 and λ
(

α
1−ζ

)
κ

κ−1 →
λ→+∞

0. Let hα(x) , x−αx 1
κ

and x0 ,
(

α
κ

)
κ

κ−1 . The function h decreases on [0; x0] and increases on [x0; +∞].
We have

π exp
[

− λhα(∆R)
]

= π
{

exp
[

− λhα(∆R)
]

1hα(∆R)≤ζ∆R

}

+π
{

exp
[

− λhα(∆R)
]

1hα(∆R)>ζ∆R

}

≤ exp
[

− λhα(x0)
]

π
{

∆R ≤
(

α
1−ζ

)
κ

κ−1

}

+ π exp
[

− λζ∆R
]

≤ exp
[

(κ− 1)λ
(

α
κ

)
κ

κ−1
](

α
1−ζ

)
C′κ
κ−1

[

1 + o
λ→+∞

(1)
]

+π exp
[

− λζ∆R
]

From equality (A.2), we get

π−λR exp
(

λα∆R
)

= exp
[

(κ− 1)λ
(

α
κ

)
κ

κ−1

]

λC′( α
1−ζ

)
C′κ
κ−1

[

1
Γ(C′+1)

+ o
λ→+∞

(1)
]

+
1+ o

λ→+∞
(λ−s)

ζC′

= O
λ→+∞

(

λC′[ α
1−ζ

]
κC′
κ−1

)

+ 1 + o
λ→+∞

(λ−s) + O
λ→+∞

(

1− ζ
)

Taking ζ = 1−
(

λα
κ

κ−1
)

(κ−1)C′
κC′+κ−1 , we obtain

log π−λR exp
(

λα∆R
)

= O
λ→+∞

(

[

λα
κ

κ−1
]

(κ−1)C′
κC′+κ−1

)

+ o
λ→+∞

(λ−s).

Appendix C. Proof of inequality (6.6)

We start with the following lemma.

Lemma C.1. Let h : R∗ → R be a C3 convex function such that there exists u0 > 0
satisfying h′(u0) = 0 and h′′(u0) > 0. Let φ : R∗ → R be a continuous non negative
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function such that φ(u0 > 0) and u 7→ φ(u) exp(−t0u) integrable for some t0 > 0.
Then for any A > u0, we have

∫ A

0
φ(u) exp

[

− th(u)
]

du ∼
t→+∞

φ(u0) exp
[

− th(u0)
]

√

2π
th′′(u0)

.

Proof. • Since the function h′′ is non negative, continuous, h′′(u0) > 0 and h′(u0) =
0, there exists c > 0 such that for any u ∈ [0;A], h(u) − h(u0) ≥ c(u − u0)

2. Let

αt , t−p with 1
3
< p < 1

2
. We have

∫

[0;u0−αt]∪[u0+αt;A]
φ(u) exp

[

− th(u)
]

du

≤ exp
[

− th(u0)
] ∫

[0;u0−αt]∪[u0+αt;A]
φ(u) exp

[

− tc(u− u0)
2
]

du

= exp
[

− th(u0)
]

O
t→+∞

(

exp
[

− ctαt
2
])

.

• From Taylor’s theorem, for any u ∈ [u0 − αt; u0 + αt], there exists u∗ ∈
[u0 − αt; u0 + αt] such that

h(u) = h(u0) + h′′(u0)
2 (u− u0)

2 + h′′′(u∗)
6 (u− u0)

3

Let A′′ , sup[
u0
2 ;A]

∣

∣

h′′′(u)
6

∣

∣ and It ,
∫

[u0−αt;u0+αt]
φ(u) exp

[

− th′′(u0)
2 (u− u0)

2
]

du

We get
∫

[u0−αt;u0+αt]
φ(u) exp

[

− th(u)
]

du ≤ exp
[

A′′tα3
t

]

exp
[

− th(u0)
]

It

and
∫

[u0−αt;u0+αt]
φ(u) exp

[

− th(u)
]

du ≥ exp
[

− A′′tα3
t

]

exp
[

− th(u0)
]

It.

We have
∣

∣

∣
It −

∫ +∞
−∞ φ(u0) exp

[

− th′′(u0)
2

(u− u0)
2
]

du
∣

∣

∣

≤
∫

[u0−αt;u0+αt]
|φ(u)− φ(u0)| exp

[

− th′′(u0)
2 (u− u0)

2
]

du

+
∫

]−∞;u0−αt]∪[u0+αt;+∞[
φ(u0) exp

[

− th′′(u0)
2 (u− u0)

2
]

du

≤ o
t→+∞

(

∫ +∞
−∞ exp

[

− th′′(u0)
2

(u− u0)
2
]

du
)

+ O
t→+∞

(

exp
[

− h′′(u0)
2 tαt

2
]

du
)

Since we have
∫ +∞
−∞ exp

[

− th′′(u0)
2 (u− u0)

2
]

du =
√

2π
th′′(u0)

, we obtain

It =
[

φ(u0) + o
t→+∞

(1)
]

√

2π
th′′(u0)

.

• Combining the previous results, we obtain
∫ A

0
φ(u) exp

[

− th(u)
]

du =
[

φ(u0) + o
t→+∞

(1)
]

exp
[

− th(u0)
]

√

2π
th′′(u0)

.

�

By assumption, we may write π
(

∆R ≤ x
)

= exp
(

− C′x−
q
κ − C′′′

)

[1 + η(x)]

with η(x) = o
x→0

(1). Let A′ , exp(−C′′′), u0 , argminx>0

(

x + C′x−
q
κ

)

, H ,

u0 + C′u0
− q

κ and θ , 2Hλ−
κ

κ+q .
From inequality (A.1), we have

(C.1)
π exp

(

− λ∆R
)

= exp(−λ) +
∫ 1

0
λ exp

(

− λx
)

π
(

∆R ≤ x
)

dx

≤ exp(−λθ) +
∫ θ

0
λ exp

(

− λx
)

π
(

∆R ≤ x
)

dx
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Besides, we have
∫ θ

0
exp

(

− λx
)

π
(

∆R ≤ x
)

dx

= A′
∫ θ

0
exp

(

− λx− C′x− q
κ

)

[1 + η(x)]dx

= A′
∫ 2H

0
exp

(

− λ q
κ+q
[

x+ C′x−
q
κ

])[

1 + η
(

λ−
κ

κ+q x
)]

dx

For any β > 0, there exists λ0 such that for any λ > λ0 and any x ≤ θ, we have
∣

∣η
(

λ−
κ

κ+q x
)∣

∣ ≤ β. We obtain
∣

∣

∣

∣

∫ θ
0

exp(−λx)π(∆R≤x)dx

A′ ∫ 2H
0

exp
(

−λ
q

κ+q

[

x+C′x− q
κ

])

dx
− 1

∣

∣

∣

∣

≤ β.

Using Lemma C.1, we get
(C.2)
∫ θ

0
exp

(

− λx
)

π
(

∆R ≤ x
)

dx ∼
λ→+∞

A′
∫ 2H

0
exp

(

− λ q
κ+q
[

x+ C′x−
q
κ

])

dx

∼
λ→+∞

exp
(

− λ q
κ+qH

)

So inequality (C.1) implies

(C.3) π exp
(

− λ∆R
)

∼
λ→+∞

λ exp
(

− λ q
κ+qH

)

.

From equality (A.3), we have

π
[

∆R exp
(

− λ∆R
)]

= exp(−λ)−
∫ 1

0
exp

(

− λx
)

π
(

∆R ≤ x
)

dx

+λ
∫ 1

0
x exp

(

− λx
)

π
(

∆R ≤ x
)

dx.

Using similar computations to the one used to prove (C.2) and from the equality
∫ θ

0
x exp

(

− λx− C′x− q
κ

)

[1 + η(x)]

=
∫ 2H

0
λ−

κ
κ+q x exp

(

− λ q
κ+q
[

x+ C′x−
q
κ

])[

1 + η
(

λ−
κ

κ+q x
)]

dx,

we obtain

π
[

∆R exp
(

− λ∆R
)]

∼
λ→+∞

λ
q

κ+q u0 exp
(

− λ q
κ+qH

)

.

Consequently, we have proved π−λR∆R ∼
λ→+∞

u0λ
− κ

κ+q . By definition of u0, we

get π−λR∆R ∼
λ→+∞

(

qC′

κλ

)
κ

κ+q .

Appendix D. Proof of inequality (6.7)

Let 0 < α ≤ c̆λ−
κ−1
κ+q for some constant c̆ > 0 to be determined, and 1

2 < ζ < 1.

We use once more the function hα(x) , x−αx 1
κ which is minimum at x0 ,

(

α
κ

)
κ

κ−1 .

Let ν , η
{(

α
1−ζ

)
κ

κ−1
}

. We have

π exp
[

− λhα(∆R)
]

= π
{

exp
[

− λhα(∆R)
]

1hα(∆R)≤ζ∆R

}

+π
{

exp
[

− λhα(∆R)
]

1hα(∆R)>ζ∆R

}

≤ exp
[

− λhα(x0)
]

π
{

∆R ≤
(

α
1−ζ

)
κ

κ−1

}

+ π exp
[

− λζ∆R
]

≤ exp
{

λ(κ− 1)
(

α
κ

)
κ

κ−1 − C′
(

1−ζ
α

)
q

κ−1 − C′′′
}

(1 + ν)

+π exp
[

− λζ∆R
]
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Using (C.3), we obtain

π−λR exp
(

λα∆R
)

≤ λ−1 exp
(

Hλ
q

κ+q + λ(κ− 1)
(

α
κ

)
κ

κ−1 − C′
(

1−ζ
α

)
q

κ−1

)[

C̆ + o
λ→+∞

(1)
]

+ζ exp
(

λ
q

κ+qH
[

1− ζ q
κ+q
]

)[

1 + o
λ→+∞

(1)
]

Let ζ = 1 −
(

2H
C′
)

κ−1
q αλ

κ−1
κ+q so that C′

(

1−ζ
α

)
q

κ−1 = 2Hλ
q

κ+q and let c̆ > 0 such

that (κ− 1)
(

c̆
κ

)
κ

κ−1 ≤ H. Then we have

π−λR exp
(

λα∆R
)

≤ λ−1
[

C̆ + o
λ→+∞

(1)
]

+ exp
{

λ
q

κ+q q
κ+q

HO(1− ζ)
}[

1 + o
λ→+∞

(1)
]

= O
λ→+∞

(

exp
{

C̆λ
q

κ+q αλ
κ−1
κ+q

})

,

hence

log π−λR exp
(

λα∆R
)

= O
λ→+∞

(

λ
q

κ+q αλ
κ−1
κ+q

)

.

Appendix E. Another way of getting the right order

This section proves that by using well-known results, we can obtain a lower
bound having the same spirit as Lemma 5.1 but without proper constants.

Applying Lemma 6.4 to the set of probability distributions

D ,
{

P⊗N : P ∈ D′
}

where D′ ,
{

Pσm
1

: σm
1 ∈ S ⊂ {−1; +1}m

}

and S satisfies δ(Σ,Σ′) ≥ m
4 for any

Σ 6= Σ′ ∈ S and |S| = ⌊em
8 ⌋. From Lemma 6.3, such a set S exists. With any

estimator f̂ : ZN → F(X ,Y), we can associate an estimator T̂ : ZN → D defined

as T̂ (ZN
1 ) = P⊗N , where P ∈ D′ minimizes µ[ξ(X)1f∗

P
(X)6=f̂(ZN

1 )(X)].

By Birgé’s lemma, we have sup
P∈D′

P⊗N
[

T̂ (ZN
1 ) 6= P

]

≥ 0.36 ∧
(

1 − KD
|D| log |D|

)

.

Now, when T̂ (ZN
1 ) 6= P, we have RP(f̂)−RP(f∗P) ≥ m

8 wb
′. Therefore, we get

(E.1) sup
P∈D

{

P⊗NRP(f̂)−RP(f∗P)
}

≥ m

8
wb′
[

0.36 ∧
(

1− KD
|D| log |D|

)]

.

For any P 6= Q ∈ D′, we have

K(P,Q) ≤ Nµ
[

ξ(X) log

(

1 + ξ(X)

1− ξ(X)

)

1X /∈X0

]

≤ Nmwb′ log

(

1 +B

1−B

)

,

where B , sup
x∈X−X0

ξ(x). If we assume that B ≤ Cb < 1, we get

K(P,Q) ≤ CNmwb2

for some constant C > 0. Since we have |D| = ⌊em
8 ⌋, we obtain

KD
|D| log |D| ≤ C

log⌊e m
8 ⌋
Nmwb2 ≤ C′Nwb2

for m large enough and some constant C′ > 0. So we obtain the right order to
the extent that when the quantity Nwb2 is small enough, the order of the bound
is given by the product mwb.
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Appendix F. Proof of Theorem 5.2

•When L = 0: let x0, x1, . . . , xV−1 denote the V points shattered by the model.
Let us take































m = V − 1
X0 = X −

{

x1, . . . , xV−1

}

Xj = {xj}
µ(Xj) = w for any j ∈ {1, . . . , m}
µ({x0}) = 1−mw
b = 1 (ξ ≡ 1)

,

where w is a free positive parameter which satisfies mw ≤ 1 (since µ is a probability
distribution). By noticing that

1− V
(

P⊗N
−1,1,...,1,P

⊗N
1,1,...,1

)

= µ⊗N
(

for any i ∈ {1, . . . , N}, Xi /∈ Xj

)

= (1− w)N

and using inequality (6.26), we obtain

sup
P∈P

{

P⊗NRP(f̂)−RP(f∗P)
}

≥ V−1
2 sup

w≤ 1
V −1

{

w
(

1− w
)N
}

This supremum is attained for w = 1
N+1 when N ≥ (V − 2) ∨ 1 and for w = 1

V−1

otherwise.
• When 0 ≤ L ≤ 1

2
: once more, x0, x1, . . . , xV−1 denote the V points shattered by

the model. This time, we take






































m = V − 1
X0 = X −

{

x1, . . . , xV−1

}

Xj = {xj}
µ(Xj) = w for any j ∈ {1, . . . , m}
µ({x0}) = 1−mw
ξ(x) =

{

b0 when x ∈ X0

b otherwise

,

where w is a free positive parameter which satisfies mw ≤ 1 (since µ is a probability
distribution) and b and b0 belong to [0; 1]. Since we have

L =
1

2
mw(1− b) +

1

2
(1−mw)(1− b0)

and b0 ∈ [0; 1], the parameters m,w and b should satisfy

mw(1− b) ≤ 2L ≤ 1−mwb.

Since this condition implies that mw ≤ 1, we have the following lower bound

sup
P∈P

{

P⊗NRP(f̂)−RP(f∗)
}

≥ sup
w≥0

0≤b≤1
mw(1−b)≤2L≤1−mwβ

1
2
mwb

[

1− b
√
Nw

]

.

From this lower bound, one can recover the first assertion of Theorem 5.2 with a
constant slightly worsened (due to the upper bound (6.27)). We will now slightly
weaken this result in order to get a simple lower bound. Introduce x = b2wN . The
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previous supremum can be written as

sup
x≥0

0<b≤1
(V −1)x

bN
1−b

b ≤2L
(V −1)x

bN ≤1−2L

1
2

(V−1)x
bN

[

1−√x
]

≥ sup
x≥0

0<b<1
(V −1)x

bN
1−b

b =2L

2L b
1−b≤1−2L

1
2

(V−1)x
bN

[

1−√x
]

= sup
x>0

b= 2

1+

√

1+ 8LN
(V −1)x

b≤1−2L

1
2

(V−1)x
bN

[

1−√x
]

= sup
0<x≤ (1−2L)2N

V −1

(V−1)x
4N

(

1 +
√

1 + 8LN
(V−1)x

)

[

1−√x
]

> sup
0<x≤ (1−2L)2N

V −1

√

L(V−1)x
2N

[

1−√x
]

(A)

=







√

L(V−1)
32N when (1−2L)2N

V−1 ≥ 1
4

√

L(1−2L)2

8
otherwise.

Note that the step (A) prevents us to have a good lower bound when L = o
(

V−1
N

)

.

In this last case, the lower bound (A) can be replaced with V−1
2N x(1−√x) which,

by taking x = 1
4
, leads to the desired bound V−1

16N
.
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Abstract

There exist many different generalization error bounds forclassification.
Each of these bounds contains an improvement over the othersfor cer-
tain situations. Our goal is to combine these different improvements into
a single bound. In particular we combine the PAC-Bayes approach intro-
duced by McAllester [1], which is interesting for averagingclassifiers,
with the optimal union bound provided by the generic chaining technique
developed by Fernique and Talagrand [2]. This combination is quite nat-
ural since the generic chaining is based on the notion of majorizing mea-
sures, which can be considered as priors on the set of classifiers, and such
priors also arise in the PAC-bayesian setting.

1 Introduction

Since the first results of Vapnik and Chervonenkis on uniformlaws of large numbers for
classes of{0, 1}-valued functions, there has been a considerable amount of work aiming
at obtaining generalizations and refinements of these bounds. This work has been carried
out by different communities. On the one hand, people developing empirical processes the-
ory like Dudley and Talagrand (among others) obtained very interesting results concerning
the behaviour of the suprema of empirical processes. On the other hand, people explor-
ing learning theory tried to obtain refinements for specific algorithms with an emphasis on
data-dependent bounds.
One crucial aspect of all the generalization error bounds isthat they aim at controlling the
behaviour of the function that is returned by the algorithm.This function is data-dependent
and thus unknown before seeing the data. As a consequence, ifone wants to make state-
ments about its behaviour (e.g. the difference between its empirical error and true error),
one has to be able topredictwhich function is likely to be chosen by the algorithm. But

∗Secondary affiliation: CREST, Laboratoire de Finance et Assurance, Malakoff, France



since this cannot be done exactly, there is a need to provide guarantees that hold simulta-
neously for several candidate functions. This is known as the union bound. The way to
perform this union bound optimally is now well mastered in the empirical processes com-
munity.
In the learning theory setting, one is interested in bounds that are as algorithm and data
dependent as possible. This particular focus has made concentration inequalities (see e.g.
[3]) popular as they allow to obtain data-dependent resultsin an effortless way. Another
aspect that is of interest for learning is the case where the classifiers are randomized or
averaged. McAllester [1, 4] has proposed a new type of bound that takes the randomization
into account in a clever way.
Our goal is to combine several of these improvements, bringing together the power of
the majorizing measures as an optimal union bound techniqueand the power of the PAC-
Bayesian bounds that handle randomized predictions efficiently, and obtain a generalization
of both that is suited for learning applications.
The paper is structured as follows. Next section introducesthe notation and reviews the
previous improved bounds that have been proposed. Then we give our main result and
discuss its applications, showing in particular how to recover previously known results.
Finally we give the proof of the presented results.

2 Previous results

We first introduce the notation and then give an overview of existing generalization error
bounds. We consider an input spaceX , an output spaceY and a probability distribution
P on the product spaceZ , X × Y. LetZ , (X,Y ) denote a pair of random variables
distributed according toP and for a given integern, letZ1, . . . , Zn andZ ′1, . . . , Z

′
n be two

independent samples ofn independent copies ofZ. We denote byPn, P ′n andP2n the
empirical measures associated respectively to the first, the second and the union of both
samples.
To each functiong : X → Y we associate the corresponding loss functionf : Z →
R defined byf(z) = L[g(x), y] whereL is a loss function. In classification, the loss
function isL = Ig(x) 6=y whereI denotes the indicator function.F will denote a set of
such functions. For such functions, we denote their expectation underP by Pf and their
empirical expectation byPnf (i.e. Pnf = n−1

∑n
i=1 f(Zi)). En, E

′
n andE2n denote the

expectation with respect to the first, second and union of both training samples.
We consider the pseudo-distancesd2(f1, f2) = P (f1 − f2)2 and similarlydn, d

′
n andd2n.

We define the covering numberN(F , ǫ, d) as the minimum number of balls of radiusǫ
needed to coverF in the pseudo-distanced.
We denote byρ andπ two probability measures on the spaceF , so thatρPf will actually
mean the expectation ofPf whenf is sampled according to the probability measureρ.
For two such measures,K(ρ, π) will denote their Kullback-Leibler divergence (K(ρ, π) =

ρ log dρ
dπ whenρ is absolutely continuous with respect toπ andK(ρ, π) = +∞ otherwise).

Also,β denotes some positive real number whileC is some positive constant (whose value
may differ from line to line) andM1

+(F) is the set of probability measures onF . We
assume that the functions inF have range in[a, b].

Generalization error bounds give an upper bound on the difference between the true and
empirical error of functions in a given class, which holds with high probability with respect
to the sampling of the training set.
Single function. By Hoeffding’s inequality one easily gets that for each fixedf ∈ F , with
probability at least1− β,

Pf − Pnf ≤ C
√

log 1/β

n
. (1)

Finite union bound. It is easy to convert the above statement into one which is valid



simultaneously for a finite set of functionsF . The simplest form of the union bound gives
that with probability at least1− β,

∀f ∈ F , Pf − Pnf ≤ C
√

log |F|+ log 1/β

n
. (2)

Symmetrization. When F is infinite, the trick is to introduce the second sample
Z ′1, . . . , Z

′
n and to consider the set of vectors formed by the values of eachfunction in

F on the double sample. When the functions have values in{0, 1}, this is a finite set and
the above union bound applies. This idea was first used by Vapnik and Chervonenkis [5] to
obtain that with probability at least1− β,

∀f ∈ F , Pf − Pnf ≤ C
√

log E2nN(F , 1/n, d2n) + log 1/β

n
. (3)

Weighted union bound and localization. The finite union bound can be directly extended
to the countable case by introducing a probability distributionπ overF which weights each
function and gives that with probability at least1− β,

∀f ∈ F , Pf − Pnf ≤ C
√

log 1/π(f) + log 1/β

n
. (4)

It is interesting to notice that now the bound depends on the actual functionf being con-
sidered and not just on the setF . This can thus be called alocalizedbound.
Variance. Since the deviations betweenPf andPnf for a given functionf actually de-
pend on its variance (which is upper bounded byPf2/n or Pf/n when the functions are
in [0, 1]), one can refine (1) into

Pf − Pnf ≤ C
(
√

Pf2 log 1/β

n
+

log 1/β

n

)

, (5)

and combine this improvement with the above union bounds. This was done by Vapnik and
Chervonenkis [5] (for functions in{0, 1}).
Averaging. Consider a probability distributionρ defined on a countableF , take the expec-
tation of (4) with respect toρ and use Jensen’s inequality. This gives with probability at
least1− β,

∀ρ, ρ(Pf − Pnf) ≤ C
√

K(ρ, π) +H(ρ) + log 1/β

n
,

whereH(ρ) is the Shannon entropy. The l.h.s. is the difference betweentrue and empirical
error of a randomized classifier which usesρ as weights for choosing the decision function
(independently of the data). The PAC-Bayes bound [1] is a refined version of the above
bound since it has the form (for possibly uncountableF )

∀ρ, ρ(Pf − Pnf) ≤ C
√

K(ρ, π) + logn+ log 1/β

n
. (6)

To some extent, one can consider that the PAC-Bayes bound is arefined union bound where
the gain happens whenρ is not concentrated on a single function (or more preciselyρ has
entropy larger thanlogn).
Rademacher averages. The quantityEnEσ supf∈F

1
n

∑

σif(Zi), where theσi are inde-
pendent random signs (+1,−1 with probability1/2), called the Rademacher average for
F , is, up to a constant equal toEn supf∈F Pf −Pnf which means that it best captures the
complexity ofF . One has with probability1− β,

∀f ∈ F , Pf − Pnf ≤ C
(

1

n
EnEσ sup

f∈F

∑

σif(Zi) +

√

log 1/β

n

)

. (7)



Chaining. Another direction in which the union bound can be refined is byconsidering
finite covers of the set of function at different scales. Thisis called thechainingtechnique,
pioneered by Dudley (see e.g. [6]) since one constructs a chain of functions that approxi-
mate a given function more and more closely. The results involve the Koltchinskii-Pollard
entropy integral as, for example in [7], with probability1− β,

∀f ∈ F , Pf − Pnf ≤ C
(

1√
n

En

∫ ∞

0

√

logN(F , ǫ, dn)dǫ+

√

log 1/β

n

)

. (8)

Generic chaining. It has been noticed by Fernique and Talagrand that it is possible to
capture the complexity in a better way than using minimal covers by considering majorizing
measures (essentially optimal for Gaussian processes). Let r > 0 and(Aj)j≥1 be partitions
of F of diameterr−j w.r.t. the distancedn such thatAj+1 refinesAj . Using (7) and
techniques from [2] we obtain that with probability1− β, ∀f ∈ F

Pf − Pnf ≤ C





1√
n

En inf
π∈M1

+(F)
sup
f∈F

∞
∑

j=1

r−j
√

log 1/πAj(f) +

√

log 1/β

n



 . (9)

If one takes partitions induced by minimal covers ofF at radiir−j , one recovers (8) up to
a constant.
Concentration. Using concentration inequalities as in [3] for example, onecan get rid of
the expectation appearing in the r.h.s. of (3), (8), (7) or (9) and thus obtain a bound that
can be computed from the data.

Refining the bound (7) is possible as one can localize it (see e.g. [8]) by computing the
Rademacher average only on a small ball around the function of interest. So this comes
close to combining all improvements. However it has not beencombined with the PAC-
Bayes improvement. Our goal is to try and combine all the above improvements.

3 Main results

Let F be as defined in section 2 witha = 0, b = 1 andπ ∈ M1
+(F). Instead of using

partitions as in (9) we use approximating sets (which also induce partitions but are easier
to handle here). Consider a sequenceSj of embedded finite subsets ofF : {f0} , S0 ⊂
· · · ⊂ Sj−1 ⊂ Sj ⊂ · · · .
Let pj : F → Sj be maps (which can be thought of as projections) satisfyingpj(f) = f
for f ∈ Sj andpj−1 ◦ pj = pj−1.

The quantitiesπ, Sj andpj are allowed to depend onX2n
1 in an exchangeable way (i.e.

exchangingXi andX ′i does not affect their value). For a probability distribution ρ on
F , define itsj-th projection asρj =

∑

f∈Sj
ρ{f ′ : pj(f

′) = f}δf , whereδf denotes
the Dirac measure onf . To shorten notations, we denote the average distance between
two successive “projections” byρd2

j , ρd2
2n[pj(f), pj−1(f)]. Finally, let ∆n,j(f) ,

P ′n[f − pj(f)]− Pn[f − pj(f)].

Theorem 1 If the following condition holds

lim
j→+∞

sup
f∈F

∆n,j(f) = 0, a.s. (10)

then for any0 < β < 1/2, with probability at least1− β, for any distributionρ, we have

ρP ′nf − P ′nf0 ≤ ρPnf − Pnf0 + 5

+∞
∑

j=1

√

ρd2
jK(ρj, πj)

n
+

1√
n

+∞
∑

j=1

χj(ρd
2
j),



whereχj(x) = 4

√

x log
(

4j2β−1 log(e2/x)
)

.

Remark 1 Assumption(10) is not very restrictive. For instance, it is satisfied whenF is
finite, or whenlimj→+∞ supf∈F |f−pj(f)| = 0, almost surely or also when the empirical
process

[

f 7→ Pf − Pnf
]

is uniformly continuous (which happens for classes with finite
V C dimension in particular) andlimj→+∞ supf∈F d2n(f, pj(f)) = 0.

Remark 2 Let G be a model (i.e. a set of prediction functions). Letg̃ be a reference
function (not necessarily inG). Consider the class of functionsF =

{

z 7→ L[g(x), y] :

g ∈ G ∪ {g̃}
}

. Letf0 = L[g̃(x), y]. The previous theorem compares the risk on the second
sample of any (randomized) estimator with the risk on the second sample of the reference
functiong̃.

Now let us give a version of the previous theorem in which the second sample does not
appear.

Theorem 2 If the following condition holds

lim
j→+∞

sup
f∈F

E
′
n

[

∆n,j(f)
]

= 0, a.s. (11)

then for any0 < β < 1/2, with probability at least1− β, for any distributionρ, we have

ρPf − Pf0 ≤ ρPnf − Pnf0 + 5

+∞
∑

j=1

√

E′n[ρd2
j ]E
′
n[K(ρj , πj)]

n
+

1√
n

+∞
∑

j=1

χj

(

E
′
n[ρd2

j ]
)

.

4 Discussion

We now discuss in which sense the result presented above combines several previous im-
provements in a single bound.
Notice that our bound is localized in the sense that it depends on the function of interest (or
rather on the averaging distributionρ) and does not involve a supremum over the class.
Also, the union bound is performed in an optimal way since, ifone plugs in a distributionρ
concentrated on a single function, takes a supremum overF in the r.h.s., and upper bounds
the squared distance by the diameter of the partition, one recovers a result similar to (9)
up to logarithmic factors but which is localized. Also, whentwo successive projections
are identical, they do not enter in the bound (which comes from the fact that the variance
weights the complexity terms). Moreover Theorem 1 also includes the PAC-Bayesian im-
provement for averaging classifiers since if one considers the setS1 = F one recovers
a result similar to McAllester’s (6) which in addition contains the variance improvement
such as in [9].
Finally due to the power of the generic chaining, it is possible to upper bound our result by
Rademacher averages, up to logarithmic factors (using the results of [10] and [11]).

As a remark, the choice of the sequence of setsSj can generally be done by taking succes-
sive covers of the hypothesis space with geometrically decreasing radii.

However, the obtained bound is not completely empirical since it involves the expectation
with respect to an extra sample. In the transduction setting, this is not an issue, it is even
an advantage as one can use the unlabeled data in the computation of the bound. However,
in the induction setting, this is a drawback. Future work will focus on using concentration
inequalities to give a fully empirical bound.



5 Proofs

Proof of Theorem 1: The proof is inspired by previous works on PAC-bayesian bounds
[12, 13] and on the generic chaining [2]. We first prove the following lemma.

Lemma 1 For anyβ > 0, λ > 0, j ∈ N
∗ and any exchangeable functionπ : X 2n →

M1
+(F), with probability at least1− β, for any probability distributionρ ∈ M1

+(F), we
have

ρ
{

P ′n[pj(f)− pj−1(f)]− Pn[pj(f)− pj−1(f)]
}

≤ 2λ
n ρd

2
2n[pj(f), pj−1(f)] + K(ρ,π)+log(β−1)

λ .

Proof Let λ > 0 and letπ : X 2n →M1
+(F) be an exchangeable function. Introduce the

quantity∆i , pj(f)(Zn+i)− pj−1(f)(Zn+i) + pj−1(f)(Zi)− pj(f)(Zi) and

h , λP ′n
[

pj(f)− pj−1(f)
]

− λPn

[

pj(f)− pj−1(f)
]

− 2λ2

n
d2n

[

pj(f), pj−1(f)
]

. (12)

By using the exchangeability ofπ, for anyσ ∈ {−1; +1}n, we have

E2nπe
h = E2nπe

− 2λ2

n d2n[pj(f),pj−1(f)]+ λ
n

∑n
i=1 ∆i

= E2nπe
− 2λ2

n d2n[pj(f),pj−1(f)]+ λ
n

∑n
i=1 σi∆i .

Now take the expectation wrtσ, whereσ is an-dimensional vector of Rademacher vari-
ables. We obtain

E2nπe
h = E2nπe

− 2λ2

n d2n[pj(f),pj−1(f)]
∏n

i=1 cosh
(

λ
n∆i

)

≤ E2nπe
− 2λ2

n d2n[pj(f),pj−1(f)]e
∑n

i=1
λ2

2n2 ∆2
i

where at the last step we use thatcosh s ≤ e s2

2 . Since

∆2
i ≤ 2

[

pj(f)(Zn+i)− pj−1(f)(Zn+i)
]2

+ 2
[

pj(f)(Zi)− pj−1(f)(Zi)
]2
,

we obtain that for anyλ > 0, E2nπe
h ≤ 1. Therefore, for anyβ > 0, we have

E2nIlog πeh+log β>0 = E2nIπeh+log β>1 ≤ E2nπe
h+log β ≤ β, (13)

On the event
{

log πeh+log β ≤ 0
}

, by the Legendre’s transform, for any probability distri-
butionρ ∈ M1

+(F), we have

ρh+ log β ≤ log πeh+log β +K(ρ, π) ≤ K(ρ, π), (14)

which proves the lemma.

Now let us apply this result to the projected measuresπj andρj . Since, by definition,π, Sj

andpj are exchangeable,πj is also exchangeable. Sincepj(f) = f for anyf ∈ Sj , with
probability at least1− β, uniformly in ρ, we have

ρj

{

P ′n[f − pj−1(f)]− Pn[pj(f)− pj−1(f)]
}

≤ 2λ

n
ρjd

2
2n[f, pj−1(f)] +

K ′j
λ
,

whereK ′j , K(ρj, πj) + log(β−1). By definition ofρj , it implies that

ρ
{

P ′n[pj(f)−pj−1(f)]−Pn[pj(f)−pj−1(f)]
}

≤ 2λ

n
ρd2

2n[pj(f), pj−1(f)]+
K ′j
λ
. (15)



To shorten notations, defineρd2
j , ρd2

2n[pj(f), pj−1(f)] and ρ∆j , ρ
{

P ′n[pj(f) −
pj−1(f)] − Pn[pj(f) − pj−1(f)]

}

. The parameterλ minimizing the RHS of the previ-
ous equation depends onρ. Therefore, we need to get a version of this inequality which
holds uniformly inλ.

First let us note that whenρd2
j = 0, we haveρ∆j = 0. Whenρd2

j > 0, letm
√

log 2
2n and

λk = mek/2 and letb be a function fromR
∗ to (0, 1] such that

∑

k≥1 b(λk) ≤ 1. From the
previous lemma and a union bound, we obtain that for anyβ > 0 and any integerj with
probability at least1− β, for anyk ∈ N

∗ and any distributionρ, we have

ρ∆j ≤
2λk

n
ρd2

j +
K(ρj , πj) + log

(

[b(λk)]−1β−1
)

λk
.

Let us take the functionb such that
[

λ 7→ log
(

[b(λ)]−1
)

λ

]

is continuous and decreasing.

Then there exists a parameterλ∗ > 0 such that2λ∗

n ρd2
j =

K(ρj ,πj)+log([b(λ∗)]−1β−1)
λ∗ . For

any β < 1/2, we have(λ∗)2ρd2
j ≥ log 2

2 n, henceλ∗ ≥ m. So there exists an integer
k ∈ N

∗ such thatλke
−1/2 ≤ λ∗ ≤ λk. Then we have

ρ∆j ≤ 2λ∗

n

√
eρd2

j +
K(ρj ,πj)+log([b(λ∗)]−1β−1)

λ∗

= (1 +
√
e)

√

2
nρd

2
j

[

K(ρj , πj) + log ([b(λ∗)]−1β−1)
]

.
(16)

To have an explicit bound, it remains to find an upperbound of[b(λ∗)]−1. When b is
decreasing, this comes down to upperboudingλ∗. Let us chooseb(λ) = 1

[log( e2λ
m )]2

when

λ ≥ m andb(λ) = 1/4 otherwise. Sinceb(λk) = 4
(k+4)2 , we have

∑

k≥1 b(λk) ≤ 1.

Tedious computations giveλ∗ ≤ 7m

√
K′

j

ρd2
j

which combined with (16), yield

ρ∆j ≤ 5

√

ρd2
jK(ρj , πj)

n
+ 3.75

√

ρd2
j

n
log
(

2β−1 log
[ e2

ρd2
j

])

.

By simply using a union bound with weights taken proportional to 1/j2, we have that the
previous inequation holds uniformly inj ∈ N

∗ provided thatβ−1 is replaced withπ2

6 j
2β−1

(

since
∑

j∈N∗ 1/j2 = π2/6 ≈ 1.64
)

. Notice that

ρ
[

P ′nf −P ′nf0 +Pnf0−Pnf
]

= ρ∆n,J(f) +
J
∑

j=1

ρj

[

(P ′n −Pn)f − (P ′n −Pn)pj−1(f)
]

becausepj−1 = pj−1 ◦ pj. So, with probability at least1 − β, for any distributionρ, we
have

ρ
[

P ′nf − P ′nf0 + Pnf0 − Pnf
]

≤ supF ∆n,J + 5
∑J

j=1

√

ρd2
j K(ρj ,πj)

n

+3.75
∑J

j=1

√

ρd2
j

n log
(

3.3j2β−1 log
[

e2

ρd2
j

])

.

MakingJ → +∞, we obtain theorem 1. �

Proof of Theorem 2: It suffices to modify slightly the proof of theorem 1. IntroduceU ,

supρ

{

ρh+log β−K(ρ, π)
}

, whereh is still defined as in equation (12). Inequations (14)

implies thatE2ne
U ≤ β. By Jensen’s inequality, we getEne

E
′
nU ≤ β, henceEn

{

E
′
nU ≥

0
}

≤ β. So with probability at least1 − β, we havesupρ E
′
n

{

ρh + log β − K(ρ, π)
}

≤
E
′
nU ≤ 0. �



6 Conclusion

We have obtained a generalization error bound for randomized classifiers which combines
several previous improvements. It contains an optimal union bound, both in the sense of
optimally taking into account the metric structure of the set of functions (via the majorizing
measure approach) and in the sense of taking into account theaveraging distribution. We
believe that this is a very natural way of combining these twoaspects as the result relies
on the comparison of a majorizing measure which can be thought of as a prior probability
distribution and a randomization distribution which can beconsidered as a posterior distri-
bution.
Future work will focus on giving a totally empirical bound (in the induction setting) and
investigating possible constructions for the approximating setsSj .
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