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RESUME. Cette thése a pour objet ’étude et la conception d’algorithmes d’apprentissage,
notamment pour la classification de données et la régression aux moindres carrés. Elle
regroupe quatre articles. Le premier fournit une borne PAC-bayésienne sur l'erreur de
régression aux moindres carrés qui est valable pour toute procédure d’agrégation. La
minimisation de cette borne, qui est numériquement réalisable, conduit a un estimateur
ayant la vitesse de convergence optimale au sens minimax.

Le deuxieme article est le coeur de la these. Il présente de nouvelles bornes PAC-
bayésiennes en classification et déduit de ces bornes des algorithmes originaux reposant,
d’une part, sur les schémas de compression et, d’autre part, sur les lois de Gibbs.

La troisieme partie illustre les bornes introduites dans la deuxieme et montre ’influence
de la distribution a priori sur la qualité des estimateurs de Gibbs. Ce travail discute
également de maniere approfondie les hypotheses de complexité et de marge proposées par
Mammen et Tsybakov (E. Mammen and A.B. Tsybakov, Smooth discrimination analysis,
Ann. Stat., 27, 1808-1829, 1999).

Enfin, le dernier article a pour but d’unifier les bornes existantes sur l'erreur de
généralisation en classification. La borne proposée permet notamment d’établir un lien
entre les complexités PAC-bayésiennes et les nombres de Rademacher.

Mots-clés. Théorie statistique de 'apprentissage, borne PAC-bayésienne, classification,
régression aux moindres carrés, mesure empirique de complexité, mélange, combinai-
son convexe, estimateur randomisé, loi de Gibbs, schéma de compression, estimation
adaptative, estimation non-paramétrique, inégalité de déviation, borne sur l'erreur de
généralisation, théorie de Vapnik-Chervonenkis, hypothese entropique, hypothese de marge,
borne sur le risque, chainage, inégalité oracle, algorithme de “boosting”.

ABSTRACT. This PhD thesis is a mathematical study of the learning task — specifically
classification and least square regression — in order to better understand why an algo-
rithm works and to propose more efficient procedures. The thesis consists in four papers.
The first one provides a PAC bound for the L? generalization error of methods based on
combining regression procedures. This bound is tight to the extent that, for an appro-
priate aggregation procedure, we recover known optimal convergence rates. Besides, it is
numerically tractable to derive an optimal aggregating procedure from the bound.

The second paper is the core of the thesis. It provides new PAC-Bayesian bounds in
classification and put forward original algorithms based on compression schemes and Gibbs
distributions.

The third paper illustrates the bounds developed in the second one and shows the
influence of the prior distribution on the efficiency of Gibbs classifiers. It also discusses the
complexity and margin assumptions proposed by Mammen and Tsybakov (E. Mammen
and A.B. Tsybakov, Smooth discrimination analysis, Ann. Stat., 27, 1808-1829, 1999).

The fourth paper aims to unify the numerous generalization error bounds which have
appeared these last decades. It makes in particular the link between Rademacher and
PAC-Bayesian bounds.

Key words and phrases. Statistical learning theory, PAC-Bayesian bound, classification,
least square regression, empirical complexity, mixture, convex aggregation, randomized
estimator, Gibbs classifier, compression scheme, adaptive estimation, nonparametric esti-
mation, deviation inequality, generalization error bound, VC theory, entropy assumption,
margin assumption, risk bound, chaining, model selection, oracle inequality, boosting al-
gorithm.
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Introduction

Statistical Learning Theory is a research field devoted to the statistical analysis
of algorithms for making predictions about the future based on past experiences.
Since the pioneering work of Vapnik and Chervonenkis, the number of researchers
working on this problem have known an exponential growth. A key reason for this
development is that, with the computer revolution, we are able to collect huge
complex data sets in many domains: bioinformatics, insurance, finance and so on,
and many different tasks such as image processing, speech recognition, pattern
recognition, requires efficient feasable algorithms.

Another reason for the development of the field is that the initial theoretical pro-
blem is ill-posed. Namely, we know that there is no uniformly consistent algorithm:
without any knowledge of the probability generating the data (even when the data
are assumed to be independent and identically distributed), there is no algorithm
that guarantees to tend to the best possible prediction function with a given rate.
This “no-free-lunch” theorem implies that we need to make assumptions (such as
the unknown probability distribution is in some known large set of distributions)
and/or to be less ambitious and to change the initial target into attempting to do as
well as the best function in a given subset of prediction functions -called the model.
So the underlying question is: what are these sets? Both sets depends intimately
on the nature of the prediction task and on the way the data are represented. In
other words, there is no general theory which will suit for any sets of data.

For a decade, several almost off-the-shelf efficient algorithms have arisen. The
favourite ones are Support Vector Machines and Boosting algorithms. A less recent
algorithm, the Neural Networks, is still much used by practitioners but requires
much more knowledge to be properly implemented. For “reasonable” sets of data,
these three classifiers predict rather accurately. However there is still often a gain
to preprocess complex data having a peculiar form. This preprocessing step, as
the selection of a limited number of features, is a common way to embody a prior
knowledge on the underlying phenomenon.

This thesis provides a mathematical study of learning tasks — particularly, clas-
sification — in order to better understand algorithms and derive more efficient esti-
mators. In supervised learning, we dispose of a set of training examples

ZN A2 2 (X)) Xie XY, eVi=1,...,N},

where X is some set of inputs (also called patterns, cases, instances or observations)
and ) is some set of outputs (or targets). When ) is finite, the learning task is
called classification (or pattern recognition). When ) is the real line, it is called
regression.

In Statistical Learning Theory, we assume that the examples are generated inde-
pendently from some unknown but fixed probability distribution IP. The goal is to
construct a prediction function f: X — ) (also called decision function, hypothe-
sis, estimator, procedure or algorithm®) based on the training set that minimizes

1. The last three terms refer more to the way the prediction function is chosen.



the expected risk (or generalization error) defined as

R(f) £ Ep(ax,av) LY. f(X)],

where L : Y x Y is a dissimilarity measure on ). The classification task uses the
Hamming distance L(y,y’) = 1,.,, whereas L? regression looks at the square of the
difference: L(y,y’) £ (y —y')?. Since the probability distribution P is unknown, we
need to estimate the expected risk R in order to assess the efficiency of a prediction
function. This is done through the empirical risk (or empirical error)

T(f) = EP(dX,dY)L[Yaf(X)]v

where P £ % vazl d(x,,v;) is the empirical distribution.

We can very easily choose the prediction function such that it fits perfectly all
training points (provided that the inputs in the training set are pairwise distinct).
However this is not sufficient to guarantee a small generalization error. This phe-
nomenon is called overfitting. To avoid it, we need to restrict the class of functions
on which the empirical error is minimized in order to have some guarantee on the
efficiency of the algorithm.

This restriction to a prescribed set of functions — called the model — can lead to
underfitting, i.e. to an estimator which has high empirical and expected risks. The-
refore, to choose the adequate size (also called capacity or complexity) of the model
is a key problem to build consistently efficient estimators. Vapnik-Chervonenkis
theory considers that a huge model can be seen as the limit set of a nested se-
quence of subsets (or submodels) having increasing complexities. This sequence
gives a structure on the model (and to some extent we expect that small submo-
dels contain the best function in the model). Here again, it is a hidden way of
incorporating prior knowledge.

This thesis collects four papers. A common point of these works is the way the
model is structured. Unlike Vapnik-Chervonenkis work and its model selection ap-
proach through Structural Risk Minimization, the PAC-Bayesian approach proposes
to structure the model by putting a prior distribution on it. We believe that viewing
the model through the prior distribution is finer. This prior distribution has not
the same meaning as in Bayesian learning since it does not represent the frequency
according to which we expect to observe data produced by different probability
distributions. It is a way of representing the model which is tightly related to the
Minimum Description Length approach of Rissanen.

This thesis mainly concentrates on classification. However the first? of the four
papers forming this thesis also concerns least square regression. It has been inspired
by the success of boosting and by questions about convex aggregation of d regression
functions. The main result of this work is to provide a tight PAC bound for the L?
generalization error of methods based on combining regression procedures and to
show how this bound can be used to build an adaptive estimator.

Specifically, let R be a class of regression functions indexed by a parameter
0O (i.e. R & {f@ X — V0 € @}) Let M1 (©) denote the set of probability
distributions on the parameter set and 7 € M2 (0) be a prior distribution. In this

2. It is a slightly revised version of the paper accepted by the Annales de I'Institut Henri
Poincaré.
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work, the model is the set of mixtures?

C(R) £ {Epan) fo : p € ML(O)}.

When the set O is finite, C(R) is just the set of all possible convex combinations of
functions in R.

In L? regression, the best prediction function is the conditional expectation fj :
x+— Ep(Y/X = x). Let us assume that

— for any functions f, g in RU{fj}, for any x € X,
|f(z) — g(z)| < B.
— there exists a > 0, M > 0 such that for any z € X,
Ep gy exp (a|Y — fp(X)|/X = x) < M.

The constants «, B and M are assumed to be known by the statistician. Let

f= argmin ;o (g) R(f) denote the best mixture and let p € M (©) be such that
f= E;(46)fo- The complexity of a mixture p is defined as the Kullbach-Leibler
divergence K (p,m) = E,4p) log £(0) when p is absolutely continuous wrt 7 and
K(p,m) = 400 otherwise. The main result is:

Theorem 1. There exist positive constants C1 and Cy (which can be explicited in
terms of a, B and M ) such that for any e > 0 and 0 < A < Cy, with P®N -probability
at least 1 — €, for any probability distribution p € M}F(@), we have

R(E,a0)fo) — R(f) < (1+N) [7(Epa0) fo) — T(f)] B
+2AEp (gx) V aryag) fo (dX) + Cp T Hosle )

Define p, as the minimizer of

K (p.m)

Ba(p) 2 (1+ N7 (Epa0) fo) + 20Epqx) Varae) fo(dX) + Co I\

4 K(p,m)+logllog(CsN)e ']
= N

Let A be a geometric grid of [%, Cl}, for an appro-

priate constant C3 (depending on C; and the radius of the grid) and let C' denote
a constant (possibly depending on «, B and M). From the previous result, we have

— For any € > 0, taking A minimizing
log[log(C3N)e™ 1]
NA

B — (1 4+ \) mi C.
Alpa) — (1 + )gg;grﬂL 2

over the grid A, with P€N-probability at least 1 — ¢, we have
R(E;_(a0)fo) — R(f) < CVK,

— by cutting the training set into two pieces, building p, on the first sample
only, and taking \ as the minimizer of the empirical error on the second
sample of IE;, 49)fo over the grid A, for any € > 0, with PN _probability
at least 1 — ¢,

R(Ej; a0y fo) — R(f) < C(\/KEIP(dX)VaTﬁ(dG)fG(X) v /C>-

3. Here, the prior distribution is not put on the model but on the underlying set of functions R.
In the other papers of the thesis, the prior will effectively be on the model.
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In particular, when © is finite with cardinal d, by taking a uniform prior distribu-
tion, we obtain:

Corollary 2. The two-step procedure is adaptive to the extent that when the best
convex combination belongs to the d initial functions, the convergence rate has the

order of loj%d (which is the model selection rate). In the worst case, the procedure

has the convergence rate 4/ 101%(1’ which is known to be optimal when d > /N.

In the binary classification setting, we implemented the one-step (but non adap-
tive) procedure to classify input data in R? by aggregating stumps and plugging in
the regression function to obtain a decision rule. The accuracy of the prediction of
the resulting algorithm competes with Adaboost in practice (in particular in noisy
classification tasks). Since it is regularized (with the KL-divergence), the algorithm
does not overfit unlike AdaBoost. However, for other basis functions than stumps,
KL-Boost is not as computationally simple as Adaboost.

The second work presented in this thesis provides a better variance control in
PAC-Bayesian bounds for classification and derive original algorithms from these
bounds. The main idea of these classification procedures is to start with the function
having the smallest complexity, and at each step take the function of smallest
complexity having a smaller generalization error with high probability. To compare
the efficiency of successive estimators leads to a better variance estimation.

We consider two types of complexity: a PAC-Bayesian one and a compression
schemes one. The latter gives a simple way of adapting any overfitting estimator 4
into a well-regularized procedure, and also gives a simple criterion to pick the right
algorithm into a family of algorithms.

Specifically, let Z be the product of the input space X and the label space ),
and let F : U:{i%Z” X © x X — )Y denote the family of algorithms indexed by
the parameter 6 € ©. The associated model {Fz?’g :n € N2t € 270 € @} is
huge. Compression schemes consider the small data-dependent subsets of the form:
{Fz?ﬂ n<kgztezZNoc G)}, k being small wrt the integer .

For any subset I C {1,...,N}, define I° = {1,....N} — I and Z; = (Z;)ic;.
Let P! be the associated empirical distribution P? £ ﬁ > ic1 0z, The law of the

random variable Z; will be denoted P'.
For any I,I’ C {1,...,N}, introduce

Or € argmingoP![Y # Fz, 0(X)]
Fy £ Fyz0, )
J RO 2 By £ R(X)
() L BTV £ B(Y)
P(I,I') £ P[F(X)# Fp(X)]
| P(11) & PUYY[F(X) # Fr(X)]

Let € > 0 be the desired confidence level (see the following theorem). Finally, for

any I,I' C {1,...,N}, define C; ;s (|I|+|Il|)IT(gI(EfIY,))j'lOgK%rH and

S(I,I') £ \/2C;  P(I,17) + S22

4. For instance, the 1-Nearest Neighbor algorithm, non pruned trees, kernel machines as SVM
with heavily penalized errors.
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The following algorithm appropriately chooses the primary algorithm 6 € © and
the compression set I.

Algorithm 1. Let Iy C {1,...,N} of cardinal 2. For any k > 1, define Iy, as the
smallest subset of {1,...,N} of cardinal greater or equal to |Ix_1| such that

T(Ik) — T(Ik_l) + S(Ik,fk_l) <0.

Classify using the function FIK, where i 1s the compression set obtained at the
last iteration.

The following theorem guarantees the efficiency of this procedure.

Theorem 3. With P®N -probability 1 — €, we have
- fO’I“ any ke {17 s 7K}7 R(Ik:) < R(kal)a

~ R(g) < inf  sup {(1+§)R(I) —¢R(I) +2(1+§)S(I,I’)}.
BE20 rri<in)

This procedure can be useful to choose the similarity measure on the input data,
and in particular to choose the kernel (its type and its parameter) of a SVM. It
is an alternative to the commonly used cross-validation procedure which has the
benefit to be theoretically justified.

PAC-Bayesian theorems and the study of randomized estimators lead to consider
another measure of complexity based on the Kullbach-Leibler divergence. Let
denote the prior distribution on a given model indexed by the parameter set ©.
For any measurable real function h such that exp(h) is m-integrable, we define

A exp[h(0)]
ﬂ—h(dg) = Eﬂ(del)pexp[h(G’)] ) W(d@)

We propose an efficient way of choosing the temperature of the Gibbs estimator
which classifies by drawing a function according to the posterior distribution m_ ;.

Besides, we give the following bracketing of the efficiency of Gibbs classifiers.

Theorem 4. For any A >0 and 0 < x < 1, we have
K(7_xr,T_AR)
XA

and for any e >0, 0 < vy < % and 0 < X < 0.39YN, with PEN -probability at least
1 — €, we have

2
K(m_xr,m_ar) < —1: loglE, | . (d0) €XP <—4;Y11\>;‘ E, | naonP[fo(X) # fef(X)})
5y -1

R4 K(m_xp,m_xR)

T_(1—x)AR X)\ )

E R —

<E; ,,R<E

T—(1+x)AR

The third paper in this thesis studies Gibbs classifiers, and other estimators
linked to the empirical risk minimization, under variants of the complexity and
margin assumptions introduced by Mammen and Tsybakov (E. Mammen and A.B.
Tsybakov, Smooth discrimination analysis, Ann. Stat., 27, 1808-1829, 1999).

These assumptions assert that

— the entropy of the model wrt the pseudo-distance (fi,f2) — P[f1(X) #
f2(X)] is bounded by a polynomial function of the inverse of the radius,
i.e. for some C' > 0 and ¢ > 0, for any u > 0, H(u) < C'u™?

— the expected pseudo-distance between a function and the best function
in the model is bounded by a polynomial function of the excess risk, i.e.
for some C"” > 0 and 1 < xk < 4o0, for any function f in the model,
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P[f(X) # f(X)] < C"[R — R(f)]*, where f minimizes the expected risk
over the model.
Under these assumptions, we have

Theorem 5. Let

N*ﬁ,élj\[—ﬁ) forO<g<1
(vn,an) 2 (logN)N*%,C’l(logN)*%N*%) forqg=1
N_l_iq,élN_l_iq> forqg>1

For any classifier minimizing the empirical risk among a uy-covering net N
of the model such that ay < uny < Cyvny and log }Nuw‘ < C’gu;]q for some positive
constants C;i = 1,...,3, we have

Epen R(f) — R(f) < Con
for some constant C' > 0 (dependmg onC", Cii=1,... ,3).
Let Ay > 04%1;” for some constant C’4, and let ™ be the uniform distribution
on the net Ny, . Then we have

EIP®NE R—R(f) S éUN

W,)\N.,‘
for some constant C' > 0 (depending onC",Cii=1,... ,4).

The previous convergence rates are optimal to the extent that we prove associated
lower bounds. The proof of this theorem requires the chaining trick introduced by
Dudley (R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.,
6, 899-929, 1978). This trick appears to be the only tool to properly take into
account a polynomial entropy assumption, which holds for any radius. For complex
classes (i.e. ¢ > 1), we note that the optimal convergence rate is obtained since we
upper bound the excess risk with an integral entropy which does not start from 0,
but from the radius of the net we consider.

Consider the stronger margin assumption: for some ¢””,C"” > 0 and 1 < k < 400,
for any functions f in the model,

'[R—R(f)]* <PIf(X)# f(X)] < C"[R—R(f)]~.

Under this assumption, two phenomenons occur

=

— we can prove that some particular estimators has the optimal convergence
rate without having recourse to chaining.

— we no longer have discontinuities in results concerning ¢ < 1 and ¢ > 1.
Specifically, let CiN ~TE 1D <uy < CyN 72*”~+1+q. For any classifier mi-
nimizing the empirical risk among a uy-covering net N, with log ’Nu ~ } <
Csuy?, we have Epen R(f) — R(f) < CN~z°=1%a

We also consider bracketing polynomial entropy assumptions. These are much
more restrictive than covering ones. For instance, under these assumptions,

— with high probability, the empirical covering nets are “similar” to the ex-
pected ones,

— the ERM-classifier ® is optimal whereas it was not even necessarily consistent
under polynomial covering entropy assumptions.

5. Empirical Risk Minimizer.
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We deal also with the case of logarithmic entropy assumptions: without surprise©,
we find the same convergence rates as for VC classes. Once more, chaining was
the key tool to get rid of the logarithmic factor appearing in classical Vapnik-
Chervonenkis bounds.

At last, we show that the efficiency of a Gibbs classifier essentially relies on the
weight given by the prior distribution to the balls centered at the best function in
the model and associated with the pseudo-distance (f1,f2) — P[f1(X) # f2(X)].

The last part of this thesis is a joint work with Olivier Bousquet” presented
at the Neural Information Processing Systems conference in December 2003. The
literature is abundant in generalization error bounds in classification, each one
containing an improvement over the others for certain situations. The goal of this
work is to combine these gains into a single bound.

The third work in this thesis had stressed on the usefulness of the chaining trick.
In stochastic processes theory, it is well-known that the integral entropy, which is
tight in many situations, does not capture exactly the expectation of the supremum
of a sub-Gaussian process. A refinement of Dudley’s chaining due to Fernique and
Talagrand allows to be more precise and leads to the introduction of majorizing
measures (M. Talagrand, Majorizing measures: the generic chaining, Ann. Probab.,
24, (3), 1049-1103, 1996).

Our bound combines the generic chaining trick and the PAC-Bayesian bounds
developed in the second paper in this thesis. We see that these two approachs are
linked to the extent that majorizing measures can be seen as prior distributions on
the model.

This paper gives a quick survey of generalization error bounds in classification
and presents our bound from which we can deduce the previous ones up to some
variations. Due to the complexity of the bound (which is inherent to the chaining
technique), its practical use to design new algorithms is still a subject of future
research.

6. since VC classes have logarithmic empirical entropies.
7. Max Planck Institute for Biological Cybernetics — Spemannstrasse 38 — D-72076 Tiibingen
— Germany.
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ABSTRACT. Numerous empirical results have shown that combining regression
procedures can be a very efficient method. This work provides PAC bounds
for the L2 generalization error of such methods. The interest of these bounds
are twofold.

First, it gives for any aggregating procedure a bound for the expected risk
depending on the empirical risk and the empirical complexity measured by
the Kullback-Leibler divergence between the aggregating distribution p and a
prior distribution 7 and by the empirical mean of the variance of the regression
functions under the probability p.

Secondly, by structural risk minimization, we derive an aggregating pro-
cedure which takes advantage of the unknown properties of the best mixture
f: when the best convex combination f of d regression functions belongs to
the d initial functions (i.e. when combining does not make the bias decrease),
the convergence rate is of order (logd)/N. In the worst case, our combining
procedure achieves a convergence rate of order /(log d)/N which is known to
be optimal in a uniform sense when d > v/N (see [10, 15]).

As in AdaBoost, our aggregating distribution tends to favor functions which
disagree with the mixture on mispredicted points. Our algorithm is tested
on artificial classification data (which have been also used for testing other
boosting methods, such as AdaBoost).
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1. INTRODUCTION

Boosting algorithms (AdaBoost introduced by Freund and Schapire in [5], Bag-
ging and Arcing introduced by Breiman in [2], [3]) have been successful in practical
classification applications. With support vector machines, boosting is known to be
one of the best off-the-shelf classification procedure. As a consequence, numerous
researchers have studied the reasons of their efficiency and have looked for means
to extend their application domain to regression problems.

Friedman, Hastie and Tibshirani have proved ([6]) that AdaBoost is a stage-
wise estimation procedure for fitting an additive logistic regression model. From
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this idea, Friedman derive a “gradient boosting machine” to estimate a function
for some specified loss criteria.

Rétsch et al. ([11]) have shown that boosting is similar to an iterative strat-
egy which maximizes the minimum margin of the aggregated classifier using an
exponential barrier. They also use their view to obtain a boosting technique for
regression.

In [15], Yang has studied minimax properties of aggregating regression proce-
dures. In particular, he has proved that when the number d of aggregated proce-
dures is less than /N (where N is the size of the training set), the order of the
convergence rate of the best mixture (in the minimax sense) is the same as the
one of the best linear combination (i.e. d/N). When d is greater than v/N, the
convergence rate of the best convex combination attains y/(logd)/N (see also [10]).

In this paper, we will obtain new bounds for any aggregating procedure (Section
4) and derive from these bounds a procedure which achieves the optimal minimax
convergence rate. Before proving these bounds, we will review Catoni results ([4])
on randomization procedures (Section 3). The estimators obtained by minimization
of the bound are tested on classification using common artificial data: Twonorm,
Threenorm and Ringnorm (Section 5).

2. FRAMEWORK

We assume that we observe an i.i.d. sample Z{¥ = (X;,Y;)Y, of random vari-
ables distributed according to a product probability measure P®", where P is a
probability distribution on (Z,Bz) £ (X ® Y, Bx ® By), (X,Bx) is a measurable
space, Y = R and By is the Borel sigma algebra. Let P(dY|X) denote a regular
version of the conditional probabilities (which we will use in the following without
further mention).

We assume that we have no prior information about the distribution IP of (X, Y),
and that we have to guess it entirely from the training sample. We have to work
with a prescribed set of regression functions since it is well known that there is
generally no estimator f : ZV — F (X,Y) such that

. rrN .
Jlim Peiﬁf<z>{EP®<N“>L Vivon FZ) X)) = b BeLIY, F(X)]} =0,
where F(X,)) denotes the set of all the measurable functions from X to ) and L
is a loss function. However, replacing F(X,)) by the set of mixtures R of a set
of functions R in the previous equality makes the problem feasible (provided the
model R is not too big) with a speed of convergence depending on the capacity (or
complexity) of R. So we are interested in a particular non-parametric regression
problem. For convenience of notation, we will index the functions in the model by
the parameter 6:
R 2 {fy € F(X,V);0 €O}

Note that the set R (or equivalently the parameter set ©) is not necessarily finite.
Let m(df) denote a prior distribution on the measurable space (0,7), where 7
is a o-field on the parameter space ©. In practice, the probability distribution m
will be chosen according to our preferences (and to our prior knowledge had we
some). For instance, if the model R is the set of decision trees of depth lower than
a certain limit and if we do not have any prior knowledge, we would like to favour
small trees with respect to big ones since they are simpler and therefore more easily
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interpretable. To favour these trees, it suffices to give them a bigger m-probability.
On the contrary, if a subset S of R has a w-probability equal to one, then the
functions in the m-negligible set R \ S are eliminated from the model.

We assume that the map (0,z) — fo(z) is (Bx ® 7)-measurable. The set of
mixtures of the set R is written as

R 2 {E (a0) fo; p € ML(O)}.

The best possible guess is defined as the one minimizing the expected risk

R(f) & EpL(Y, f(X)),
where L is the square loss : L(Y,Y’) = (Y — Y’)2. The mean square loss has

the distinguished property of being minimized by the conditional expectation of Y
given X. More precisely, it decomposes into

R(f) =Ep{[Y - Ep(Y/X)]*} + Ep{[Ep(Y/X) — f(X)]*}.
Therefore, minimizing the mean square loss is equivalent to minimizing the qua-

dratic distance to the conditional expectation.
Since the expected risk is not observable, we will have to use the empirical risk

A 1 ~ A
r(f) & 5 D L0 f(X0) = BpL(Y, f(X)),
i=1
where P denotes the empirical distribution
1N
P2 =) 6x.v)
N Z:Zl (X17Y;)

Let ©4, ..., O be subsets of © such that their union is ©. Consider a regression
procedure which estimate the best # among a subset of ©. Using this procedure,
we get él € 04, ...,éM € O

e Deterministic model selection consists in choosing one of the f; to estimate
Ep(Y/X).

e In stochastic model selection (or randomized estimation), the choice of 0; is
randomized. This two-steps procedure (estimating the best 6 in each sub-
model ©; and choosing randomly the sub-model) can be seen as a one-step
procedure if we allow f to be drawn from R according to some posterior
distribution p(df) on the parameter set (©,7) (see [9, 4]).

e In model averaging (or aggregated estimation), the idea is to use a weight-
ing average of the f; , in other words to combine the different estimators.
This could also be done in a one-step procedure searching for the posterior
distribution p on (0, 7) such that f = IE, (46 fo is close to Ep(Y/X).

In this paper, we give results concerning these last two estimation problems. Our
assumptions are the two following ones. First the conditional expectation Ep(Y/X)

and the regression function in the models are relatively bounded in L°°-norm, i.e.
for any f, g in RU{E(Y/X =)}, for any = € X,

(2.1) [f(z) —g(x)| < B.

Secondly, we assume that the noise has a uniform exponential moment conditionally
to the explanatory variable, i.e. there exists a > 0, M > 0 such that for any z € X,

(2.2) Ep(ay) exp(alY — f*(X)|/X = z) < M,
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where f* £ Ep(Y/X = ) is the regression function associated with the distribu-
tion IP. Note that this second assumption is sufficiently weak to deal with the case
in which the output is equal to a function of the input plus a gaussian noise.

Let f denote the best mixture (for the square loss) of the regression functions in
the model R:

(2.3) f £ argmin, g R(f).

Finally, introduce a mixture distribution p € M2 (©) defined as E;49)fo = f (the
probability distribution g is not necessarily unique).

3. RANDOMIZATION

3.1. PAC-Bayesian expected risk bound. The following theorems bound the
expected risk of a randomized procedure in terms of the empirical risk and a term
of empirical complexity relying on the Kullback-Leibler divergence between the
randomizing distribution p and the prior distribution 7. Introduce the functions

GO\ 2 5 + ©552 and H(V) 2

1
T—AG(N)

Theorem 3.1. For any € > 0 and 0 < XA < 2 such that \G(\) < 1, with POV -
probability at least 1 — €, for any randomizing procedure p : ZN — M}F(G)), we
have

(3.1) Epan R(fo) —R(f) < HO\) (Eﬁ(de)r(fe) . (K (p, )+ log<e1>}) :
Proof. See Section 7.1. U

To use this bound, one has to choose arbitrarily the parameter A\. To avoid this
choice, one can use a union bound.

Theorem 3.2. Introduce countable families (X\;)icr and (1;)ic; such that
0 < N\ < %, MNG(A) < 1, m > 0and Y ,.;m = 1. For any € > 0, with
PEN _probability at least 1 — €, for any randomizing procedure p : ZN — J\/li(@),
for any i € I, we have

(3.2)
_ 3 2
Esa0)R(fo) — R(f) < H(\) (Eﬁ(dt‘))r(fe) —r(f)+ 15)\2' {K(p,7)+ 10g[(77¢€)_1]})-

Proof. Introduce the event

) _p(F i 2
A; 2 {Ep(da)ig{i\)i) 2D > Epaoyr(fo) —r(f) + -]5)\1' {K(p,m)+ log[(mﬁ)_l]}}-

From Theorem 3.1, for any i € I, we have P®V (4;) < n;e. Hence we have
P (U 4) < BN (A) < Y=
iEJIAz _ZIP (A;) <Zme €
icl icl
O

The problem is then to choose appropriately the parameter families (););e; and
(1i)ier-
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3.2. Optimal randomizing procedure. In this section we use Theorem 3.2 to
define a randomizing procedure. The bounds in the previous theorems cannot be
computed from the data only. However they can be upper bounded by replacing
the empirical risk of the unknown best mixture r( f) by the infimum over the set
R of the empirical risk infj 7.

Introduce
E;a0yr(fo)—infs 7 B? K(p,m)+lo e !
Q(p, A, 1) = <d91)—)\2()\) =+ 5 (pA[l)—)\Cg?[((;)]) ]
A .
Q(p, No)icr, (mi)icr) = 12? QA(p, Ni,mi)
Q(p) = inf  Q(p, (Ni)ier, (ni)icr)

(Xi)ier €Px

(Mi)ic1€Py
where Py and P, are respectively the set of parameter families (\;)icr and (7;)icr
such that 0 < \; < %, ANiG(A\i) <1,m >0and ), ;n = 1. Then the quantities
Q(p, A, 1) and Q(p, A\;, m;) are respectively slightly weakened version of the RHS of
Inequalities (3.1) and (3.2).

The quantity Q(p) can also be written as
Q(p) = inf Q(p, A\ 1).

0<A<2E such that AG(N\)<1

Let us define the optimal posterior distribution pop¢ as

Popt = argmin Q(p).
peM (O)

For any 0 < € < 1, one may prove the existence of the “argmin” and that pop; is a

Gibbs distribution which can be written as
A e 5T ()
Popt = Nopt

Erge B

- T
r(fo)

for an appropriate parameter 0 < Aopy < % satisfying AoptG(Aopt) < 1. Then the
inverse temperature parameter of the Gibbs distribution is § £ %.

We would like to choose the parameter families such that the infimum
inf, Q(p, (\i)icr, (mi)icr) is not “too far” from the optimal quantity Q(popt). The

bound in Theorem 3.2 is appropriate when its order is ﬁ Therefore relevant

values of A\ are greater than \/Lﬁ Let us define 0 < A < 22 such that AG(A) = 1.
Consider the family (X\;)i=1,... p, where \; £ 2A and p is such that 2,,/% < ﬁ < 2%
When the parameter Ao, belongs to [ﬁ, A[ (which is the case we are interested

in), for any p € M’ (0©), we have
.:ilnf Q(ﬂv )\i7 1) < 2Q(:07 )\opta 1)

i P
So we just lose in the worst case a factor 2. It remains to choose the parameters 7;
such that for any p € ML (0), the quantity Q(p, \;, ;) is not “too far” from the
quantity Q(p, A\;,1). By taking n; = %, i=1,...,p, we lose an additive loglog N
factor in front of the Kullback-Leibler divergence K (p, ) which, in general, would
be for the optimal distribution at least of the same order as the Kullback-Leibler
divergence (in practice, loglog N never exceeds 3).
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Since the minimum over M? (6) of the quantity Q(p, A, 1) (achieved for the

. . . . 7N_2Ar(f) . .
probability distribution p < e™ & ) is
B? N . -1
1 < Eﬂ- — 25 [r(fo)—infz r]) ,
NI - AG(\)] ® { Em(ane 7
let us introduce for any i = 1,...,p,
N 1 p
i = lo , ’
Q Ai[1 = NG ()] & E]EW(dQ)e_J‘;T;z[r(f@)—ir1f7—2 7]

where \; = 2A Finally, we obtain the following randomizing procedure
1. Compute

. A .
lopt = argmin Q;.
1=1,...,p

2. Randomize using the probability distribution

— = (f)

e B22%opt

__NA )
Eﬂ(d@)e B%loptr(fe)

.

Remark 3.1. Note that since our optimal randomizing procedure comes from a de-
viation inequality, the inverse temperature parameter 8 depends on the probability
€. Indeed, to get a higher confidence level, we need to have a bigger A\ and there-
fore to take a bigger (3 (i.e. to be more selective). However in practice € has little
influence on the temperature.

Remark 3.2. Our optimal randomizing distribution is a Gibbs distribution. We
find it in a minimax context. One may notice that the randomizing distribution
minimizing the Bayesian risk in a gaussian noise context is also a Gibbs distribution.
More precisely, consider that the output is given by

Y = fG(X) +n,

where the random variable 7 is a centered gaussian with variance o2 independent
of the input X. The Bayesian risk is

r o 2
Rpay(f) = Eragzv)Epy(azyi) [(YN+1 — f(Xn11)) ]
o 2
= 0%+ Erap 25 Epaxny) | (fo(Xny1) = fF(Xn41))
o 2
= o’+ EIP(dXN+1)E7r(d0/Z{V) (fG(XN+1) - f(XN+1)) .

Hence the optimal estimator is f =B q0/25) fo. It is associated with the posterior
distribution

_Lr(f )

€ 202 e

p(d9) = m(d8) Z) = " - m(dh),
Eﬂe* 262 r(f)

which is a Gibbs distribution with inverse temperature parameter %
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4. AGGRECATED ESTIMATORS

4.1. PAC-Bayesian expected risk bound. In the least square regression frame-
work, there exists a simple relation between the risk of an aggregated estimator and
the one of the associated randomized estimator which is

(4.1) R(E,a9) fo) = Epa0)R(fo) — Ep Var,qg) fo(X)

This equality shows that aggregated regression procedures are more efficient than
randomized ones and that the difference is measured by Ep Var, s fo(X). The first
term of the RHS has already been bounded (see Theorem 3.1). So, to bound the
expected risk of the aggregated estimator, it remains to bound the deviations of the
variance term and this is done with similar techniques to those used for randomized
estimators.

We obtain the following theorems which bound the expected risk of any aggre-
gated estimator in terms of

e the empirical risk

e the empirical complexity measured by the Kullback-Leibler divergence be-
tween the aggregating distribution p and the prior distribution 7 and by
the empirical mean of the variance of the regression functions under the
posterior distribution.

We still denote G()\) = @ 38]2\/&)282 + QA_Aé 22 and H(\) £ #G(A), and we

define g(B) = ef’—ﬁg—ﬁ and h(8) £

1+ﬁg(ﬁ)'

Theorem 4.1. For anye >0, >0 and 0 < A < % such that A\G(X\) < 1, with
PEN _probability at least 1 — 2¢, for any aggregating procedure p : ZN — M}%(@);

R(E p(de)fe) R(f)
(Epme)r fo) = (F) + £x[K (p.m) + log(e )]
(4.2) )( + 2 [2K(,5 ) + log(e 1)})
[7“ Esa0)fo) — ()] + [H(N) — h(8)]V
+ LXK (p, ) + log(e 1>]+BW”[K< ) + log(e™1)]

where V & Ep Var 40y fo-
Proof. See Section 7.2. O

Using a union bound, we get

Theorem 4.2. Introduce countable families (N\;)icr, (Mi)ier, (B5)jes and () er

such that 0 < \; < a2B, MNGA) <1, m >0, Y crm =1, 8, >0,¢ >0
and ZjEJC] = 1. For any € > 0, with PN -probability at least 1 — 2¢, for any

aggregating procedure p : ZN — ML (O), for any i € I and for any j € J, we have
R(Epap) fo) — R(f) < H(Ai )[r(Epcan) fo) — ()] + [H(N) = h(B;)]V
(4.3) + 2R LK (p, ) + Log[(mie) 1]}
+BQJ’;<§J>{2K (p, ) +log[(Ge) ™1}
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Proof. In the proof of Theorem 4.1 (see Section 7.2), we have obtained that with
P®N _probability at least 1 — ¢, for any p € M (0),

B2
~BeVaryan fo < h(B)( —BeVaryn fo + 5375 2K (p,m) + los(e )]

Instead of using a union bound directly on inequality (4.2), we use it on this in-
equation. We get that with P®V -probability at least 1 —¢, for any p € M (©) and
for any j € J,

2

B
—IEpVar, 49y fo < h(ﬁj)( — Ep Var, e fo + NG, {2K (p, ) + 10g[(§j‘5)71]})
J

where (;)jes and ((j)jes are parameter families such that 3; > 0, ¢; > 0 and
de ;¢ = 1. It remains to add this inequation to inequality (3.2) to get the
result. 0

Now let us introduce
(4.4)
B(p, A, 8,¢) £ H(N) <Ep(d0)r(f9) —7(f) + Fx {K(p,m) + log[(ne)‘l]}>
+h(B)( -V + 2NB{2K p, )+ logl(¢e) 1]}
B(p, (Xi)icr, (mi)ier, (B5)je7, ((j)je) = KB A Pg B(p, i, ns, B, ¢5)
jEJ
AM
e?(aB)?"
By bounding the expected risk using Assumptions (2.1) and (2.2), and from the
previous theorem, we obtain

where kK £ 1 +

Corollary 4.3. For any € > 0, with P®Y -probability at least 1 — 2¢, for any
aggregating procedure p : ZV — M (©), we have

R(Esa0)fo) — R(F) < B(p, Ni)ier, (mi)ier, (B))ier (G)je)

Proof. From Theorem 4.1, with P®N_probability at least 1 —2e, for any aggregating
procedure p : ZN¥ — M! (0), we have

=
Since the noise has a conditional uniform exponential moment (Assumption (2.2)),
the expected risk is bounded. Specifically, we can write

R(E,f) =Ep(Y - E(Y/X))’ +Ep(E(Y/X)—E,f)°
€a|YfE(Y/X)\ sup {u2€fo¢u}) +B2
uERJr

(4.6) (
< (2)°M + B?
< kB2,

where Kk = 2(a e +1 Since the quadratic risk R(f ) is positive, for any probability
distribution p, we have

(4.7) Epa0) R(0) — R(f) < xB?.
The result follows from Equalities (4.5) and (4.7). O

This corollary is the keystone of this work since
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e by appropriately choosing the parameter families, one can deduce a parame-
ter-free theorem which has the optimal minimax convergence rate except
for a logarithmic factor (see Section 4.2.1),

e there exists an efficient procedure calculating one of the probability distri-
butions minimizing the bound B(p, (As)icr, (m:)iers (8. (¢;)je) when
the sets I and J are finite (see Section 4.2.2).

4.2. Optimal aggregating procedure.

4.2.1. Comparison with minimax bounds. In this section, we derive from Corollary
4.3 an aggregating procedure which is optimal in a minimax sense according to
lower bounds established by Juditsky and Nemirovski ([7]) and by Yang ([15]). We
still denote p a posterior distribution such that R(IE;)fo) = ming R.

Lemma 4.4. For a well chosen finite parameter families independent from e, for
cmy()<e§l we have

B(p, (\i)icr, (mi)icrs (Bj)jet, (¢)jes) < (e),

where
’z(é) =S 2\/ 61‘7([3) + 6 CQV([)) + 261 + 262
V(p) & EpVaryagfo
2 0,7 o 1e ! 5
Cy 2 Cile) £ BWK(”’ H}ﬁg(L )
Co A Ca(€) & B2 2K(p,m)+log(Lae”h)

8N K2
and k1 and ke, by definition, respectively satisfy 2k1G(k1) = 1 and kag(ka) = 1
and finally

log (4}@11\1)

A log 2

Ly = 21og 2 V2

I3 s log (s;;;gf) 92
2 = 21og 2 v

The proof and the parameter families are given in Section 7.3. From this lemma
and from Corollary 4.3, by using the same parameter families, we get

Theorem 4.5. Any aggregating procedure p minimizing

B(Pa ()\i)izo ..... pa(ni)i:() ..... pa(ﬁj)jzo ..... qa(Cj)j:O ..... q)

wrt the probability distribution p satisfies for any % > € > 0, with P®N -probability
at least 1 — 2e,

R(Esa0)fo) — R(f) < +/(e),
where

{ v (€) 24/C1[2V () + 4Ca] + 6+/Ca[2V (p) + 4C2] + 2C1 + 2Co
V(p) Ep Var;q9) fo-
Proof. see Section 7.4. U

[I> 1]

For a given confidence level € > 0, this bound has the order of \/C~V([)) VC, where

= K(ﬁ’ﬂ)ﬁoglogﬁ]. When the best mixture f belongs to the initial model R, the

variance term vanishes and the order of the bounds is given by C. A particular
case of interest is when the parameter set © is finite: © = {1,...,d}. Taking
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arbitrarily = = %Z?:l 9; (uniform measure on ©), one can check easily that for
any p € M1 (0), we have

K(p,m) = logd — Hy(p) < logd,

where H,(p) denotes the Shannon entropy of p (Hs(p) = — Zle pilogp;). In this
case, when the best convex combination f belongs to the model R (V(5) = 0),

024" (we neglect loglog N terms),

whereas when f is not too close to the regression functions in the model R (i.e.

when V(p) > K(ﬁv”)ﬁoglogﬁ]), the convergence rate will be |/%89V(5). In the

worst case, the quantity V() has the same order as B2, and we find a convergence

the convergence rate of our estimator will be

rate 4/ 101%(1 known to be optimal in the uniform sense as soon as d > /NN according

to the following theorem
Theorem 4.6 (Yang,2001). Let d = N7 for some 7 > 0. There exists a model
R={fieF(X,Y) :i=1,...,d}

such that for any aggregating procedure p, one can find a function f e R =
d - - L
{> i pifi  pe ML{1,...,d}} satisfying

d
N when T <

Epen R(E, —R(fy>C
pen R(IE;a9) fo) (f) > { logd yen 7 >

N[—= N[—=

where the constant C' does not depend on N.

Remark 4.1. This theorem which strenghtens the one of Nemirovski ([10]) has been
further improved by Tsybakov ([13]).

Remark 4.2. In [15], Yang also proposed an adaptive estimator. The advantage
of the procedure designed here is to be feasible, to avoid splitting the data in
many parts and to hold when the regression function wrt the unknown probability
distribution is not in the model R. Besides, our results also hold when the set of
aggregated functions is infinite and under weaker assumptions (particularly on the
noise).

Remark 4.3. Note that the unobservable term r(f) in the bound B does not modify
the probability distribution py g minimizing B(p, A, 1, 3, ¢)*. However the choice of
A among (A;)i=o,..., depends on r(f). To circumvent this difficulty, one can, for

T(Eﬁl(iej\g(),\_)r(f) with

instance, weaken the bound B by replacing

r(Epae) fo) — r(f) + % [ (Epa0y fo) — m(frrm)],

where the function fERM minimizes the empirical risk among the functions in R.
For this algorithm, the assertion of Theorem 4.5 becomes: for any % > € >0,

(4.8) ]P®N <R(Eﬁ(d9)f9) — R(f) S ’y'(e) + T(f) — T(fERM)) Z 1-— 26,

1The distribution px,p minimizes H(N)E,q0)7(fo) — h(B)V + BWQ{@ + %}K(p, ) SO

that it does not depend on 7, ¢ and e.
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since sup {155\;&)}\)} = 1. By using Theorem 4.1 <f0r a posterior distrib-

)\6()\1‘)1‘:0

.....

ution pgprm satisfying K. .. a0)fo = fERM and for A\ and 3 of order loﬁﬂ), we

get that the added term r(f) — 7(fgry) is at most of order loj%jd (we still neglect

loglog N term).

Another solution to determine the right parameters is to cut the training sample
into two parts, use the first part of the training sample to compute the distributions
px,p and use the second part of the training sample to select the best distribution
among the O[(log N )2} distributions (each distribution corresponds to a point in
the (A, B)-grid). From Catoni’s theorem ([4]) concerning progressive mixtures (see
also [1]) in least square regression, this last step is almost free (we just have to

pay a negligible logl%jv additive term), so the convergence rate of the resulting

procedure is effectively of order 4/ C V(p)V C. From Theorem 3.1, this last step can
also be done by simply taking the distribution p) g having the smallest empirical
risk on the second sample?.

Remark 4.4. Had we not been interested in having tight explicit constants, we could
have written Theorem 4.1 in the following way (taking arbitrarily § = \A): there
exists C1,Cy > 0 depending only on the constants B, a and M such that for any
e>0and 0 < ) < C;, with P®N_probability at least 1 — 2¢, for any aggregating
procedure p : ZN — MY (0),
~ ~ _ Cy K(p,m) + log(e?

R(Epap) fo) = R(f) < (1+N)[r(Bpan) fo) —7(f)] +2\V + N (6.) Y ( ),
where we still have V = Ep Var4e) fo- This inequation would have also led to the
optimal convergence rate after optimization of the parameter \'.

Theorem 4.6 also shows that a direct application of our aggregating procedure
is not optimal when d is smaller than v/N, since then the convergence rate towards
functions for which V(p) = EpVar;(4g) fo(z) has the same order as B? is

log(dN) d

N N’
However, in this case (d < v/N), one can consider a grid R’ on the simplex R:

d d
a.
R & {Z —=—fi + a; € N such that ) a; = WdNJ},
= [VaN | i=1
where |z| denotes the integer satisfying z — 1 < |[z| < . We have R’ = R.
Then applying our aggregating procedure to the new initial model R’ for a uniform
prior distribution 7’ on R’, we obtain the desired convergence rate except for the
logarithmic factor.

Proof. The best convex combination f = Zle pifi belongs to

VAN |pi) 1
Sﬂ{izzl L\/Wj fi+LmJCd},

2See the appendix for details
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where S is the simplex {Z?zl pifi © pi > O,Z?zl pi = 1} and Cy is the d-
dimensional cube {27(;121 a;fi : 0 < a; < 1}. This set is the convex combination

of its vertices, so the function f can be written as a convex combination of the
functions in

d / ~
R//é{z H dNinJ+€i
= lvdN]
For any f,g € R”, we have ||f — g|loc < gﬁ, hence® V(p) < ﬁB?
The number of functions in R’ is upper bounded by (L\/ dN J + 1)d. Since we have
K(p,7") <logCard R’ (because the distribution 7’ is uniform over the set R'), we

~ 3 = 5
get C < WB? As a result, we have /CV(p) VC = O(% log N), which is
the desired convergence rate up to the logarithmic factor. U

fi @ € E{O,l}}ﬂR'.

In fact, when d < /N, the optimal convergence rate can also be obtained by
randomizing functions from the grid R’ ¢ R. To combine d regression functions is
then equivalent (in terms of convergence rate) to randomizing with an appropriate
Gibbs distribution on the grid R'.

Remark 4.5. Note that to obtain an algorithm with optimal convergence rate in the
uniform sense, we need not have used sophisticated tools. We just need deviation
inequalities, a simple union bound and to discretize the simplex R. Indeed, any
function f of R satisfies a deviation inequality similar to the one of Lemma 7.2: for
any 0 < \ < % satisfying 8M X < (aB — 2))2e?, the deviations of

Z =Y - f(X)+ [V — f(X))?

are given by

(4.9) log Ep X 55~ < \?

where G()\) £ (ang)zez + e“gg—”. The quantities R(f) and 7(f) are still defined
as
{ R = R - B(f) = Ee[(Y - ()] ~ Ee[(¥ - f(0))’
r(f) = r(f) — r(f) = Ep[(Y—-f(X)]-Ep[(Y-f(X))]
Hence, for any 0 < )\ < % satisfying AG(A) < 1, we have successively

Epox e;_f;r {Bp Z—EpZ[1-AG(N\)]} <1.

For any € > 0,

P®N{2—]¥{EPZ —EpZ[1 — AG(\)]} —log(e™ ) > 0} <e

With P®N_probability at least 1 — ¢, R(f) < % + %%. By using a

union bound, for any discretized simplex Rg;sc with P€N-probability at least 1 — ¢,

3we use that for any random variable X such that a < X < b a.s., the variance of X is bounded

by (b — a)?/4.
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for any f € Rgisc, we get
- 2 -1 ,
R(f) < 7(f) B log(e™ " Card Raisc)
1-AG(A\) N Al = AG(N)]

For some m € IN which will be chosen later, let us take

d d
Raise = {Z %fi : a; € IN such that Zai = m}.
i=1

=1

Then we have

d 2 x d™ when d > m,

and for any ¢ € R there exists f € Ryise such that f = 9llec < %. This last
inequality implies that there exists f € Rg;sc such that
1 & . . B
r(f) = 5 DI2Yi = F(X0) = F(X)IIF(X) - f(X)] <2,
i=1

where &3 & Zim |2n_};\](Xi)_f(Xi)| < 9Zisy lYiJ\;f*(Xi)' + 2B. The algorithm which
minimizes the empirical risk on the net Rg;s. satisfies with P®N-probability at least
1 —¢, for any f € Raise,

S F F(.fdisc) B_210g(€_10&rd Rdisc)

RO<T36y "N an—aaoy

where fyise 2 argminR(f), hence, by taking A\ = k1 defined as 2k1G (k1) =1,
feRdisc

d d <
CardeiSC:(m—F )S{ 2x m? when d <m

A ~ B 28" [710g(m) + log (26~} when d < m
R() — R() <om D 1]y ldloalm) +los(2e™) <
m Ner [mlog(d) +log(2¢~!)]  when d > m
First, assume that the output data Y are bounded. Then we have ¥ < k for
some constant x. By taking m = % when d < V/N and m = /N/logd when

d > /N, we obtain that with P®V-probability at least 1 — e,

. R Cst B2[<2 1oo( X log(2¢~1) hen d < VN
@10) R - R(F) <] S Ll + B ] when d <
Cst B2[y/1ogd 4 108Cc )1 when d > VN

In general, the output data Y are not bounded. However the quantity > behaves
more or less like 2Ep|Y — f*(X)| + 2B. From Assumption (2.2), this expectation
is uniformly bounded wrt the distribution IP. Using once more deviation equalities,
one can prove that with high probability ¥ is bounded. So the bound (4.10) still
holds. As a consequence, we have

PEN p Ay _ p(F) < Cst B4 log(&) when d < VN
()= B(f) < Cst B2y/184  when d > VN

We have shown here that estimators having the optimal convergence rate (up
to a logarithmic factor) can be constructed (but generally not easily implemented)
using the ERM on an appropriate net of the model. It is interesting to notice that,
in a different context ([8, 14]), Mammen and Tsybakov similarly obtained optimal
minimax convergence rate. Note that for linear and convex combination, simpler
proofs exist under stronger assumptions (see [13]).
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4.2.2. Aggregating procedure. We consider the aggregating procedure studied in
Theorem 4.5: the algorithm minimizes the quantity B(p, (A;)icr, (7:)ict, (85) e
(¢j)jes) defined in (4.4) for well chosen parameter families.

This section explains how to minimize efficiently wrt the probability distribution
p the quantity B(p, A, n, 5, () and shows that the resulting aggregated distribution
has the same form as the optimal randomizing distribution (see section 3.2), the
difference being that the quantity that determines the weight given to each function
is not just given by the empirical error but integrates a corrective factor that takes
into account the errors made by the other weighted functions in a similar way as
in Adaboost. Besides we will see that the corrective factor can be obtained by an
algorithm in dual form which involves the choice of a N-dimensional real vector.

For fixed A and 3, we need to minimize a bound of the following type

V(p) = a(r(E, e fo) + bEpVarag) fo + cK (p, 7)),

where a > 0,0 < b < 1 and ¢ > 0%

Writing the dual problem

For any measurable function such that e’ is m-integrable, introduce the proba-
bility distribution

h
é e

Th 4E7T(d9)eh(9) ’

.

Since we have

]Epr(fg) = T(]Ep(de)f@) + ]Efpvarp(de) f@ )
K(p,7_1,(5)) = K(p,7) + ¢Epr(fo) +10g Er(agye™ <"/

we can write
v(p) = a((l—b)r(Eyae)fo) + bE,r(fo) + cK(p,m))
b
= G((l — b)r(BEyap) fo) + cK(p,m_v,(5)) — clog Eﬂ(de)efzr(fe))
— ac(lNcb Yo Vi — Epae) fo(Xi)]? + K (p, Wgr(f)))

b

—aclog ]Ew(dg)e_ﬂ(fe).

Hence minimizing v is equivalent to minimizing

L1

where y1 = 7 1,4, || - || the euclidian norm in R and h: © — R is defined by

m) 2 28 )

The minimization of the function v over the set of probability distributions has
some distinctive features stressed in the following theorem.

4For our bound, we have a = b= BIBIFACQA) hq ¢ = 11\37_? (1 + >\[1—/\G(/\)])'

1
1-AG(A)’ 1+Bg(B) Bl1+Bg(B)]
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Theorem 4.7. For any p € M (0) and any bounded function h : © — RY, the
map ¥ has a unique minimum p in M}F(@) Besides, the probability distribution p
1s the only distribution satisfying

e~ (Ezh,h(6))
ey H(d0),

p(dl) = pi—(m,n,ny(dO) = B
p(do’)

and we have
1
Y(p) —(p) = K(p,p) + §HEph — E;h|]* for any p € ML(O).

Proof. See Section 7.5 O

Introduce d; = % and dy = 10—;}’. From Assumption (2.1), the mappings h;
are bounded and we can apply the previous theorem. So the optimal distribution
has the following form 7% £ T—dy Nr(f)+(w,f(X)), Where w is a N-dimensional vec-
tor to be determined. Note that in support vector machines, we have to solve
a N-dimensional linearly constrained quadratic problem. Here we have a N-
dimensional unconstrained minimization problem. Both methods come down to
an N-dimensional optimization problem because they both write the dual of an
initial learning problem.

For the optimal w, from the previous theorem, the posterior distribution is

T = Ty Nr(f)+2da (Y — B (a9 fo (X), f(X) =Y ) -

So the optimal distribution 7% stresses on functions with low empirical risk and
such that they make the opposite error as the combined estimator (since the bigger
(Y — Erw f(X), fo(X) = Y) is, the more weight 7% gives to fp). This is precisely
the idea that has lead to the first boosting methods, such as AdaBoost.

Solving the dual problem

Note that the unicity of the optimal probability distribution 7% according to
Theorem 4.7 does not give the unicity of the vector w. We have 7, = m,/ if and
only if h = W’ + Cst m-a.s. Therefore we have 7% = % iff (w — w', f(X)) = Cst
T-a.s.

Define
Bw) 2 B(r?) = ac|dy|Bpnf(X) = Y[? ~logEy_,  elvf(X)-BwniC0)]
—aclog]Ewe*%’”(f).
We have

Ve(w) = acVargw f(X) (2d2[Erw f(X) = Y]+ w),

where Var,w f(X) is the covariance matrix of f(X;),i=1,..., N wrt 7. Denote
r the rank of this matrix. Usually, we have r = N. Then there is no vector v such
that (v, f(X)) = Cst m-a.s. Hence, in that case, there is a unique optimal w.

However, it may happen that » < N (for instance when two input vectors are
identical i.e. X; = X for some ¢ # j). Even if it means numbering again, one may
assume that f(X,4+1),..., f(Xn) are w-linear combination of f(X1),..., f(X,) to
the extent that there exists o € R",3* € R, i = r + 1,..., N such that for any
ie{r+1,...,N}

f(X;) = (a", f(X))r+ 3 T-a.s.
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where (-,-), is the dot product in R". From Theorem 4.7, we look for a N-
dimensional vector w such that

(4.11) (w, f(X)) = 2da(Ew[Y — f(X)], (X)) + Cst T-a.8.
Without constraints on w, there is an infinity of such vectors. Since we have

<E7r“’ [Y - f(X)]a f(X)>
= 5 B [V — F(X))1F(X)) - |
F N B[V — (o, F(X))e — B (o, F(X)), + 5)
=21 (E Vi = (X)) + Sis, @B [Y; — (of, f(X))r — ﬁi])focj)
+ N B EY; — (of, f(X)), - 5],

one may set w,1,...,wy to 0 and solve only a r-dimensional minimization problem
for which the unique solution is

N
(4.12) w = 2dy (Y — Erw f(X) + Z al[Yz - <O‘iaE7rwf(X)>r - ﬁz])

i=r+1
Remark 4.6. In the case when none of the functions of the model discriminates X;

from X for some i > j (i.e. fo(Xi) = fo(X;) for any 6 € ©), we have o, = 1 and

o =0 for k # j. Hence, in equality (4.12), there is no additional term in wy, for
k # j and the additional term in w; is simply Y; — E v f(X}).

Remark 4.7. From Assumption (2.1), for any x € X, the mapping [0 — fp(x)] is
bounded. So we can write a bracketing of w. For instance, when » = N, we have

wi € [202(¥s — sup fo(X0)): 20a(Y; — jnf fo(X0))].

Remark 4.8. 1t follows from w,41 = --- = wy = 0 that
L29 (w) =371 Covau[f(Xp), F(X))](2d2Ere [V — f(X;)] + w;)
+ Zi:r—i—l 2d2COV7rw [f(Xk)7 <ai7 f(X)>7“]E7T“’ [Y; - <ai7 f(X)>T - ﬁz]
= 5 Covra F(X0), S (1 + 2001 — )]

#2052, 0f Eanll = (o, SO0 - 91,
hence
V,p(w) = acVar_,. f(X)] {w — 2ds (Y — Erw f(X)

T Y = (B (), - 6 |,

where 17,.¢ is the vector ;—i,k = 1,...,r and Var_, f(X) |T is the covariance
matrix of f(X7),..., f(X,). This is another method of proving that an optimal w
is given by (4.12). It is also the required formula to program a gradient descent
algorithm in order to compute the optimal vector w. However, the variance matrix
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5

being computationnally too expensive’, we would prefer the following alternative

minimization procedure.

Algorithm:
BEGIN
Start with w® = 0.
For [ = 0 to maximum number of iterations do

e Set

N
W =20 (Y B0+ Y @'l - (B fC0) - ).
i=r+1

e Exit the loop if w!*! is not “far” from w'.

e While p(w!t1) > @(w!) do
wl+1 — %(wl + wl+1)_

END
The stopping criteria in the loop comes from

Theorem 4.8. For any w,w’ € RY, we have

pw) — p(w) = ac(dsl|Epw f(X) — By fX)[2 + K (o, 7%)
' + 25 (Bt f(X) ~ V), B f(X) — E s (X))).

In particular, we have
(") — 6(p)
< acBle — 2d, (Y —E_ f(X)+ i, &Y — (@B f(X)), — ﬁi]) H

Proof. See Section 7.6. O

In Section 7.7, we prove that we exit the “While” loop in a finite number of
iterations. Finally, we obtain an algorithm which derives directly from Corollary
4.3. However this procedure tends to regularize too much. The obtained bounds
are upper bounds and even if a lot of care was taken to get sharp bounds, they
still are quantitatively loose for small sample sizes. As a consequence, the regu-
larization parameters coming from these bounds are too conservative. So in our
numerical experiments, these parameters are tuned using validation sets. The pre-
vious minimization procedure will however be used to get the optimal aggregating
distribution associated with a set of these parameters.

4.3. Expected risk bound for any aggregating procedure. From Corollary
4.3, we also derive an empirical bound on the expected risk of any aggregating
procedure. One of the output of the algorithm described in the previous section is

an upper bound of R(IE,wep: f) — R(f). It can also be interesting to upper bound

R(IE wopt f) (since R(f) is unknown). The following corollary gives an observable
upper bound of the expected risk of any aggregating procedure.

5In our numerical experiments described in Section 5, the order of the number of operations
required to compute the N2 covariances is N2 x Nd, where d is the dimensionality of the input
vector (see Corollary 5.3 for details). In this framework, the gradient descent algorithm roughly
loses a factor N in computational complexity wrt to the following procedure.
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Corollary 4.9. For any € > e "N with (P®N)*—pr0bability at least 1 — 3¢, for
any aggregating procedure p : ZN — ML (0),

R(Epanyfo) < r(Epanfo) + B + L2108 4 457 bl )
+2E\/log(6 )\/ 5(do) fo) +IB’+£21°g(6 D

where
IB, = 1n§ Bl(ﬁ? Ala”l?ﬁ]a(j)
B(p, A7, 5,0) 2 H(A)(AG(A)[E (a7 (fo) = inf ] + B2l 1)
—|—h < (p)+B22K(PaW)+10g[(C€) 1])
T fo) )~ !
- H(A)()\G()\)[( ooy fo) — infys r] + B2 K@m)Hogl(ng) ]
FIGOH) + g(5)h(B)]V (o)
+B2h(ﬁ) 2K(pvﬂ);1i;ﬁﬁg[(ce) ]
£ 2 fior(mimgsy)]
_ - V2a g H4log(e—1)
\ V(p) = EpVar,q) fo
and

Me“PTL JELwhere by definition, ry satisfies 2k1G (k1) = 1

A M2e2(aB—1)
{ k3 = 3[(aBe)Z+4aM]
A
= aB 8
Proof. See Section 7.8. O

Remark 4.9. Once more, the threshold on € is negligible, and k3 can be disregarded.

Remark 4.10. When 7(E;9)fo) and V(p) are of order 4, the bound on the ex-

pected risk R(IE;40) fo) is of order %. For bounded noise (i.e. Y — Ep(Y/X)
uniformly bounded on X'), the argument in Section 7.8 can be easily adapted to
get rid of the (log N)* factor (since the deviations of the empirical risk of the best
convex combination can be bounded using the first part of Lemma 7.1). This is the

case in the classification context (see Corollary 4.11).

Remark 4.11. We will see in Section 7.8 that this corollary follows from Corollary
4.3 by controlling the deviations of the empirical risk 7( f ) of the best convex com-
bination. A bound on the expected risk of any randomization procedure can be
similarly deduced from this control.

Remark 4.12. The constants in Corollary 4.9 can be slightly improved by using
remark 7.4. Indeed, when f = Ep(Y/X =), Lemma 7.5 holds for

L =log (Me\/ N = )
2log(e~1)a?R(f)
M2872

and K3 = srataEEIan (since inequality (7.14) can be improved by eliminating

the e*B factor). Therefore the corollary remains true for

M2e—2
R3 = 3[(aBe)214M]
Ky = Me [E1
4 — 4aBV 8
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4.4. Application to binary classification. In binary classification, the output
set is Y = {0, 1}, and the model consists in a set of functions on the input space X
taking their values in [0; 1]. In this framework, the constants o and M in Assump-
tion (2.2) are not relevant since the output is bounded. Besides, we have B = 1.

We still denote g(\) 2 £51=2 p(B) 2 T and we define h()) £

AQ
Theorem 4.2 can be replaced by

1
1-4xg(N)

Theorem 4.10. Introduce countable families (X;)icr, (Mi)icr, (55)jes and () er
such that Ay >0, 4\;g(N\;) <1, 1, >0, > .c;mi=1,8; >0, ;>0 and ZjeJCj =
1. For any e > 0, with P@N -probability at least 1—2¢, for any randomizing procedure
p:2ZN = M}r(@), for any i € I and for any j € J, we have

R(Eae fo) — R(f) < h(X) [r(Epa0) fo) — r(f)] + [A(N:) — R(B))]V

(4.13) + 2O (K (p,m) + logl(me) ']}
';}Vﬁ;}) {2K (p, ) + log[(¢ie) ']}

where V(p) = Ep Var,(ap) fo.

Proof. The proof is similar to the ones which lead to Theorem 4.2. The only
part to modify is in Section 7.2. Since we have trivially B = 1, the deviations of

Zy=—(Y — fo(X))" + (Y = (X)) = [fo(X) — F(X)][2Y — F(X) — fo(X))] given
by Lemma 7.2 can be obtained by using directly Lemma 7.1 to Zy (b =1). We get

log Ep e*Ze—BrZo) < X2 7,2g(\) < 4\2R(0)g()\),
Consequently, G(\) can be replaced by 4g(\). O

From Theorem 4.10, we may derive an empirical bound on the expected risk of
any combining procedure.

Corollary 4.11. For any countable families (X;)icr, (0i)icr, (55)jes and ((5)jes
such that \; >0, 4X\ig(N) <1, 1 >0, > .c;mi =1, 85 >0, >0 and ZjeJCj =
1, for any € > 0, with P®N -probability at least 1 —2¢, for any randomizing procedure
p:ZN — ML(©), we have

lz(Eﬁ(dO)fG) S ( p(d@)fe) B”
og(e— og(e og(e—1
\/21 : (\/ P(dG)fO) + B 1 gQ(N ) o \/1 g( ))

where
( B” = 12? B"(p, \i, nis B, C5)
jeJ
B”(p,\,n,8,¢) £ h() <4)\g()\) B a0yr(fs) — inf g ] + K(p,m%gunerl])
+h(B) (Ba(B)V (p) + 2o rlonlica 1)
= h()) <4)\9()\) [ (Ep(a0).fo) — infz r] + K(p’”)+1{f§[("€)_l]>
\ +[AAg(NVR() + Bg(B)R(B)]V (p) + h(B) 2l roal G

Proof. The proof is similar to the one in Section 7.8. To control the deviations of
the empirical risk 7(f) of the best convex combination, we apply inequality (7.1)
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directly to Z = (Y — f(X )) [0;1]. For any A > 0 and any p € R, we have
(f

PEN(R(f) —r(f) > 1) < EpeneNXEO-r()=p)
< e N (EIP eA(E]pZ—Z)>N
< N(-ru+AEpz)
orH = - + 3 R(f), this last bound is equal to e, e previous inequality
For y = ‘&) + AR(f), this last bound 1 Th 1
holds for any A > 0. To get a small u, we take \ = 2log(e”1) (when R(f) £ 0;

NR(f)
otherwise the result is trivial). It follows that with P®~-probability at least 1 — e,

S \/ 2Aog(c=)R(f)

R(f) — <
(P - r() < | 2B
Using Theorem 4.10, with P®Y-probability at least 1 — 3¢, we obtain

- -1 i
R(f) < R(Eza0) fo) < \/2log(eN)R(f) +1r(Epag) fo) + B”,

where B” are the quantities defined in Corollary 4.11. Hence, we have successively

— e~ 2 1
(\/ R(f) - logQ(T)) < r(Ep0)fo) + B" + %,

~ et e !
VB < \/T(Eﬁ(dmfe) + B+ % * \/%

R(Eja0)fo) < (p(de)fe)+13"

2log(e— log(e— log(e—1
+\/ g( (\/ A O)ft‘)) IB// g2( » \/ g( ))_
O

5. NUMERICAL EXAMPLES : BINARY CLASSIFICATION

5.1. Setup and notations. The setting is quite simple: the input data are d-
dimensional: X = R?. In binary classification, the output set is J = {0,1}. The
model consists in all decision stumps. By definition, these stumps achieve a binary
partition of X along hyperplanes orthogonal to the axes in the canonical base of
X. In other words, they compare one component of the input data to a threshold.
Hence the model is

(5.1) R={aoly,<r +a1ly>-:5€{1,...,d}, 7€ R,ap € [0;1], a1 € [0;1]}.

Recall that the set of all df (distribution functions) is the set of increasing cadlag
functions F' such that
{ lim F(x)

r——00

lim F(x)

T ——+00

0
1

Theorem 5.1. The set R of miztures of elements of R is an additive model
R = {a: — Z;l:l ajhj(x;) @ forany je{l,...,d},hj € H,a; >0

(5.2)
and Z?Zl o = 1},
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where
HE{aF+B81-G)+~v:a>0,3>0,7v>0,a+ 8+~ <1,F df,G df}.

R can also be written
(5.3)
B_) Tt Yot (g Fy(ay) + 6511 Gj(ﬁj)]) : for any j € {1,....d},
Fy df,Gy df,a; > 0,8; >0 and v+ 375_, (o + 35) <1 ’

Proof. By definition, the set of mixtures of elements in R is the set of functions
which can be written as B, 4x)X, where 7 is a probability measure on R. This
definition requires to have put a sigma algebra on R. In our context, we take the
canonical one. Introduce the set

R &2 {og}u{l U 1y >r U Ty er ),

{0r} U {1n} je{l,...,d}{ 82 }j’e{l,...,d}{ 75 )
TER 7 eR
where Ogr : ¢ — 0 and 1g :  — 1. Let us put on R’ its canonical sigma alge-
bra. Denote Mixt(R') the set of mixtures of elements in R’. Since R C Mixt(R’)
and R’ C R, we have Mixt(R') = Mixt(R) = R. Hence any element of R can
be written IE, x)X, where p is a probability distribution on R'. Then define
v = p(1r), for any j € {1,...,d}, a; = p(j), for any j' € {1,...,d}, By = p(j’),
w;(dr) = p(dr/j) the probability distribution on R and v (d7") = p(dr’/j’) the
probability distribution on R. Denote F}; the df of u; and G+ the df of ;. Then we
d , d :

have E,x) X = p(Or)Or+p(1r) IR+ =1 P()Ep@ax/H X+ 521 P(7) Epax/inX.
Hence Eax) X (x) = 7 + Xj_; a;Fj(w;) + 35—, By [1 = Gyr(2;)]. From the defi-
nitions, it comes that for any j € {1,...,d}, F; and G; are df, a; >0, 3; > 0 and
v+ ijl(aj + ;) < 1. Therefore, we have

R C {x =y + 2?21 (ojFj(z;) + B[l — Gj(z;)]) : for any j € {1,...,d},
Fy df,G; df,a; > 0,8; > 0 and 5y + 35_, (a; + ;) < 1},

Inversely, using the same ideas in the reverse order, one can prove the other inclu-
sion. So equality (5.3) is true. Equality (5.2) directly comes from it. O

Remark 5.1. The model R is additive. As any additive model, it cannot classify well
data coming from certain simple generator. One of the simplest is the 4-checked
draughtboard defined as

L(X) =U[0;1] x U[0;1]

8o when z; < £ and z5 < %

_ ) 01 when z; < 5 and 3 > =
LO/X = (21,22) = 5 whenz; > 1 and 2 < %
dp when z1 > 5 and x2 > 3

where d, denotes the Dirac distribution on point a. For this generator, the best
additive model has a misclassification rate of i whereas the Bayes classifier almost
surely classifies well.
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5.1.1. Data sets generators. The training sample will be drawn from the
“twonorm”, “threenorm” and “ringnorm” generators. These generators introduced
by Breiman in [3] have the following definitions

o Twonorm

Both classes have equal probabilities: P(Y = 0) = P(Y = 1) = 3. The

law of probability of X € R? conditional to Y = 0 is a multivariate normal
distribution with unit covariance matrix and mean m_ = (—%, cee —%).
The law of probability of X conditional to Y = 1 is a multivariate normal
distribution with unit covariance matrix and mean m = (%, cees %)

e Threenorm
Both classes have equal probabilities. The law of probability of X € R¢
conditional to Y = 0 is a multivariate normal distribution with unit covari-
ance matrix and mean m £ (—%, %, _\/lﬁ’ %, ...). Conditional to Y = 1,
X is drawn with equal probability from a multivariate normal distribution
with unit covariance matrix and mean m_ and from a multivariate normal
distribution with unit covariance matrix and mean m. .

e Ringnorm
Both classes have equal probabilities. The law of probability of X € R?
conditional to Y = 0 is a multivariate normal distribution with unit co-
variance matrix and mean % The law of probability of X conditional to
Y = 1is a multivariate centered normal distribution with covariance matrix
four times the identity.

Denote G, the multivariate normal density wrt Lebesgue measure with mean g
and unit covariance matrix :

2
_ lz—pll
e 2

G,(zr)= ——F
P«( ) (271_)%
Introduce n; = (0,1,0,1,...), ng = (1,0,1,0,...) and Cst £ 8dlog2. The main
characteristics of these generators are descrlbed in the following tables.

5.1.2. Prior distribution. We are looking for the best classifying function among
the functions of R. In the proof of Theorem 5.1, we have noticed that R is the set
of mixtures of elements in

R 2{0p}U{IR}U{fjrje{l,....d},Te R} U{gy ;5 €{1,....,d}, 7 € R},

where f;.(z) £ 1,,>- and g . (x) £ 1, ,<-. Instead of putting the prior dis-
tribution 7 on R, we will define it on R'. For any j € {1,...,d}, a probability
distribution on { f; -; 7 € R} or equivalently on {g; -; 7 € R} can be seen as a prob-
ability distribution on the parameter 7 € R. We take arbitrarily the distribution m
such that the law of the function f € R’ conditional to f € {f; ;7 € R} and the
law of the function f € R’ conditional to f € {g; ;7 € R} are defined by the same
law G(dt) and such that

m(0Rr) =
R) =

(1
<’TE]R )zidforanyje{l,...,d}
( U {g],T}) & forany j € {1,...,d}

™

k: INTEN T

B
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Twonorm
L(Y) 500 + 201
L(X/]Y =0) N(m_,I)
wprsy | N
L(X) s ——dx
PY =1/X =) Gmfﬁ(ﬁ) = e
frontier (x,m4) =0
Threenorm Ringnorm
L(Y) 500 + 301 500 + 361
L(X/]Y =0) N(m,I) N(%E,T)
LIX]Y =1) G @Gy (2 g N(0,41)
£(X) Gm,(w)+Gmi(x>+2Gm(x>dI Gm+/z<w)2+2%Go(%)dx
PY=1X=2)| & fo. o (@) e ey
frontier e~ valm®) | oJa(ne) _ 9 122 — m4||? — ||z]|* = Cst

In our numerical examples, G will be a centered normal distribution with unit

variance N (0, 1):

5.2. Computation of the bound and of the classifier. Let B(\;, 5;, p) be equal

to the RHS of inequality (4.13) in which we replace the unobservable quantity r(f)
with inf r and we take n; = n = ﬁ and (; = ¢ =

R

2

T
2

e

Nors

G(dr) =

define pa; = Ty Nr(f) (w, 1)) Set

a
b
C
dy
do

\ d3

(5.4)
IB()Hﬁnbd’l) =

1

1—4Xg(N)
1+B9(8)

1 + 1—4Xg(\)
/\é\f BN[1+8g(8)]
cN
1-b
cN

log[(n¢) '] log[(¢e) ']

> e > 1> > >

_|_

1

ik

inf{r(f);fER}

Al1—4Ag(N)]

i

26[1+89(B)]
We have B(X, 3, ) = a[bE;ag)r(fo) + (1 —

1—4Xg(N)

>_

b)r(Epan) fo) + K (p,m)] + ds, hence

ac(da Vi = B,y OGP + diBy,, I [Yi = FX)]?

ac(dy LV = By, f(X0))?

—|—K(ﬁd/1,7r)> + d3

H(dy —dy) S (Vi - 2By, (X)) + p, £(X)))
SN wE,, f(X;) —log m*d’lNr<f>+<w7f<X>>> dy
1

We just need to compute Ere~ AN+ w.f) and then use that for any ¢ €
{1,...,N}, E;, f(X3) = aiwi log E e~ Nr(H+Hw.f(X) o calculate this bound.

Let d} be some real and
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For any input data x € X, the predicted output is

Es, f(x)= % log]EﬂefdllNT(f)Jr(w,f(X))Jruf(x) :

The following theorem gives a simple expression of E e~ N7 (/) +Hw.f(X))+uf(z)
We need first to introduce for any j € {1,...,d} the bijection ¢; onto {1,..., N}
such that

Xoy).g < < Xoy ()5
where X; ; denotes the j-th component of the i-th input vector of the training
data. (We assume that the j-th component of the N input vectors are different.)
By convention, put X, (o),; £ 0 and KXo, (N+1),j £ 100. Define

(1, ) 2 / " Gryar

z1
and for any j € {1,...,d} and [ € {0,..., N},
i1 = (Xoy 1,55 Xoy(141).5)
Introduce for any j € {1,...,d} and x € X, the integer [;(x) € {0, ..., N} satisfying
Xojll;@)g ST < Xojft;(2)+1].5-

Theorem 5.2. We have
Eﬁ@*diNr(f)+<w,f(X)>+uf(fL‘)

4;

:l fd/zN Y2_|_1 7(1/25\71(1 Y) +21 1w1+u_|_4dzj 1{

l(a:) 1¢J |: Zz 1Yo' i)~ dlZz L+1(1 Yg()) Jrzz L+1wcj()+u

_|_€_dlzl 1(1=Y, ())2_d POR 1+1 o' )+Z =1Wo;(3)

+6(Xo, (1, (215> %) [6 4T ¥ 0= T (Y )+ T K oy o+
ojll; 9

1 2
—d; i=1(1=Yo (i) - Yo, ()"‘Z =1 Wo;(3)

+e

+¢(-r7XO'J[l'($)+1]7j)|: & E i Yo 0= Xt 1Yoy 0) 8 e o0

1 2 N 2 1
+€_d/1 Zi=1(1_Yaj(i)) _dll Zi=l+1 Yaj<i)+2 i=1 woj(i)+u:|

N —dy Y Yo 2 = i (1=Ye (i) 2+ Ly e ()
Dt ()41 %}l{ ! !

_f_e_d/Zi 1(1 Y, ()) _d/Zz 1+1 o’ ()+Zz 1 Woy ()+u:|}

As a consequence,
E, e~ dNr(f)+(w, f(X)>
= Le=di DL VP 4 Lo di BiL (1Y) L ws
1 d _d/ Z'L YO’ d/ Zl (1 Y ) +Z1 'LUa- 7
T4 Zj:1 Zl:o ¢j,l{ 1o 1+1 i(® 141 Woj (4)

l 2
_}_e*dll i:l(liyo'j(i)) —dy ¥ z+1 o' ()JFZ 1“’0']-(1')}
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Proof. If | is the number of X; ;, ¢ =1,..., N lower than 7, we have

dyNr(fjr) +{(w, f7) = di ZY (k) T Z Yo, k) Z Wo, (k)

k=I+1 k=l+1
and
!
diNT(g5.7) + (W, gj.r) = dy Y (1= Yo, 9)° Z Y, <k>+2w%<k>
k=1 k=l+1
The calculus is then straightforward. U

Let Ny (resp. Ni) be the number of class 0 data (resp. class 1 data) in the
training sample. We have trivially Ng + N; = N. Introduce c¥ = e~ diN1 —
e~ No+X L Wi for any j € {1,...,d} and 1 € {0,..., N},

Qv 2 ¢jle*d’12§:1 Yo, i)=d1 Xl (1=Yo )+ 0141 Woj )

Jsl
¢j le*dll(NO*lﬂLQ 23:1 Yoj(i))+z ivzl+1 Wo ;i (4)

(1>l

bY, b o~ X i (1Yo i) =di il Yo ()4 i1 woy )
Js 7
_ ¢jle_d LN1H=2 30 Yo i)+ o Wo i)
for any x € X,
ay when [ < ()
cy(z) £ dmxcj(l)!j?mj)aj,[;:bz(xj7X0j<l+1)'j)bj’l when [ = 1;(z)
by when [ > 1;(x)
and for any z,y € X
aj when | <;(2) A l;(y)
¢(XU'<Z), 7:E/\y)
) (z,y) 2 o—ay whenl=1;(x) Al(y)
j, I\ - iV X )
7 A Ty e, when 1= 1) V I;(y)
Js
by when [ > 1;(z) V [;(y)

with the following convention when [;(z) V 1;(y) = l;(x) A L;(y):

Qb( Uy(l)v"x‘/\y') w qb(x‘\/y"XUj(H‘l)v') w
Gy iy () (T 9) = T =0
¢j,l d)j,l

Then

Corollary 5.3. For any constant d}, we have

—d’ s w w w d N w w
E e~ N (H+H(w,f(X)) — 4—1(1(ch +dc¥ + 23:1 Zl:o (%,z + bj,l))'

Let ﬁdfl = 7T—d’1Nr(f)+(w,f(X))- We have

E. f(x) _ quiU+Z§'l:1 Silo cju(x)
Par de+der+3 0, Y N, (a2 +bv,)
dc“’—i—zd S (z,y)
E. _ 1 1 1=0 %j,1
pa [ (@) f ()] dey +dev+y 0 YN (av 45w,
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Proof. It comes from Theorem 5.2 and from

_ o —d'Nr w, uf(x
Ep gy () = 2 logEre hNr(DHw. f(X0))uf (@) »
Covp, (f(2), f(y) = 5= log Ege hNT()+(w (X)) Fuf (@) +of ()
' u=0,v=0
O

Remark 5.2. To compute IE; , f(X;), we may note that [;(X;) = aj_l(z'). Besides,

there is a simple link between a}; and b¥; since for any j € {1,...,d} and [ €
{0,..., N}, we have

wiw 42w w
a; iy = ¢jcocr -

Computation of the constant dg
We have
iy 2 l( log[(e)™"] _log[(Ce)™] ) _inf{r(f); f € R}
NAML = 4Xg(N)] 281+ Bg(B)] 1—4xg(A)

To compute the constant ds, we need to calculate inf{r(f); f € R}. From Theorem
5.1, determining inf{r(f); f € R} is equivalent to solving the following convex
quadratic (QP) problem

N d 2
min Y | Y (uig+vig) ~Yi
Ui, j,Vi,5

i=1 \ j=1

under the linear constraints
0 < tg;1),) < S Ugy(N),j for any j € {1,...,d}
Voy(1) = = Voy(N),j = 0 for any j € {1,...,d}
> (tay ()5 + Voy1),5) < 1

The dimension of the QP-problem is dN and the number of linear constraints is

2dN + 1. This is numerically untractable (since dN > 1000). Therefore, we can
inf{r(f);fER}

either weaken our bound by neglecting the term gy OF approximate this
. . 1
term by —mf{r(E”(de)fel)jjg(&; Jip €M O} oy sufficiently small & (since this last

optimization problem has been proven to be tractable).
5.3. Experiments.

5.3.1. Our algorithm: KL-Boost. In KL-Boost algorithm, we cross-validate on the
Kullback-Leibler regularization parameter and neglect the variance term. For any
couple (A,[3), the vector weps in the procedure derived from Corollary 4.3 is solution
of the minimization problem

1 .
wﬂellanNgr(Eww(de)fe) + o'EpVar v qg) fo + aK (1", ),

for a« = 2¢ and o’ = 2b. The variance term in this minimization problem is useful
only when the best regression function f in the model R is in (or very close to) the
initial model R. Generally, this is not the case in applications. So let us forget the
variance term (o’ = 0). Finally, we look for the adequate parameter a by using
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cross-validation. After having chosen the parameter, the algorithm is calibrated on
all the training set for this regularization parameter.

According to Theorem 4.10, the quantity B(\, 3, po) (see (5.4)) gives a risk guar-
antee. From Section 4.2.2, the final aggregating distribution is p = 7, ), where
the vector w satisfies w; = QLN[YZ —E f(X;)] for any i € {1,...,N}.
In our experiments, we have taken

T{w, f)

e maximum number of iterations used to optimize the bound m = 300,
e absolute error accepted when minimizing the bound err = 0.0001,

e number of blocks used in the cross-validation = 2,

e set of values of the regularization parameter a:

{0.0002,0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.2}.

Note that this set is inspired from the bound and takes into account the fact
that the bound is conservative (i.e. tends to regularize too much). Strictly
speaking, it should depend on N.

In our simulations, the value 0.0002 of the parameter « leads to a procedure close
to the empirical risk minimizer on the set of mixtures R and thus is used to ap-
proximate ds.

5.3.2. AdaBoost using domain-partitioning functions ([5, 12, 6] ). The first boosting
methods train functions on weighted versions of the training sample, giving higher
weights to cases that are currently misclassified. In AdaBoost (Freund and Schapire
[5]), the functions trained are classifiers, that is to say functions taking their values
in {0, 1} in the two-class classification setting. We describe the original algorithm in
figure 2 where IE,,» denotes the empirical expectation wrt the weights w{*, ..., w}.

FIGURE 1. “Discrete” AdaBoost using domain-partitioning func-
tions (Freund and Schapire [5])

Start with weights w{ = & for any i € {1,..., N}.
Form =1to M do
Choose a partition of X = UE  x™.
On each &)", f,,, € {0,1} is constant and such that it minimizes
the weighted training error

€m £ Pwmfl(y 7& fm(X)>

m—1emly; o (X;) )
Set w" = “i—° o for any ¢ € {1,..., N}, where
e Cst is the normalizing constant,
é 176m
e ¢, =log (—)

€m

Output the classifier 1j_ fla)=d where IE. is the expectation wrt the weights
Cly...,Cpnf-

The weights ¢, are positive since by construction of the classifier f,,, we have
em < % The choice of the partition can be done in several different ways. In
standard boosting methods, one can choose the split which causes the greatest
drop in the value of a criterion to be specified. This greedy procedure is sometimes
replaced by randomizing methods. For instance, one can draw a set of splits and
choose the split among this set which minimizes the criterion. Another way of
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randomizing is to draw a subset of the training sample and then take the split
which minimizes the criterion on this subset. B

Introduce F,,, 2 37" ¢;f;. Define Y £ —1+2Y € {-1,1}, f £ =1+ 2f and
F, £ —1+2F,,. Then we have: F,, = Z;n:l cjfj. Introduce f,,; € {0,1} such
that

L
fm(z) = Z fm,l]lelea
1=1
where {AX]"}1, . is the chosen partition during the m-th step of the procedure
(described in figure 2).

Lemma 5.4. Once the partition has been chosen, the positive real c,, and the family
fma €{0,1}, 1 =1,..., L are chosen in order to minimize Ep(e2Y Fm(X)),

The link between AdaBoost and this criterion has been introduced by Friedman,
Hastie and Tibshirani [6].

Proof. By induction on m, one may easily prove that for any m € {0,..., M},
e~ 3Y Fn(X)

Then we have

= S P(X € XA Eymr(em2YemIni /X € XM)
Pyt (Y = 0; X € X)) e%ffmfm,l)
For any | € {1,...,L} and for fixed ¢,, > 0, the I-th term of this last sum is
minimized for f,,; equal to the most w™ -popular class on A", hence

fmg =argmax Pym-1(Y =u/X € ™) = argmin E;m-1 Ly su;xexmy-
ue{0,1} ue{0,1}

Since we have
Eym1(e” 2V emImX)y = e3emP [V £ frn(X)] 4+ e 2 Pyma[Y = fu(X)],

the optimal ¢,, is

where e, = Pyym-1(Y # fi(X)). O

As Friedman, Hastie and Tibshirani pointed out, this algorithm produces adap-
tive Newton updates for minimizing [F — Epe™Y (X)), which are stage-wise con-
tributions to an additive logistic model.

In [12], Schapire and Singer suggests to use real-valued functions rather than
classifiers (which, by definition, take their values in {—1,1}). This leads to the
algorithm described in figure 3 which outperforms the “discrete” AdaBoost when
L is small (especially when we use stumps: L = 2).

In this procedure, at the m-th step, the family fmJ, l=1,...,L is chosen such
that it minimizes

Epe VImX) =g e VEn-1(E, oy eV (),
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FIGURE 2. “Real” AdaBoost using domain-partitioning functions
(Schapire and Singer[12])

Start with weights w = & for any i € {1,..., N}.
Form =1 to M do
Choose a partition of X = UE  x™.
For any [ € {1,...,L}, on each X/, f,, € R is constant and

equal to
_ 1 P,ym1 (Y =1,X €€ X™
fml = log = 1( ’ < l ) .
T2 Pym-1(Y =0, X € &™)
wm_le*?ifm<xi) . .
Set wi" = ~t——pg for any i € {1,..., N}, where Cst is the

normalizing constant.

Output the classifier 15 (,y>1 = %}W'

1
2

Besides, we have
]Ewm—l e_Yfm(X)
=S Py (Y =0, X € XM)efmt 4 Py i (Y =1, X € A™)e fmt
=23 VP i (Y =0, X € ) P 1 (Y = ;X € &7).
Therefore, as Schapire and Singer stresses, a natural criterion to partition the input
space X is to minimize this last sum. This is more coherent to use it instead of
the Gini index or an entropy function since it aims, as the rest of the procedure, to
minimize the functional [F s Epe=Y F(X)]. B
It may happen that one of the predictions f,, ; is very large or even infinite,
which leads to numerical problems. To limit the magnitude of the predictions,
Schapire and Singer define
= — 10 N
Ml O P (Y =0, X € X)) + 3
where 3 is a small positive real arbitrarily defined as 3 = ﬁ.
In our numerical examples, we are interested in decision stumps z — aoly; <7
+ a1l >, which partition X' into X5 £ {x; < 7} and X]%_ £ {x; > 7}. For any
je{l,...,d} and 7 € R, introduce

The AdaBoost used in our numerical examples is described in figure 4. After
having tested different values for the number of stumps aggregated, we have taken
M = 100.

Remark 5.3. The set of (j,7) minimizing Wy,m-1(j, 7) has the following form
. k; _
U ({5} x Uylags b)),

where a; and b; belong to {—o00, X3 ;,..., XN, j,+0o0} and ki, ..., kq are positive
integers. We take arbitrarily the smallest j to make the split (i.e. the smallest
integer j such that k; > 0). Then 7 is chosen in | X, () ;; Xo,(41),;], Where
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FIGURE 3. “Real” AdaBoost using stumps (Schapire and Singer|[12])

Start with weights w = & for any i € {1,..., N}.
For m =1 to M do
Determine j € {1,...,d} and 7 € R minimizing Wy,m-1(j, 7).
Choose f,, = fm,<]lxeXfT + fmvzﬂxe){]%_’ where

7 A 1 P om-1(Y=1XEX" )+
m,< — 5108 Pom1(Y=0;XEX")+p

Pom_ 1 (Y=1;XEXT )+f
Pom-1(Y=0;X€X7 )+0

fm,> = % log

and 3 = L.
IN
wmfle—Yifm(Xi) . .
Set wi® = —— for any ¢ € {1,..., N}, where Cst is

the normalizing constant.

_ 1+sign[Fps ()]
—s

Output the classifier 1 Far(2)>

1
=2

is the smallest integer such that (j, Xo (141),5) minimizes Wym-1(j,7). We take
arbitrarily
Xoy,5 + Xosa41i _ &

T = € R.
2
We use the convention X~ 20, inoo 2R, XS oo £ R and X]aoo £ (). Hence

T =400 and 7 = —o0 give the same partition and consequently, the same function

fm-

Remark 5.4. Since E e YF(X) is minimized for F(z) = Llog (M) and

-2 P(Y=0/X=x)
since the AdaBoost procedure aims to minimize the functional [F — Epe Y F(X )},
the quantity "

1
e—QFM(a:)

P(Y = 1/X = z).

is an estimate of the regression function E(Y/X = z) =

Remark 5.5. The “real” AdaBoost algorithm using stumps as a weak learner leads
to a classifier which belongs to

sign(R) & {g: X — {—1;1} : there exists f € R such that g = signf}.

So it is not associated with a larger model than the one used in KL-Boost. “Dis-
crete” AdaBoost using stumps has trivially this property (final classifier belongs to

sign(R)) since the estimates f,, aggregated belongs to R'. To prove the property
for the “real” Adaboost algorithm, we just need to notice that

Lpy@>1t = Le, 7 (>4

AN T S TN fm
where fo, = =5, fm = max {| fm klsk€{<,>},me{1,..,M} }
distribution on {1,..., M}, and to check that f/ belongs to R (see equality (5.1)
for the definition of R).
However, in KL-Boost, the additive model is put on the conditional expectation
rather than the logit transformation

| (]P(Y - 1/X>) Liog (M)

8\ Py =o/x)) = 1-E(Y/X)

and p is the uniform

2
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Therefore, as algorithms estimating the conditional expectation E(Y/X), AdaBoost
and KL-Boost are associated with very different models.

5.4. Numerical results and comments. In our experiments, we compare KL-
Boost with Adaboost. It appears that KL-Boost is more efficient than AdaBoost
on noisy data, and the results are more balanced in low noise frameworks. For the
lines of the tables in which the training sample is of size 100 or 500 and in which the
dimension is 3, we generated 100 training sets. For the other lines, 25 training sets
have been simulated. The errors which appear in the tables are averaged errors
over the 100 or 25 simulations. Below, in brackets, we put twice the associated
standard deviations over the square root of the number of simulations to give the
usual approximations of the confidence intervals. In the numerical simulations, the
input dimension was either 3 or 6 or 20. In the tables, the parameter 3,6 (resp.
10,20) in the “dimension” column means that the input is 6-dimensional (resp.
10-dimensional) but the output only depends on 3 (resp. 10) components of the
input (the other 3 (resp. 10) components of the input being generated by a centered
normal distribution with unit variance independently of the output).

For ringnorm generators without noise, AdaBoost is definitely more efficient
than KL-Boost. We have to bear in mind that even if the underlying classification
model is the same for all the algorithms (that is to say the set sign(—1+ 2R) where
R is described in Theorem 5.1 and when the classes are {—1;41}), the regression
models are different in Adaboost and KL-Boost procedures. Let us denote ﬁada the
regression function model associated with Adaboost. On the one hand, Adaboost
will tend to classify as Cpgq = sign(—1 + 2fada), where

fada £ argmin R(f)
feﬁada
and R(f) still denotes the quadratic risk. On the other hand, KL-Boost algorithm
will tend to classify as Cxr 2 sign(—1 + 2f), where

f& argmin R(f).
feER

Usually, the function f is different from fada. Therefore the classifiers Cy g4, and Ckp,
are in general different and the type of the classification task (which is determined
by the unknown probability distribution IP) will decide which of these two classifiers
outperforms the other. The performance of the algorithms will utterly come from
the performance of these classifiers.

Using big training sets, one gets an idea of the efficiency of these classifiers.
Numerical results (for training sets of size N = 2000) tend to say that the classifier
Cluda is “closer” to the Bayes rule than C'kf, for non-noisy ringnorm generators. The
opposite occurs for non-noisy twonorm generators. In the other cases, the situation
is balanced but globally in favor of Ck .

To cross-validate a parameter of the algorithm using the classification error plays
a key role for the twonorm generators since in this context, KL.-Boost works better
than AdaBoost whereas its least square generalization errors is worse than Ad-
aBoost ones and increases when the training set size N increases.

In KL-Booost, the theoretical bound given by Theorem 4.10 is still far away from
the real value. When the number of training points is lower than 500, it often gets
irrelevant values, i.e. values bigger than 1/4. This is not surprising since we use



Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for different twonorm generators

Classif. gen. errors

Classif. emp. errors

L? gen. errors

L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost

100 3 5,1% 3,8% 0,0% 2,0% 0,050 0,085 0,000 0,077
(£0,3%) | (£0,3%) (£0,0%) | (£0,3%) || (£0,003) | (£0,008) || (£0,000) | (£0,010)

500 3 3,2% 2,9% 0, 0% 2,6% 0,029 0,100 0, 000 0,099
(£0,1%) | (£0,1%) | (£0,0%) | (£0,1%) | (£0,001) | (£0,010) || (£0,000) | (£0,010)

2000 3 2,8% 2,7% 1,3% 2,7% 0,023 0,131 0,009 0,131
(£0,2%) | (£0,1%) (£0,1%) | (£0,1%) || (£0,001) | (£0,018) || (£0,001) | (£0,018)

100 6 5,4% 4,2% 0, 0% 2,6% 0,052 0,106 0, 000 0,095
(£0,3%) | (£0,5%) (£0,0%) | (£0,6%) || (£0,004) | (£0,014) || (£0,000) | (£0,016)

500 6 3,6% 3,0% 0,0% 2,6% 0,032 0,129 0,000 0,127
(£0,2%) | (£0,1%) | (£0,0%) | (£0,3%) | (£0,001) | (£0,016) || (£0,000) | (£0,016)

2000 6 2, 9% 2,8% 0, 7% 2, 8% 0,024 0,156 0,005 0,156
(£0,1%) | (£0,1%) (£0,1%) | (£0,1%) || (£0,001) | (£0,015) || (£0,001) | (£0,015)

100 20 7.8% 7.3% 0,0% 2.4% 0,073 0,152 0,000 0,129
(£0,6%) | (£1,1%) | (£0,0%) | (£0,6%) | (£0,005) | (£0,008) || (£0,000) | (£0,011)

500 20 4,5% 3, 7% 0,0% 3,0% 0,041 0,160 0, 000 0,156
(£0,2%) | (£0,2%) (£0,0%) | (£0,3%) || (£0,001) | (£0,008) || (£0,000) | (£0,008)

2000 20 3,6% 3,1% 0,1% 3,0% 0,030 0,167 0,002 0,167
(£0,1%) | (£0,1%) | (£0,1%) | (£0,2%) | (£0,001) | (£0,010) || (£0,000) | (£0,010)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for twonorm generators with superfluous features

Classif. gen. errors

Classif. emp. errors

L? gen. errors

L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost

100 3.6 12,4% | 10,8% 0,0% 7.2% 0,119 0,123 0,000 0,108
(£0,7%) | (£0,8%) | (£0,0%) | (£1,2%) || (£0,006) | (£0,012) || (£0,000) | (£0,015)

500 3,6 10, 4% 9.5% 1,0% 8, 4% 0,086 0,130 0,009 0,127
(£0,3%) | (£0,2%) (£0,2%) | (£0,4%) || (£0,002) | (£0,018) || (£0,002) | (40,018)

2000 | 3,6 9,0% 9,1% 6,3% 8, 7% 0,069 0,168 0,044 0,168
(£0,2%) | (£0,2%) | (£0,2%) | (£0,2%) || (£0,001) | (£0,020) || (£0,001) | (&0,020)

100 10, 20 15, 2% 14,7% 0, 0% 6, 7% 0,144 0,170 0, 000 0,143
(£0,8%) | (£1,3%) (£0,0%) | (£1,1%) || (£0,008) | (£0,011) || (£0,000) | (40,017)

500 | 10,20 11,5% | 10,5% 0,0% 8,5% 0,099 0,169 0,000 0,165
(£0,3%) | (£0,2%) | (£0,0%) | (£0,5%) || (£0,002) | (£0,009) || (£0,000) | (+0,010)

2000 | 10,20 10,1% 9,3% 4,9% 8,9% 0,079 0,183 0,034 0,180
(£0,3%) | (£0,2%) (£0,3%) | (£0,2%) || (£0,001) | (£0,011) || (£0,002) | (40,010)

8¥%
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classification and quadratic errors for different threenorm generators

Comparaison between Adaboost and KL-Boost:

Classif. gen. errors Classif. emp. errors L? gen. errors L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL.-Boost || AdaBoost | KL-Boost

100 3 16,5% 16,5% 0,0% 14, 4% 0,159 0,165 0,001 0,146
(£0,7%) | (£0,8%) || (£0,0%) | (£0,8%) || (£0,004) | (£0,003) || (£0,000) | (£0,005)

500 3 15,2% 13,2% 8,6% 14, 2% 0,113 0,156 0,058 0,152
(£0,3%) | (£0,3%) || (£0,3%) | (£0,4%) || (£0,001) | (£0,002) || (£0,002) | (£0,002)

2000 3 14,9% 12,6% 13,1% 14, 4% 0,099 0,153 0,091 0,152
(£0,4%) | (£0,1%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,002) || (£0,002) | (40,002)

100 6 20,6% 27,5% 0,0% 16, 1% 0,233 0,187 0,000 0,160
(£1,6%) | (£1,2%) || (£0,0%) | (£1,8%) || (£0,009) | (4£0,006) || (£0,000) | (40,013)

500 6 18,2% 23,9% 8,3% 19,0% 0,178 0,180 0,056 0,177
(£0,6%) | (£0,6%) || (£0,6%) | (£0,8%) || (£0,003) | (£0,004) || (£0,004) | (£0,005)

2000 6 18,0% 23,6% 14,3% 19,2% 0,156 0,173 0,099 0,172
(£0,4%) | (£0,4%) || (£0,4%) | (£0,4%) || (£0,002) | (4£0,002) || (£0,002) | (40,003)

100 20 28,1% 31,4% 0,0% 13,5% 0,273 0,209 0,009 0,153
(+£1,2%) | (£1,0%) || (£0,0%) | (£1,6%) || (£0,008) | (£0,003) || (£0,013) | (£0,010)

500 20 24,9% 26, 5% 4,4% 21,3% 0,209 0,208 0,034 0,200
(£0,6%) | (£0,8%) || (£0,6%) | (£0,8%) || (£0,003) | (£0,004) || (£0,003) | (40,006)

2000 20 23,1% 24, 3% 15,7% 22, 0% 0,170 0,202 0,107 0,200
(£0,3%) | (£0,4%) || (£0,3%) | (£0,4%) || (£0,002) | (£0,002) || (£0,002) | (£0,003)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for threenorm generators with superfluous features

Classif. gen. errors

Classif. emp. errors

L? gen. errors

L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost

100 3.6 30,1% | 27,4% 0,0% 21,1% 0,268 0,205 0, 001 0,171
(£1,2%) | (£1,3%) | (£0,1%) | (£2,1%) || (£0,009) | (£0,005) || (£0,001) | (£0,011)

500 3,6 27, 4% 23,1% 14, 1% 24,1% 0,192 0,191 0,095 0,183
(£0,6%) | (£0,6%) (£1,0%) | (£1,2%) || (£0,003) | (£0,004) || (£0,005) | (£0,005)

2000 | 3,6 25,0% | 21,0% 20, 8% 22,9% 0,161 0,185 0,142 0,183
(£0,4%) | (£0,3%) | (£0,3%) | (£0,4%) || (£0,001) | (£0,002) || (£0,002) | (%0,001)

100 10, 20 36,1% 35,6% 0, 0% 20, 4% 0,333 0,228 0, 000 0,180
(£1,4%) | (£2,1%) (£0,0%) | (£2,9%) || (£0,010) | (£0,004) || (£0,000) | (40,013)

500 | 10,20 32,5% | 29,1% 8, 2% 25, 7% 0,241 0,215 0,061 0,203
(£0,7%) | (£0,6%) | (£0,6%) | (£0,8%) || (£0,003) | (£0,004) || (0,004) | (&0, 006)

2000 | 10,20 30,1% | 27,2% 21,3% 97, 2% 0,196 0,214 0,142 0,210
(+£0,3%) | (£0,3%) (£0,3%) | (£0,4%) || (£0,002) | (£0,005) || (£0,002) | (40,006)

0%

IHHdIany "A-r



classification and quadratic errors for different ringnorm generators

Comparaison between Adaboost and KL-Boost:

Classif. gen. errors Classif. emp. errors L? gen. errors L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL.-Boost || AdaBoost | KL-Boost

100 3 26,7% 30, 4% 0,3% 23,9% 0,232 0,209 0,007 0,188
(£0,5%) | (£0,5%) || (£0,1%) | (£0,9%) || (£0,003) | (£0,002) || (£0,001) | (40,005)

500 3 22,5% 27,0% 13,1% 25,0% 0,166 0,199 0,090 0,193
(£0,2%) | (£0,3%) || (£0,3%) | (£0,3%) || (£0,001) | (£0,001) || (£0,002) | (£0,002)

2000 3 21,0% 25,1% 17,6% 24, 4% 0,148 0,194 0,122 0,192
(£0,5%) | (£0,5%) || (£0,2%) | (£0,5%) || (£0,001) | (4£0,001) || (£0,001) | (40,002)

100 6 20,1% 30, 4% 0,0% 20, 6% 0,186 0,211 0,000 0,182
(£0,8%) | (£1,4%) || (£0,0%) | (£1,2%) || (£0,007) | (4£0,003) || (£0,000) | (40,008)

500 6 14,7% 24,7% 4,6% 23,2% 0,120 0,200 0,032 0,196
(£0,4%) | (£0,5%) || (£0,5%) | (£0,5%) || (£0,002) | (£0,002) || (£0,003) | (£0,002)

2000 6 13,2% 23, 7% 9,5% 23,0% 0,099 0,198 0,067 0,195
(£0,3%) | (£0,4%) || (£0,3%) | (£0,3%) || (£0,001) | (4£0,001) || (£0,001) | (40,001)

100 20 12,4% 28,9% 0,0% 13,9% 0,116 0,217 0, 000 0,183
(£1,1%) | (£2,6%) || (£0,0%) | (£1,7%) || (£0,011) | (£0,003) || (£0,000) | (£0,008)

500 20 4,9% 21,2% 0,0% 16,5% 0,041 0,210 0,000 0,201
(£0,2%) | (£2,0%) || (£0,0%) | (£1,6%) || (£0,002) | (4£0,003) || (£0,000) | (40,005)

2000 20 3,3% 17, 7% 0,1% 16,5% 0,026 0,205 0,001 0,205
(£0,2%) | (£1,0%) || (£0,0%) | (£0,8%) || (£0,001) | (£0,002) || (£0,000) | (£0,003)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for ringnorm generators with superfluous features

Classif. gen. errors

Classif. emp. errors

L? gen. errors

L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL-Boost

100 3.6 25,9% | 29,0% 0,0% 20, 8% 0,236 0,206 0,000 0,177
(£0,7%) | (£0,9%) | (£0,0%) | (£1,5%) || (&0,005) | (£0,006) || (&0,000) | (&0,012)

500 3,6 21,6% 25,1% 10, 0% 23, 3% 0,167 0,188 0,068 0,183
(£0,5%) | (£0,7%) (£0,6%) | (£0,6%) || (£0,002) | (£0,003) || (£0,003) | (£0,005)

2000 | 3,6 19,6% | 22,9% 15, 9% 22, 2% 0,142 0,183 0,110 0,182
(£0,3%) | (£0,5%) | (£0,2%) | (£0,5%) || (£0,001) | (£0,002) || (£0,001) | (&0,002)

100 10, 20 16,7% 28, 7% 0, 0% 15, 9% 0,157 0,214 0, 000 0,178
(£0,9%) | (£1,7%) (£0,0%) | (£1,2%) || (£0,008) | (£0,004) || (£0,000) | (£0,012)

500 | 10,20 9,7% 20,9% 0,0% 17,9% 0,085 0,201 0,000 0,194
(£0,2%) | (£0,7%) | (£0,0%) | (£0,6%) || (£0,002) | (£0,004) || (£0,000) | (&0,005)

2000 | 10,20 8,1% 19, 2% 3, 4% 18, 4% 0,065 0,202 0,024 0,200
(£0,2%) | (£0,5%) (£0,2%) | (£0,4%) || (£0,001) | (£0,004) || (£0,001) | (40,005)

145
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy twonorm generators

Classif. gen. errors Classif. emp. errors L? gen. errors L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL.-Boost || AdaBoost | KL-Boost

100 3 31, 8% 23,4% 1,0% 20, 6% 0,269 0,191 0,015 0,172
(£0,7%) | (£0,4%) || (£0,3%) | (£0,9%) || (£0,004) | (£0,003) || (£0,002) | (40,006)

500 3 26,0% 21,9% 18, 0% 21,6% 0,198 0,190 0,124 0,187
(£0,3%) | (£0,1%) || (£0,3%) | (£0,3%) || (£0,001) | (£0,003) || (£0,002) | (£0,004)

2000 3 23,2% 21,6% 21,1% 21,5% 0,181 0,185 0,157 0,184
(£0,3%) | (£0,1%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,007) || (£0,002) | (40,007)

100 6 32,4% 24,1% 0,0% 19, 7% 0,287 0,198 0,001 0,172
(£1,0%) | (£0,9%) || (£0,0%) | (£1,8%) || (£0,008) | (4£0,005) || (£0,001) | (40,013)

500 6 28,4% 22,1% 15,6% 21,6% 0,213 0,197 0,104 0,194
(£0,6%) | (£0,1%) || (£0,6%) | (£0,6%) || (£0,003) | (£0,006) || (£0,003) | (£0,007)

2000 6 24, 2% 21,8% 21,2% 21, 7% 0,187 0,194 0,154 0,195
(£0,4%) | (£0,1%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,007) || (£0,002) | (40,007)

100 20 34,7% 28,2% 0,0% 17,6% 0,322 0,210 0, 000 0,166
(£1,0%) | (£1,8%) || (£0,0%) | (£2,0%) || (£0,008) | (£0,005) || (£0,000) | (£0,014)

500 20 31,5% 23,0% 8,8% 21,8% 0,245 0,213 0,061 0,209
(£0,7%) | (£0,3%) || (£0,5%) | (£0,8%) || (£0,003) | (£0,006) || (£0,003) | (40,007)

2000 20 27,2% 22,0% 20, 4% 21,9% 0,202 0,216 0,141 0,215
(£0,4%) | (£0,1%) || (£0,4%) | (£0,4%) || (£0,001) | (£0,005) || (£0,002) | (£0,005)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy threenorm generators

Classif. gen. errors Classif. emp. errors L? gen. errors L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL.-Boost || AdaBoost | KL-Boost

100 3 38,0% 32,8% 2, 1% 25,2% 0,307 0,222 0,026 0,188
(£0,7%) | (£0,9%) || (£0,3%) | (£1,0%) || (£0,005) | (£0,002) || (£0,002) | (40,004)

500 3 32,3% 28,1% 21,5% 27, 7% 0,225 0,211 0,145 0,204
(£0,3%) | (£0,2%) || (£0,3%) | (£0,4%) || (£0,001) | (£0,001) || (£0,002) | (£0,002)

2000 3 29, 5% 27,5% 26, 5% 27,9% 0,205 0,207 0,180 0,205
(£0,4%) | (£0,2%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,001) || (£0,002) | (40,002)

100 6 39,0% 38,2% 0,0% 26,0% 0,350 0,231 0,004 0,194
(£1,2%) | (£1,1%) || (£0,1%) | (£1,6%) || (£0,009) | (£0,003) || (£0,002) | (40,009)

500 6 35,2% 34,2% 18,5% 29,9% 0,257 0,219 0,127 0,212
(£0,6%) | (£0,4%) || (£0,5%) | (£1,0%) || (£0,002) | (£0,003) || (£0,003) | (£0,004)

2000 6 32,6% 33,5% 27,0% 30, 8% 0,227 0,214 0,181 0,212
(£0,4%) | (£0,2%) || (£0,5%) | (£0,4%) || (£0,001) | (£0,001) || (£0,002) | (40,001)

100 20 42, 6% 41,9% 0,0% 24,6% 0, 388 0,241 0, 000 0,188
(£1,0%) | (£1,9%) || (£0,0%) | (£4,2%) || (£0,007) | (£0,003) || (£0,000) | (£0,014)

500 20 39, 8% 36,8% 12,3% 30, 2% 0,290 0,230 0,091 0,215
(£0,5%) | (£0,7%) || (£0,7%) | (£1,1%) || (£0,003) | (£0,002) || (£0,004) | (40,006)

2000 20 36, 6% 34,9% 26,0% 32, 7% 0,240 0,229 0,172 0,227
(£0,4%) | (£0,3%) || (£0,3%) | (£0,4%) || (£0,001) | (£0,002) || (£0,002) | (£0,007)
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Comparaison between Adaboost and KL-Boost:
classification and quadratic errors for noisy ringnorm generators

Classif. gen. errors Classif. emp. errors L? gen. errors L? emp. errors

N | dimension || AdaBoost | KL-Boost || AdaBoost | KL-Boost || AdaBoost | KL.-Boost || AdaBoost | KL-Boost

100 3 39, 3% 36,5% 2, 1% 28,5% 0,318 0,231 0,026 0,203
(£0,5%) | (£0,7%) || (£0,4%) | (£1,1%) || (£0,004) | (£0,002) || (£0,002) | (40,005)

500 3 33,9% 32,3% 22, 0% 30,6% 0,233 0,219 0,149 0,211
(£0,3%) | (£0,2%) || (£0,3%) | (£0,4%) || (£0,001) | (£0,002) || (£0,002) | (£0,004)

2000 3 31, 7% 30,8% 27,5% 30,2% 0,214 0,213 0,187 0,210
(£0,5%) | (£0,2%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,002) || (£0,002) | (40,002)

100 6 37,3% 36,6% 0,0% 25,0% 0,327 0,232 0,003 0,196
(£1,0%) | (£1,9%) || (£0,0%) | (£2,2%) || (£0,009) | (£0,004) || (£0,001) | (40,009)

500 6 32,6% 31,5% 17,2% 29, 4% 0,233 0,219 0,117 0,213
(£0,5%) | (£0,3%) || (£0,5%) | (£0,8%) || (£0,003) | (£0,003) || (£0,003) | (£0,004)

2000 6 29,3% 30, 5% 24, 8% 30,0% 0,206 0,213 0,171 0,211
(£0,5%) | (£0,2%) || (£0,4%) | (£0,4%) || (£0,001) | (4£0,001) || (£0,002) | (40,001)

100 20 34,7% 39,5% 0,0% 24, 1% 0,324 0,237 0,066 0,203
(£1,0%) | (£2,2%) || (£0,0%) | (£3,9%) || (£0,008) | (£0,004) || (£0,066) | (£0,013)

500 20 30,5% 30, 7% 8,5% 27,0% 0,240 0,225 0,062 0,216
(£0,7%) | (£1,0%) || (£0,4%) | (£0,8%) || (£0,004) | (£0,002) || (£0,002) | (40,005)

2000 20 26,7% 28, 2% 19, 7% 27, 1% 0,199 0,222 0,139 0,218
(£0,5%) | (£0,5%) || (£0,3%) | (£0,4%) || (£0,001) | (£0,002) || (£0,002) | (£0,002)
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56 J.-Y. AUDIBERT

the minimax approach, which condiders the worst possible probability distribution
and consequently leads to very conservative bounds.

To add noise, we just flip the output with probability 20%. Then the frontier
between the classes is not altered but the regression function f is transformed into
0.2+ 0.6 f which implies that it is always between 0.2 and 0.8. In this case, results
are much more in favor of KL-Boost. Here the loss of performance of AdaBoost
does not seem to come from overfitting since the empirical risks are no longer close
to 0. It is due to the model itself, which is not enough complex to take into account
a regression function which is bounded away from 0 and 1.

For the 6-dimensional twonorm generator with 3 superfluous components in the
input, KL-Boost gives better results than AdaBoost for small training sets, whereas
for large training sets, both methods lead to similar results. This is also true for
the 6-dimensional noisy threenorm and ringnorm generators. The reverse has not
occured in our simulations. So KL.-Boost seems to be well-adapted to small training
set situations.

It seems that KL-Boost is in general more trustworthy than Adaboost since

e Adaboost clearly overfits (note that it does not prevent the algorithm from
classifying well; it will not overfit when the model is too simple to explain
the learning sample; in other cases, it is bound to overfit since it is based
on the empirical risk minimization principle)

o KL-Boost behaves well on small training sets and on noisy data.

e Adaboost minimizes a criterion (the exponential risk) using a model which
is not at all suited to do it°.

6. CONCLUSION

To get an upper bound on the misclassification rate of any aggregating procedure,
we introduce the Kullback-Leibler distance between the aggregating distribution
and an arbitrary chosen prior distribution. Then we obtain bounds of optimal order
in the minimax sense. We use these bounds to derive the KL.-Boost procedure that
competes with Adaboost in practice (in particular in noisy classification tasks) and
which does not suffer from wild overfitting as AdaBoost. KL-Boost is an aggregating
procedure regularized by the Kullback-Leibler distance between the aggregating
distribution and a prior distribution. A full description of the algorithm has been
given when stumps are aggregated.

Future work may concentrate on

e describing the general algorithm when the functions aggregated are not
stumps : due to the simplicity of stumps, it has been possible to compute
explicitly terms which are not computable in general.

e tightening the bounds: even if these theoretical bounds are much tighter
than most of the existing bounds, there is still a gap between theoretical
bounds of the misclassification error and the actual misclassification error.
Part of this gap clearly comes from the minimax approach. The target
would be to reduce the other part.

e reducing the computational cost of the algorithm.

6Numerical results show that this criterion is minimized much more efficiently by KL-Boost!
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7. PROOFS

7.1. Proof of Theorem 3.1. The proof relies on deviation inequalities and on
Legendre formula.

7.1.1. First step : deviation inequalities. Let R(0) denote the expected risk of fy
relatively to the reference one: R(6) £ R(fp) — R(f). Similarly, we define 7(f) =
r(fa) — (). Putting Zs(X,Y) 2 —(Y — fo(X))* + (Y = f(X))?, we have R(6) =
—EpZy. We will need a deviation lemma for Zy. Let us start with general deviation
lemmas for random variables:

Lemma 7.1. Let Z be a random wvariable.

o If Z <b a.s., then for any n > 0,

(7.1) log Ee"#~B2) < n*EZ?%g(nb),

u_ J— . . . . . .
where g : u — eu# 18 a positive convex increasing function such that

9(0) = & by continuity.
o IfRe?!?=BZl < M for some o > 0 and M > 0, then for any 0 < n < a,

(7.2) log Ee"Z~E2) < p2g, (),

where g1 (n) = %

Proof. e We have
e"? =14+nZ+n*Z2%g(nZ).
Using that log(1 + z) < x and that g(nZ) < g(nb), we obtain
log Ee"? < nEZ + n?g(nb)EZ2,

which leads to inequality (7.1).

e From the bound on the exponential moment of Z, we can easily deduce
bounds for the moments of Z. By straightforward computation, one can
show that the maximum of [u — ue™"%] on R, is é, hence, for any g > 0:

_ g\ ¢ 5
ElZ|? < (sup ue ) EeclZ]
ucR 4

< <L)qua|Z|
< (%)

According to the Taylor series expansion, for any n > 0, for any = € R,
. 7725(32

there exists v €]0; n[ such that e"* —1 —nx = 15~e7*, hence for any = € R,

2
e 1 — g < %enm_
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Then for any n € [0; af, we have

logEe"? < E(e"? —1—n2)

IN

<]Eeo‘|Z |) ° (by Hélder’s inequality)

IN
w|dw w|dw l\3|3

IA A
[\v]

The deviations of Zy = — (Y — fg(X))2 + (Y - f(X))2 are given by:

Lemma 7.2. For any 0 < A < % satisfying

(7.3) 8MM < (aB — 2))%e?,
we have
_ E F 2
(7.4) log Bp * 57 < /\Z%G(A),
where
GO 2 8M e —1—2)

(aB — 2))2e? * A2

Remark 7.1. The condition A < % is unavoidable since we have not put strong
assumptions on the noise (i.e. Y — E(Y /X)) distribution. The result will be applied
for small values of X\. So the conditions on A are not harmful and can be disregarded,
and we will have

=i =

Note that G is adimensional since it is expressed in terms of M and aB.

Remark 7.2. The first term in the deviation function G comes from the noise
whereas the second one takes into account the deviations of fp with respect to
the reference regression function f. When the noise is gaussian, specifically when
Y — f*(X) is a centered gaussian random variable with variance o2, the deviation
function is

o? e —1-2)

TopE T e

Remark 7.3. The inequality is tight to the extent that for fy sufficiently close to f ,
the bound is close to 0.

Proof. We can write
Zo=—(f = fo)? =2(Y = f)(f = fo) = 2(f* = F)(f — fo).

where f refers to f(X) in order to simplify notations and f* = Ep(Y/X = -) is the
regression function associated with the distribution IP. Hence, using the deviation
inequality (7.2) and introducing

4\ 2\ SMA
LS §91< ): B AN |

r(A) (aB —2)\)%e? —

B
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for any A satisfying (7.3),

Zg—EpZg
E]P(dY/X)e B2
_ o2 (RO-(F—10)*~20" =) (- f9>)E]P(dY/X)€ 2% (F—fo)lY — "]

< o5 (RO—(F—1o) 25"~ (F~1)) [ 2 (F—10)] 91(2)

_ o 2r (Be(F—fo) 2 +2Be { (1" = P)(F=fo) }— [1- 2 91(3)] (F—f0)2 24" = )(F~ fo))
_ o2 [Be(f—to)2+2Be { (1= P (F—fo) } ~(F— o) (1=w O (T~ fo)+2(5" =) ]

— B2 "VEe(F=fo)* + 55 (Zo—BrZo)

where Zg £ —(f — f) {2f* =1+ k(A Nf—1— k(N)]fo} < 2B?. From the deviation
inequality (7.1), we get

log Ep eﬁ (Zo—EpZy)

K 3 2 7
iB(zi)EIP(Ji_ fo)? + (?) EEPZg.g(Q)‘)

Y Ep(f — )2 + 3:Ee(f — f0)24B%g(2))
22 E]P(fB;fe)Q [Kz()\)\) + 49(2)\)]

IAIA A

O

7.1.2. Second step : Legendre formula. Let us remind the definition of the Kullback-
Leibler divergence between two probability distributions on a measurable set (A, .A):

E, log( ) it v < p,
+00 otherwise.

K(v,p) = {

The Legendre transform of the convex function v — K (v, ) is given by the following
formula: for any measurable function h : A — R,

(75) sSup {Eu(da)h(a) - K(Va /J’)} = log E,u(da) eh(a),
ve Ml (A)

where, by convention:

Eu(da)h(a) = sSup Eu(da)[H A I’L(CL)]
HeR
Eu(da)h(a) - K(Vv :u) = —o0if K(Vv :u) = +00

Moreover, when e” is p-integrable, the probability distribution
eh(a)

da) s —— .
I/( CL) Eu(da/)eh(a/)

p(da)

achieves the supremum.
For any € > 0 and A > 0 such that AG(\) < 1, the event

there exists p € M (0) such that
N Epaoyr(fo)—r(f) | B2 K(p,m)+log(e™!)
Eya0) R(fo) — R(f) > =“T5aty—— + ¥~ Aiacoq]
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is successively equal to

= E,7 B2 K(p,m)+log(e™!)
{ sup {EpR_ I-AG(\) N f[l—AG?A)] } > 00
pEM(O)

g, (Bl 20008 7) Kt ]} >0

{pej}}’(@) {E” [% (1= 2GR -7 - log(e_l)} - K(p, w)]} > 0},
{log]E e 5 <[1 AG(N)R— )—log(efl) S 0},

{E o253 (M=AGOIR-7) ~log(e ™) o 1}_
Therefore its P®N-probability is strictly lower than

EpsnE, eB ([1 AG(N) R~ ) log(e™1)

=E E]p®NeN_ (1-AGONR=7) —log(c™) (by Fubini’s theorem)

= eE,EpsneB? 52 [EpZo—EpZo—AG(NR] (smce Zyg 2 (Y — )2 - (Y — f@)Q)

< ek, [6_% (IEIP eﬁ(ZQ_EPZO))N] (since the training sample is i.i.d)
NA2G(N)[Bp (f—f9)? — R]

< ek, [e B2 ] (from Lemma 7.2)

<

where at the last step we use that we have Ep(f — f3)2 < R(6) since the function
f is the best convex combination.

Remark 7.4. Theorems 3.1 and 3.2 remain true for any reference estimator f satis-
fying IEIP{ [f*(X) — f(X)} [f(X) — fo (X)}} > 0. Naturally, this property holds for
the best mixture. When the reference estimator is the regression function associated
with the distribution P: f = f*, we have Zg = —[1 — k(\)][f* — fo]> € [-B%;0].
Consequently, in this case, Theorems 3.1 and 3.2 hold with a smaller deviation
function : G(\) = % +3

7.2. Proof of Theorem 4.1. The decomposition
(7.6) R(E,a0)fo) = Epa0)R(fo) — Ep Var,g) fo(X)

shows that aggregating regression procedures is more efficient than randomizing
and that the difference is measured by IEpVar,)fo(X). We will use this
decomposition to bound the expected risk of the aggregated regression procedure
by successively bounded the two terms on the right-hand side. The first term has
already been bounded (see Theorem 3.1). It remains to bound the variance term.
Once more, we use deviation inequalities and Legendre formula.

7.2.1. First step : deviation inequalities. Let us introduce Zj ¢ 2 (fo — 14)?
[0; B?]. We have
1
Var,q0) fo(X) = s Epgp(a0,d0') Zo,07 -
2

The deviations of Zj ¢ are given by
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Lemma 7.3. For any A > 0,

Zg g1 —EpZg o1 EvZs o
logEp e~ 57 < A2 ]PB;’O g(A),

where g(\) £ ekj\%*)‘.

Remark 7.5. Recall that g is a positive convex increasing function such that ¢g(0) =
% by continuity.

Proof. For any A > 0,

29,0/ P Zg g/ Zg,00 ~EPZg g/ Zo ot —EpZy o1
log IEp e B2 <Ep|e B2 -1- )‘MB—;PM
2
Zy gt —EpZy g1 Zy gt —EpZy g1
:]EIP <)\ 0,6 BQ]P 9,9> g(}\ 6,6 BQ]P 6,6 ):|
22 2
< B—gEIP[Ze,ef g(N)]
A
< Z29(NEpZg o,
since 2979/2 S BQZQ’Q/- [

7.2.2. Second step : Legendre formula. Introduce V' = IEpVar,yg)feo and V =
Ep Var (g fo. For any € > 0 and 3 > 0, the event

B v B2 2K (p,m)+log(e ")
V> =158, T 2N Al4593)]

{ there exists p € M1 (0) such that }

is equal to

E NEpZy o1
sup  — Byep(a0,a0n B Zo,or + — =550
peM’ (©) ’ ’ +Bg(B)

B2 2K (p,m)+log(e” ")
— N B8P } > 0}’

which is included in the event

{ sup {Eu(dt‘),de’) [EpZo,or — [1+ Bg(8)|EpZo,o ]
peMl (6x0)

B2 K(p,n®7)+log(e™ 1)
-y } > 0}.

This last event can be written successively as

{ sup {Eu(de,dé)’) [% (EpZoor — [1+ Bg(B)|EpZe) — log(eil)}
peMl (6x0)

—K(,u,7r®7r)} > 0},

{1OgEﬂ®ﬂ_(d07d9,)eg—g(EPZQ,G/—[1+59(5)]EIPZ9,9/)—log(e1) ~ol.

E o (a0,d0)€ (Bp 200014098 Zp 0r) ~log(e ™) 1}.
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Therefore its P®N-probability is strictly lower than

(EIPZQ o —[1+Bg(B)|ErZ, 9’) log(e™ ")

(EIPZG 9! — EIPZ9 o0 —Bg(B)EpZ, 9’)

EpenErgr(d0,400)€ 5

= el gr(ds, dG’)EIP®N€ 52 (by Fubini’s theorem)
NB 9(B)EpZg g1

< eE, B2 (Ep e%(ZGVO’*EPZM’))N] (i.i.d. training sample)

€ (from Lemma 7.3)

IN ]

7.3. Proof of Lemma 4.4. We will take the following parameter families

e (\i)i=0,...p, where \; ‘51?", p is such that Ama" < Amin < g;“_a’f and Apin

and Apax Wlll be determlned later,

i (ni)iZO,...,pa where i = n £ pjlnla
e (8))j=0....q, Where 3; = Bg‘f", q is such that Bm" < Bmin < gf;ax and Bmin
and Bnax will be determined later,

° (Cj)] 0,...,97 where Cy Cé ﬁ‘
The exponential form of the parameters \; and ; allows us to have a grid on

which for any probability distribution p, the minimum of B(p, A\, 7, 3, () has the
same order as

inf  B(p, A .
el (p, A, B,¢)

BE[Bmin;Bmax]
We will choose the parameters Apin and Apax (resp. Omin and Bmax) such that the
constant 7 (resp. () is large (in order that the bound is not significantly affected
by the union bound term log[(ne)~!] (resp. log[(Ce)~t])). We will see a posteriori
that B(p, A, n, 8, () will just differ from B(p, A\, 1, 3,1) by a loglog N factor.
We have

]B(ﬁa )\7777@0 = (1,\1(;(/\) - 1+5lg(5))v(,5)

+Bz K (p,m)+log[(ne) "] + 4 32 2K (p,m)+log[(Ce) ]
A1-AG(N)] B[1+89(B)]

(7.7)

In general, the quantity V(p) = Ep Var;qg) fo is of order 1 (i.e. B?). Consequently,
to make the second term small, we need to take both parameters A and (3 small.
However, these parameters must not be too small since the two last terms are
respectively proportional to % and % In the particular case when V() is close to
0, we need not taking A and 3 small. So we take arbitrarily

)\max = K1
ﬁmax = k2 ’
where k1 and ko are respectively defined as 2k1G(k1) = 1 and kag(k2) = 1.

We will consider separately the terms of (7.7) depending on A and on 3. We
start with the § terms. Since g is an increasing function such that g(0) = 1 and

since forany 0 <z <1,1 -z < 1+—:c <1— %, we have for any 0 < 8 < gmax’
(7.8)
1+69(8) Eiesro)
B2 2K (p,m)+log[(Ce) !
[1—ﬁg(ﬁmax)] V(p) + (1_§)W (p.m) Hogl(¢O ™)

V(5 5 — /(= 2 p,m)+1o e)~ !
= —V(p) — &5 (2K (p, ) +log[(Ce) 1)) + 52V (p) + L 2K pmirelo)
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The last RHS is minimum when

ﬁ o ﬁ A B2ﬁmax 2K([~)7 7T) + log[(Ce)_l] > 2ﬁmax lOg 2
= S\ o R

since € < 1 and V(p) < BTQ according to Assumption (2.1). Therefore, let us take

A 2ﬁmax log 2
min — — A max -
Bumin 2 1] 2085 0
Let us define the event

By o [ B22KGm) +loglc9 ™) _ )
2N V(p)
General case: E; occurs
Then we have Bopt < Bmax So there exists an integer 0 < j < ¢ such that
B < Bopt < 20;. For this integer j, using inequality (7.8), we get

__ V() B 2K(m)-+oglCo !
00 T RN B iﬁwﬁg(f o 1y 2 2 2K (p,m) Hlogl(¢e) ]
T~ 2 ,m)+1o € Opt_ ~ 2 p,m)+lo €)
< —V(p) — Py P SV (p) + B HemEee

— V() - B 2K m) + logl(Ce) ) + 3,/ EEA sl T

Particular case: (F;)¢ occurs
Then, for 7 = 0, we have

V) B 2K (p,m)+log[(Ce) ~1]
1+/8J g(ﬁj) 2N B] [1+ﬁj Q(IBJ )]
V(p) + B 132 2K (p, 7T);1()%[((6) )

Besides, we have

o,m)+1o €)1 yr/~ T~
\/% 2K (p )g—maf[(C ) ]V(p) >V (p).

So, in both cases, there exists an integer 0 < j < ¢ such that
__V®) 4 B2 2K(p.m)+log[(Ce) ']
(79) 1+/8jg(/83) 2N ﬁ][l"l_ﬁjg(ﬁﬂ)] 1
< -V(p)+ B2 2K (p, 7r)+10g (O 3\/32 2K (p, 7r)+log[(C6) 1]V( ).

4N max

Now let us deal with the A terms of (7.7). Since G is an increasing function and
the inequation 1% < 142z holds for any 0 < x < %, we have for any 0 < A < Ajax

V(p) LB 32 K (p,m)+log[(ne) "]

ToAG(V NL=AG(N)]
(5 B2 K (p,m)+log[(ne) " *]
S [1 + 2)\G()\max)] (V(p) + = p )\g 1
7~ 2 K(p,m)+lo €)” \% 2 K(p,m)+lo €)1
:V(PH‘BW (pym)+log[(ne) '] Ay (P)_|_B (p,) /\g[(n) ]

max mlx

The last RHS is minimum when

B2 nax K(p, ) + log[(ne)~1] Amax log 2
\ = /\opt—\/ ~ 70 >2)[ S

Therefore, let us take Amin = 24/ % A Amax. Introduce the event

(B2 K(p,) +logl(ne)
B2 = { N 77 = Am“}'
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By convention, the event ES contains the case when V(p) = 0 (Agpy = +00).
General case: E5 occurs

Then we have A\opy < Amax So there exists an integer 0 < ¢ < p such that
Ai < Aopt < 2X;. For this integer ¢, we have

V() | B K(pm)tosl(ne) ]

1-NG(\) N[I-NG(O)]
<V(p)+ & B> K(pm)+log[(n6) 14 Aop ( ) 4 2B2 K(pﬂr)ngog[(ne) i
—V(p)+ 8 K(pﬂleog (29 \/32 K(pmmg ) (5)
2 7)+lo €)1t K maoX €)1 ~
< V(p) + 2B K@, >11ni[<n )] +2\/BQ K(pm) o)y (),
Particular case: (F>)° occurs
For ¢ = 0, we have
V(p) 4 B? K(pm)+log[(ne) ']
T—N G Ai[1=X;G(Ny)]

) N
= 77(7) + g Kl glnte

A1rnax

and

max

\/%2 K(pm)Hosl )17 (5 > 7(p).

Therefore, in both subcases, there exists an integer 0 < ¢ < p such that

V(p) 4+ B2 32 K(p,m)+log[(ne) ']
(7.10) =GN Ai[1=X:G ()]

< V(p) + % K (p.m)+log[(ne) "] | 2\/%2 K (p,m)+

max

losl(09 17 5.

max

To prove the first inequation of Corollary 4.3, it remains to lower bound 1 = ——

p+1
and ( = 7 By definition, we have

+1

hence

where || denotes the integer part of .

7.4. Proof of Theorem 4.5. The result mainly comes from Lemma 4.4 and Corol-
lary 4.3 since an aggregating procedure minimizing

IB(:Oa ()\i)izo ..... s (772')1:0 ..... D> (ﬁj)jzo ..... q» (Cj)jzo ..... q)
wrt the probability distribution p is such that

(7.11) B(p, (\i), (m:), (85),(¢5)) < B(p, (X)), (mi)s (B5), (&5))-

So, for any 0 < € < 1/2, with P®N-probability at least 1 — 2¢, we have
R(Epa0) fo) — R(f) < (e).
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Now, recall that to prove this inequality, we put ourselves on a subset of the event:
for any distribution p € ./\/li(@), for any @ in the grid introduced in Section 7.3,

we have
__ V| B?2K(pm)+log(Lae!)
1+8g(B) ' 2N Bl1+89(B)]

Taking 3 = Pmax, We obtain V < 2V + %QK(“W);;ZE(LQG_I), which leads to the

V<

desired inequality.

7.5. Proof of Theorem 4.7. We will first notice that the infimum of ¥ (p) £
TIIE a0)n(0)]|* + K(p, ) can be searched in the set of probabilities which are
equivalent to p. It is clear that we do not change the infimum by considering
only distributions absolutely continuous w.r.t. u. Inversely, consider p such that
supp(p) is strictly included supp (). Let A £ supp(u) —supp(p). We have p(A) = 0
and p1(A) > 0. Our aim is then to build p’ € ML (0) such that ¥(p") < ¥(p) and
supp(p') = supp(p). Define pa(df) £ u(-/A) = 3454 - p(d0) and p' £ Apa+(1—N)p
for some A €]0; 1[ to be determined. We have

¥(p) —(p)
= 3By b+ (1= NEhI + AE,, log 2 + (1 = A)E, log 132
~3 IRl ~ B, log £
= LE,|2 (A2 = 2)) + 3B, 2> + A1 — A)(E, , b, B,h)
+Alog[u(A) 7 + Alog A + (1 — A)log(1 — A)

et Alog \.

Therefore, for sufficiently small \, we have (p") < ¥ (p).
We will now prove that for any p € M}F(@) equivalent to u, there exists z € RY
such that IE h = IE,h. With this end in view, we introduce

H(z,h)

Xp(v) = log Eue@’h_EPh),

for any v € R™. Let us show that X, admits a minimum. Without loss of generality,
one may assume that the h;, ¢ = 1,..., N are linearly independent wrt to pu,
or equivalently wrt to p (since p and p are equivalent)’. So, for any z € RY,
p((z,h) —E,(z,h) > 0) > 0, hence pu((z,h) —E,(z,h) > 0) > 0. Introduce, for
3 > 0, the mappings 7 from S(0,1) = {u € RY : |jul| = 1} to R defined as

ns(u) = pl{u, h— B h) > B).

We first claim that there exists 3 such that the mapping is lower bounded by (.
Otherwise one can build a sequence u, € §(0,1) such that 1 (un) = L. Since the
sphere §(0,1) is compact, there exists a converging subsequence (). Denote u
its limit. By Fatou’s theorem, we have

p((u,h —E,p) >0) < E, (nm inf11<umh,Eph>>%)

n—-+oo
< liminfu({u,, h — E,h) > *
< lminfp((un, h = Byh) > 3)
= 0,
which is absurd. For this real 3, we have

Xp(2) = log B, I =Eem > 612 4 log 5 —

[zl =00

"For h = Cst p—a.s., the result is trivial
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Now, by Lebesgue’s theorem, the mapping x, is continuous. Consequently, it ad-
mits a minimum which we will denote z. By differentiation under the expectation,

we have E, . h —E,h =x,(z) = 0. Hence,

V(p) —v(zny) = K(p, ) — K(p(z,ny, 1)

So the infimum of ¢ could be searched among {(, py : z € RV}.
Now, let (z/,)nen be a sequence of RY such that

7.12 / inf

(7.12) Vlem), 2o ML (0)

Let pya,,....xn 3+ denote the orthogonal projection into the orthogonal of the system
{x1,...,2,} (by convention, pg. = Idg~). By compacity of the sphere S(0,1),
there exists a subsequence (z,)nen such that there exists L € {1,..., N} and an
orthonormal system Vy = {v1,..., v} satisfying

p{vl,...,vl_l}L (Zn)
—
Hp{vl,...,vl_l}l- (Zn) H n—+oo

Uy

for any [ € {1,...,L} and 2, € Span(vi,...,vr). Let (A,;)i=1,.. 1 denote the
components of z, in the system Vy: z, = 2113:1 An,10;. By definition of the system
Vi, we have A\, 1 > A\p2 > -+ > A\, 1, where a,, > b, means that b, = o(ay).
Even if it means to consider a subsequence of (z,),en, one can assume that for
any [ € {1,...,L}, A\ et A € Ry U {+o00}. Let A\g £ +00 and L' £ max {l €

{0,...,L} : \; = +o0}. Introduce the following family of subsets of ©:

Ay 20
A 2 {9 € A1 : (v, h(0)) = ess Supu(./Al,l)@la h}}

. 1
where p(-/A;_1) = M(j{l:) - makes sense since one can prove (by induction and

using that lim sup K (p (., r), 1) < 400) that 1(A;_1) > 0. Then, one can prove that

n—-+00
u</\L,+le,+17h>(-/flL/) minimizes ¢ (where A\p/y1vr41 = 0 when L' = L). Now, we
have necessarily L' = 0. Indeed, if L' > 0, from the linear independency of the
functions h;, i = 1,..., N, we have ju(Ar/) < 1, hence, the optimal distribution is
not equivalent to p. This is in contradiction with what we proved at the beginning
of this section.
So the function ¢ : z — ¥(j, 1)) admits a minimum denoted Z = Ajv;. Let

A
P = K(z,n)-

By differentiation under the expectation, V¢(2) = Var,, _, h(E,_ , h+ 2), where
Vary,, ,, h denotes the covariance matrix of the h;, i =1,..., N wrt p(, py. Since
the functions h;, ¢ = 1,..., N are linearly independent wrt to p, py, the matrix
Vary,, , h is invertible. Therefore, we have z = —E;h. It remains to prove the

uniqueness. It follows from the following equality which holds for any p € M}F(@)
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and comes from p = p_ (g ppy

V(p)—v(p) = SIEL|?+ K(p,n) — 3| ER|? — K(p, 1)
IE, |2 + K (p, p) — (Eph, Eyh) — log e (Fahoh)
-3 ||Eﬁh||21— log IE, e (Eoh:h—Eph)
= K(p,p)+ 3|E,h — Eh|2.

N[0

7.6. Proof of Theorem 4.8. For any w,w’ € RY, we have

P(w)—@(w')
= da (|| Erw f(X) - YH(2 N HEﬂw'(f())f) ~Y|?)
’UJ/,f X 7E7rw/f X — <’UJ,f(X)*Eﬂ.wf(X)>
+ log ]Ew_%w)e log ]EW_%T(f)e
= da (|| Brw f(X) = Y| = |Epw f(X) = Y[?) = (0, B f(X) = Y)

+Hw, Eqre f(X) = Y) +log ]EW_QTU)e(w’,f(X)—Y) —log Eﬂ_gr(ﬁe(w,f(x)—i/)
= Ay (| Ere f(X) = V|* = B f(X) = V[2) = (0, B f(X) = Y)
(W', Brw f(X) = Y) + K (7%, 7*)
= da (B £(X) = Y12 = B f(X) = Y |?
2B f(X) = ¥, B f(X) = By (X))
—|—<w’ +2dy(B o f(X) = Y), By f(X) = B _./ f(X)> K (v, )
= ds|[ B f(X) = B f(X)|* + K (0, 7)
+Hw' +2do(E o f(X) = Y),Ere f(X) —E_ . f(X)).

The second inequality of the theorem is obtained by choosing w = w £ —IEsh and
w’ = w' and by using Assumption (2.1).

7.7. Proof of the exit of the “While” loop. The w'! tested by the loop are

wtt =Wl — azl,
where
2L &l — 2d, (Y —E_.. f(X)+ Z o' [V = (", B f(X))r — ﬁ@])
1=r+1

and a € {5 : n € N}. We have

v, p(w') = acVar i f(X)] 2
hence

pw™h) —gw') = (W™ —w',vew)) +o(fwtt —w'|)
= —aca(z")'Var_,i f(X)]| 2" +o(a).

The covariance matrix Var_,. f(X) ‘T is definite positive by definition of r. So
there exists a € {5 : n € N} such that g(w’ — az') — g(w') < 0.

7.8. Proof of the Corollary 4.9. To deduce Corollary 4.9 from Corollary 4.3,

we need to control the deviations of the empirical risk r(f) of the best convex
combination. We begin with the following deviation inequality.
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Lemma 7.4. Let Z be a positive random variable. If & eVZ < M’ for some o > 0
and M' > 0, then, for anyn >0 and A > (%)2,

2
log E e"B2=2) < paf' Ae= VA 4 %A]EZ.

Proof. For any A > (%)27

EZ — 7 <E(Zlgsa)+E(Z1zca) — Z1zo4

< E(eVZsupueV*) + B(Z1gcn) — Z1z<a
u>A

< M'Ae=VA L B(Z1gc4) — Z1 724

since the mapping [u — ue*a\/a] is decreasing on [(%)2, +oo[. Applying the pre-
vious deviation inequality to Z1z. 4 € [0; A], we obtain

2
log E e"BZ=2) < ppf/ Ae=oVA | %A]EZ.

The deviations of the empirical risk of the best mixture f are given by

K,3N

Lemma 7.5. For any € > e~ """ we have

2log(e” 1) R(f)
o2N

(7.13) peN <e,

R(f) —r(f) > 132\/

L2 log <MeaB+1\/ N = )
2log(e~1)a?R(f)

M2e2(aB-1)
2[(aBe)? + 4M]’
Proof. For any A > 0 and any u € R,
PEN(R(f) — r(]) > ) < BpaneMIDrD-1) < o=V (g NE2-2)) Y,

where Z £ (Y — f(X))2 > 0. We have
(7.14)
Ep V7 — p oY 70 < o o@(1Y ~Ee(Y/XI+ER(Y/X)=FX)) < preoB &yt

where

and

R3 =

From the previous lemma, we get for any A > (%)2,

PEN(R(F) — #(f) > p) < exp{ — NAp+ NAM' Ae—oVA 4 N%QAR(f)} <e

_ log(e”h) I Ao—aVA | A = L .

when p = =S + M'Ae + 5AR(f). The previous inequality holds for any
2 og(e—1 3

A>0and A > (2)". To get a small 4, vi/e take A\ = %R(f)) (when R(f) # 0;

otherwise the result is trivial) and A = (%)2 To fulfil the condition A > (%)2,

we need that e should be not too small. More precisely, the condition (L —1)% > 4

is satisfied when
N
log <MeaBJrl = ) > 3,
2log(e~1)a?R(f)




AGGREGATED ESTIMATORS 69

. N M2 2aB—4
equivalently, M 2620‘Bm > e* and 2;271%0;)
inequality (4.6), the expected risk of any function in the model R is bounded by
—r3N we have (L —1)? > 4 as

required. U

N > log(e™1!). Now, from

kB? where k £ W + 1. Therefore, for any € > e

From Corollary 4.3, using that r(f) > inf 5 7, we have
R(f) < R(Epo fo) < R(f) = r(f) +7(Epa0) fo) + B

where
B’ = 11’1§ IB/(p7 Ala”?nﬁj?(])

e

AG(A . 2 K(p,m)+log[(ne)~?!
B (p, A1, 8,0) 2 25655 B r(fo) — inf r] + S Heptoeid

_Bg(B) 82 2K (p,m)+log[(¢e) ']
+ivaemV taN Bl 5s )]

AG(A . B K (p,m)+log[(ne) ™t
= 1—>\é¥())\)[ (E p(d0)f9) —inf 7"] + (pm) Acg;[((;)]) ]
AG(N) Bg(8) B? 2K(p m)+log[(Ce) 7]
\ +<HG<A> + 1+5g<5>)v+ BliT+59(0)]

Then, using Lemma 7.5, we obtain that with probability at least 1 — 3,

R(f) < R(Eje) fo) < I~L2\/210g(;2;\)7R(f) + r(Eja0) fo) + B’

Now, using simple computations, one can show that a positive number = such that
x < 2¢y/x + a for some a, ¢ > 0 satisfies \/z < c++va + ¢2. Applying this result for

z=R(f),a= r(Eja) fo) + B and ¢ = L? 102%)(;;\]1), we get

21
%@—F a+02)—|—a.

R(E a0y fo) <
The remaining unobsersable term in this bound is L which depends on R( f) We
will consider two cases:
General case: R(f) > %%32 occurs
The constant Nil in this threshold is arbitrary (it has been chosen since it looks
like the second term in B’). Then we have

T MeaB"'1 R
L< < V 5 log(e_l))

72 /210g(e*1) /log
a’N

A e B+1

2
where £ £ ﬁ [log <m4$)} and k4 aB \/ . This leads to the desired

result.

Particular case: R(f) < <= MBQ occurs

From Corollary 4.3, with probablhty at least 1 — 2¢, we have

Alog(e)
K1 N

hence

R(Esa0) fo) < r(Epag) fo) + B +

The announced inequality is also true in this case.
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MODEL SELECTION AND REMARK 4.3

We recall here the convergence rate of model selection. The target of model
selection is to find a procedure doing as well as the best function among d prediction
functions f1,..., f4, up to a remainder term called the convergence rate of model
selection.

In [4], Catoni proves that by using a progressive Gibbs mixture f, for any proba-
bility satisfying the assumptions (2.1) and (2.2), we have

PENR(f) - _min R(fi) < CR5¢.
1e1,...,

Theorem 3.1 provides a different result which is weaker as far as model selection is
concerned. However, it allows to prove that the empirical risk minimizer fERM on
the second sample over the functions (built on the first sample) associated with the
(X, B)—grid, which will be denoted G, satisfies with P®Y -probability at least 1 — e,

R(ferm) — (A{%i)régR(Emﬂ(de)fe) < C{ Cle)V(p) V é(ﬁ)},

where é(e) 2 K(ﬁvWHlOgj{\}og(SN)e*l].

Proof. Let Ry & {Eﬁ)\ﬂ(dg)fg (N P) € g}, and let N7 and N» be the respective
sizes of the first and second sample. Let f € argmin rer, B(f). The set Ry C C(R)
is interesting since its cardinal is small: |Rs| = |G| < L1Ly (with N « Nj) and
from Theorem 4.5, with P®V-probability at least 1 — ¢,

(15) R(f) < R(J) + vy, (€/2),

where we recall that f = argmin recry ()

Introduce fg the best convex combination of functions in Ry. Since Ry C R, we
have R(f) > R(f2) > R(f). Let ro denote the empirical risk on the second sample.
Define Ao €]0; %[ as \oG(Ng) = % Taking A\ = \g, Theorem 3.1 applied to a
uniform prior distribution on Ry gives

(-16) R(ferm) — R(f2) < 2[ra(f) — 7“2(f2)] + >\2()B]\Z [log |Ra| + log(e™)].

Since Lemma 7.2 still holds when Zy <+ —Zj, for any 7 € M}‘_(Rg), with proba-
bility at least 1 — e wrt the second sample distribution, for any ps € M}F(Rg), we
have the same kind of formula as in Theorem 3.1:

Ep27’2 _ T2(f2) S |:1 + )\G()\)] [EPQR _ R(jf2):| + B [K(pz,z{?\)]jlog(e_ )]

Taking A = A\ and 7y = po = (5f, we obtain

(17) ra(f) = ra(f) < 3[R(F) — R(f)] + Zlosle)

From inequalities (.15), (.16) and (.17), we obtain that with P®Y-probability at
least 1 — ¢,

R(fERM) < 3R(~]E) — 2R(f2) + /\QO—B;VQQ loggL1L2€—2)
< R(f) + 37w, (€/2) + 255 log(Ly Lae?)
< R(H+c{ye@vp)vie}

provided that N; and N5 has the order of N. O
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Remark .6. Since the procedure is independent from the confidence level, we may
integrate the deviations to obtain P®N R(ferum) — R(f) < C{ C(L)V(p) V é(l)}

for an appropriate different constant C' > 0.

10.

11.

12.

13.

14.

15.
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ABSTRACT. The common method to understand and improve classification
rules is to prove bounds on the generalization error. Here we provide local-
ized data-based PAC-bounds for the difference between the risk of any two
randomized estimators. We derive from these bounds two types of algorithms:
the first one uses combinatorial technics and is related to compression schemes
whereas the second one involves Gibbs estimators.

We also recover some of the results of the Vapnik-Chervonenkis theory
and improve them by taking into account the variance term measured by the
pseudo-distance (f1, f2) — P[f1(X) # fo(X)].

Finally, we present different ways of localizing the results in order to im-
prove the bounds and make them less dependent on the choice of the prior.
For some classes of functions (such as VC-classes), this will lead to gain a log-
arithmic factor without using the chaining technique (see [1] for more details).
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1. SETUP AND NOTATIONS

We assume that we observe an i.i.d. sample Z{¥ = (X;,Y;)Y, of random vari-
ables distributed according to a product probability measure P®", where P is a
probability distribution on (Z,Bz) £ (X x V,Bx ® By), (X,Bx) is a measurable
space called the pattern space, Y = {1,...,|Y|} is the (finite) label space and By
is the sigma algebra of all subsets of . Let P(dY|X) denote a regular version
of the conditional probabilities (which we will use in the following without further
mention).

Let F(X,)) denote the set of all measurable functions mapping & into ). The
aim of a classification procedure is to build a function f € F(X,)) from the learning
sample such that f(X) well predicts the label Y associated with X. The quality of
the prediction is measured by the expected risk

R(f) £ P[Y # f(X)].
A function f* such that for any z € X,
[ (z) € argmax P(Y = y| X = x),
yeY

minimizes the expected risk. This function is not necessarily unique. We assume
that there exists one which is measurable. We will once for all fix it and refer to it
as the Bayes classifier. The regression function will be denoted

7 (@) 2 P(Y|X = 2).
Since we have no prior information about the distribution IP of (X, Y'), the regression

function and the Bayes classifier are unknown.

It is well known that there is generally no measurable estimator f : ZV¥ —
F(X,Y) such that

f PO, F(ZN)(Xna1)] = inf  PIY £ £(X)]} =0.
L [Voves # S X)) - _jnt | PIV # 50X}

So we have to work with a prescribed set of classification functions F, called the
model. This set is just some subset of the set of all measurable functions F (X, ).
Let us denote f the best function in the model, i.e. a function minimizing the
expected risk:
f € argmin R.
f

For sake of simplicity, we assume that it exists!. The empirical risk

r(f) £ PY # f(X)],

where

I
P = N Z(s(Xin)’
i=1

gives an estimate of the expected risk. An estimator which minimizes the empirical
risk
fERM € argminr
f

LOtherwise we would have to introduce some small positive real 8 and consider f as an esti-
mator minimizing the expected risk up to 3. This real 8 would then appear in all the equations
related to this function and make things needlessly messy.
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is called an ERM?-classifier.

Since we will study randomized estimators, we assume that we have a o—algebra
7 such that (F,7) is a measurable space containing the sets {f} for any f € F
and such that the function

FxX — Y
(f,z) —  f(z)

is measurable. A randomized estimator consists in drawing a function in F accord-
ing to some random distribution p : Z¥ — M? (F), where M (F) is the set of
probability distributions on the measurable space (F, 7).

To shorten notations, we will use ph to denote the expectation of the random
variable h under the probability distribution w: ph £ [ h(x)du(z). The symbol C
will denote a positive universal constant whose value may differ from line to line.
We define

A exp(h)
Th = ——7~ °

mexp(h)
for any measurable real function h such that exp(h) is w-integrable. Most of the
posterior distributions encountered in this paper will have this form. The rando-
mized estimators associated with the posterior distributions 7_ ¢, will be called the
standard Gibbs estimators with temperature %

Let us recall some basic properties of the Kullback-Leibler divergence defined as

o [ plog (L) if p<u,
K(p,v) = { +00 otherwise,

where v and p are two probability distributions on a measurable set (A,.A). The
Legendre transform of the convex function p +— K (u,v) is given by the following
formula: for any measurable function h : A — R,

(1.1) sup  {ph — K(p,v)} = logvexp(h),
pEML(A)

where, by convention:
ph = sup u(H A h)
HeR
ph — K(p,v) = —o0 if K(p,v) = 400

Moreover, when the measurable function exp(h) is v-integrable, the probability
distribution v}, achieves the supremum.

In this paper, we will consider prior distributions which may depend on the data.
Most of them will depend on the data in an almost exchangeable way according to
the following definition.

Definition 1.1. A function @ on Z?V is said to be almost exchangeable iff
it satisfies: for any permutation o such that for any i € {1,..., N}, we have
{o(i),0(N +1i)} = {i, N + i}, the following equality holds

QZU(1)7--~7ZU(2N) =Q2z,..Zn-

To shorten, we will sometimes write () for Q) 72N

2ERM = Empirical Risk Minimization
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Finally, to circumvent some measurability problems, we will consider inner and
outer expectations. Let (A, A, u) be a measure space and C(A;R) be the class of
real measurable functions. For any (measurable or not) function f, its inner and

outer expectation wrt p are respectively g, (h) £ sup {,u(g) g€ C(A4R),g< h}

and p*(h) £ inf {u(g) g € C(A4R),g > h}. Naturally, for any set B C A,
p«(B) and p*(B) are defined by p.(B) = pu«(1p) and p*(B) = p*(15). Note that
p and p* are not measures but satisfy p*(B) + p«(B¢) = 1 and p*(B1 U By) <
w*(B1) + p*(Bs2). Besides, if p*(h) < 400, then there exists a random variable
h* such that p*(h) = p(h*). For more details on properties of inner and outer
expectations, see [20].

The paper is organized as follows. The next section is an introduction to gen-
eralization error bounds. Section 3 provides new classification rules which can be
used for preventing a given classifier to overfit the data, choosing an algorithm
among a family of algorithms and choosing the temperature of a Gibbs estimator.
For all these algorithms, we give a guarantee on their efficiency. In particular, we
prove that it is possible to empirically choose the Gibbs temperature such that
under some Tsybakov’s type assumptions the Gibbs classifier has the optimal con-
vergence rate. The remainder of the paper, except Section 7, is dedicated to prove
these generalization error bounds. Since some of the intermediate results are in-
teresting by themselves, we produce them in separate sections. Sections 4 and 5
present relative data-dependent bounds in respectively the PAC-Bayesian and com-
pression schemes frameworks. Section 6 proposes a tight bracketing of the efficiency
of Gibbs estimators. Section 7 is just here to illustrate the sharpness of our bounds
in the well-known setting of Vapnik-Chervonenkis theory. Finally, the unavoidable
toolbox to prove the results of this paper is given in the self-contained Section 8.
The PAC-bounds provided there are given in a general context such that it can be
used for other loss functions than the classification one: L[Y, f(X)] = 1y ¢ (x).

2. THE DIFFERENT TYPES OF GENERALIZATION ERROR BOUNDS IN
CLASSIFICATION

To understand the tightness and the originality of the bounds presented in this
paper, we need first to give some global vision on generalization error bounds. The
concepts presented in this section are not specific to classification problems. It is
similar for the other risks R(f) = PL[Y, f(X)] and r(f) = PL[Y, f(X)] obtained
for other loss functions - in particular for the L2-risks for which L[Y, f(X)] =
Y — f(X)]%

2.1. First PAC-bounds. The first PAC-bounds which have appeared in the lit-
erature are uniform deviation inequalities of the empirical risk: for any n > 0,

(2.1) PeN [Sl}p{R —r} > <vrn),

where 1) £ is some increasing function of 1 (which highly depends on the size -called
complexity or capacity- of the model). This result is in general equivalent to the
following assertions

e for any estimator f and n > 0,

(2.2) PN [R(f) = r(f) > n] < vr(n).
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e for any estimator f and € > 0,

(2.3) PEN[R(f) = r(f) 277 ()] <e

where 77 = 1/1}1.
e for any € > 0,

(2.4) PN [sup{R —r} > 7 ()] <e

Another way of presenting Inequality (2.4) is to say that for any ¢ > 0, with P&V-
probability at least 1 — ¢, for any function f € F, we have®

R(f) < r(f) +77(e).

For this kind of bounds, the best guarantee on the generalization ability of some
classification procedure is obtained for the ERM-algorithm. For this estimator, we
obtained that for any € > 0, with P®-probability at least 1 — e,

R(ferm) < 7(frrm) +77 ().
This leads to

e an upper bound on the quantile of R(fgrm) — R(f): for any e > 0, with
P®N_probability at least 1 — 2¢, we have?

log(e—1)

R(ferm) < R(f) +77 (e) + 5N

e an upper bound on the expected value of R( fERM) — R( f):

PEN R(fanu) - / b
Besides, for any estimator, with P®N-probability at least 1 — 2¢, we have

. . . . —1
R(f) ~ R(F) < ()~ r(F) + 77 () 44 B,

For a large model, the complexity term can be so large that we prefer to look
for the best function in a smaller model in order to get a better guarantee on the
generalization error of our procedure. To fix the size of this smaller model, we first
build a collection of embedded models .7:1 C F3 C --- such that the union of the
collection of models is equal to F. Let fERM .7, denote the ERM-algorithm relative

to the model Fj. The SRM?®- algorithm is to use fERM 7 where

k% argmin r(fermz,) + 77" (age),
ke{1,2,...}
and where o, are positive reals summing to one®. The real «y is the weight given
to the model F;. By using a union bound with these weights, we obtain that for

3this formulation justifies the prefix “PAC” (probably approximately correctly) given to this
kind of bound.

4since, by using Hoeflding’s inequality, we obtain r(f) < R(f) + \/% with P®N.
probability 1 — e.
5SRM = Structural Risk Minimization

60nce more, we do not bother with the existence of the argmin. Note that practitioners seem
to skip the aj when using the SRM principle.
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any € > 0, with P®N-probability at least 1 — €, we have

R(fERM7f,;> < r(fERM,]—"fc) + ’yf(oz};e).

To sum up, this type of bounds gives us a model selection algorithm and general-
ization error bounds for any estimator, which are minimized for the ERM-classifier.

For relatively small models (VC-classes for instance), the bounds are of order”
1/ Vv/N and are known to be suboptimal for some kind of probability distributions
P. In particular, when the unknown probability distribution is such that R( f) is
small (i.e. has the order of 1/N” with 8 > 0), the bound is known to be suboptimal
(£ problem {1}). In this type of bounds, the deviations of the empirical risk of any
function in the model is treated similarly without taking into account the relevance
of the function to predict labels. From the central limit theorem, we know that the

deviations of the empirical risk for the function f has the order of w.

Therefore, when f is a good predictor (i.e. when the quantity R(f) is small), the
deviations are much smaller than when f is a poor classifier. This remark explains
the suboptimality of this kind of bounds.

2.2. First improvements. To correct this last drawback, we have to allow ~y(e)
to depend on f. Specifically, we now consider bounds of the following form : for
any € > 0,

(2.5) PeN [Jb}elr;{R(f) —r(f)—(f. et =0] <e

or in general equivalently, for any estimator f and € > 0, with P®N_probability at
least 1 — ¢, we have

(2.6) R(f) <r(f)+~(f, o).
From the previous discussion, we also see that we would like to take y(f, €) of the
following form /R(f)7'(€). With this form, Inequality (2.6) can be written as

R(f) < <\/r<f> + 0 +7’(6)> -

This kind of bounds solves in general the problem {1}. For instance, in [22, 23],
Vapnik and Chervonenkis obtained that for any e > 0, with P®N-probability at
least 1 — ¢, we have

1 7
(0 = BT RSN
Therefore, when the model has a finite VC-dimension and when the minimum of
the empirical risk has the order of 1/N? for some 3 € R, U {+cc}, the bound on
R(f) has the order of ﬁ.

However, in noisy classification tasks, we still have not o(1/v/N)-bounds for the
relative expected risk R(f) — R(f) when the probability distribution P has some

"In [21], Vapnik and Chervonenkis obtained 47 () = \/8 log(€71)+loNg[4$f(2N)] where the shat-

ter coefficient $% () is the maximal number of different sets {(f(z1),..., f(zn)) : f € F} among
all the possible input sets (z1,...,zn) of size N. For VC-classes, there exists an integer h called
the VC-dimension such that log[$7 (N)] < hlog(eN/h).
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particular form. Indeed, for any estimator f , with P®N_probability at least 1 — 2,
we only have

R(f) - R(f) < <\/r(f) GOl +7’(e)> () 4y o)

4 2N

since we separately deal with the deviations of r(f) and those of r(f) and we cannot
expect to have much better than with P®N-probability at least 1 — ¢, r(f) <

R( f) + % in noisy classification. Note that we cannot expect to obtain

o(1/v/N)-bounds for any probability distribution P since in [22, 8] it has been
proven that, when the model F has a VC-dimension h > 2 and when N > 14h, for
any estimator f, there exists some probability such that

h—1

N N rt —
PENR(f) = R(f) 2 1075 [ .

So the next target is to find some kind of oracle inequalities which show that the
estimators minimizing the bounds adapt themselves to the unknown distribution.

2.3. Relative PAC-bounds. One way of improving the previous bounds is to
deal simultaneously with both the deviations of the functions f and f . So far,
we have been adding these deviations. There is hope that, for some models F
and probability distributions P, the first order deviation terms of (f) and r(f)
compensate themselves and that finally the bounds are driven by second order

terms. This kind of bounds has the following form: for any € > 0,

@7  peV (sup{R<f> () = R +r(F) = (£, 0} > o) <e

fer

Once more, the central limit theorem advises us to take v(f,¢) as

Y(f.€) = [ Varp[L[Y, f(X)] - LIY, F(X)]]7'(6)
for an appropriate function 4’. Equation (2.7) can also be written as: for any

measurable estimator f and any € > 0, with P®V-probability at least 1 — €, we
have

R(f) = R(f) < r(f) =r(f) +(f,e).
Once we have succeeded in obtaining such bounds, the last step is to get bounds
in which the unknown distribution IP does not appear. To obtain this, we have to
succeed in replacing P by its empirical version P in the variance term.
This strategy to get tight bounds has already been addressed in the literature
([11, 9, 2, 17, 6]). However these results present different drawbacks:

e the unknown probability distribution P appears in the bound ([6, 2]®),
e in binary classification () = {0;1}), the bounds only hold when we have
the two following assumptions ([11, 9, 2, 17])
— f* = f, i.e. the model contains the Bayes classifier,
— P[In*(X) — 1/2] > t] < Ct* for some o > 0 and C' > 0 and any ¢ > 0,
which roughly means that the regression function n*(X) is not with
too high-probability close to 1/2,

8In [2], Sections 6.3 which deal with sample-based bounds do not concern relative PAC-bounds
in classification.



A BETTER VARIANCE CONTROL 81

e the bounds are not localized: the global size of the model appears, the
complexity is not only computed on the “best” part of the model ([11])°.

This paper will provide localized sample-based relative PAC-bounds for classifica-
tion which have not these drawbacks and from which we can derive the algorithms
presented in the following section.

3. CLASSIFICATION USING RELATIVE DATA-DEPENDENT BOUNDS

In this section, we will give new algorithms improving the variance estimation
by comparing the efficiency of various estimators. These algorithms will be first
described in the transductive setting since it allows to have simpler formulae and
proofs.

Our transductive setting is the following: we possess two samples of size N. The
first sample is labeled: {(X7,Y1),...,(Xn,Yn)}. Thesecond one {Xny1,...,Xon}
has to be labeled: the outputs {Yn41,...,Yan} are unknown.

We will use the following notations for the empirical distributions and empirical
risks:

P = % Zivzl 0(x,,Y;)
I:P, = % Z?LVN—H 5(X¢,Y¢)
P = 21\] Z?Nl (X:,Y3)
r(f) £ NZZ 1]lY;éf(X)— [Y#f(X)]
\ '(f) £ NZ N+1]1Y7éf(X)— P'lY # f(X)]

The variance terms in concentration inequalities will have the following pseudo-
distances appeared

I_Pf17f2 = [ 1(X) # Q(X)]
Py, = Plfi(X) # fo(X))]
Py . = PAX) # f(X)]
Pyt = Pf1(X) # f2(X)]

3.1. Compression schemes complexity. Consider an algorithm
f: U Z"xXx -y
nelN*

which produces for any n > 1 and any training set z{' the prediction function
Jer 0 & — Y. Assume that the algorithm is exchangeable: for any n and any

permutation o of {1,...,n}, we have fz? = fzg(m N Zo(ny”
Let Fj, £ {f(X Sy (i1, ... ip) € {1,...,2N}" y} € Y"}. A natural ex-
changeable model assoc1ated with the algorithm and the data X% is FL2 U F.

2<h<N
For any function f € F, let h(f) be the smallest integer 2 < h < N such that
f € Fun. Let a €]0;1[. Define C(f) £ h(f)log (QNM) the complexity of the func-
tion f. Finally, introduce L = log[(1 — o) 2a*¢~!] and

S(f17 f2> £ \/8Pf1!f2 [C(f]1\])+c(f2)+L] ‘

9 [2, 9, 17], the model is localized via the variance Varp (LY, f(X)] — L[Y, f(X)]) to the
extent that the complexity of the model is measured on a subset of functions with low variance.
In classification, small variance implies small probability IPfj’ hence R(f) close to R(f) Note
that the converse is not true in general: “f classifies well” does not imply small variance. But it
holds under the previous margin assumption.
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The following procedure gives a way of using the initial algorithm f to produce
a classifier with a good guarantee of efficiency.

Algorithm 3.1. Let fo € Fy. For any k > 1, define fr, € F as a function with the
smallest complexity such that r(fr) — r(fr—1) + S(fx—1, fx) < 0. Classify using the
function obtained at the last iteration.

The following theorem guarantees the efficiency of this procedure.

Theorem 3.1. The iterative scheme is not infinite: there exists K € IN such
that fr exists but not frxi1. With (P®2N)*—pr0bability at least 1 — €, for any
ke{l,...,K}, we have

o 7(fi) <r(fi—1) and r'(fi) <r'(fe-1),
e C(f) = Clfin).
e defining for any f € F the integer k(f) = max {0 <k < K;C(fx) < C(f)},

(3.1) r'(fx) < ?22 {r'(f) +28(frip), £)}-

B2 rUSmE sw {20() - (g) 8y Tl

FEF geF:c(g)<c(f)
Proof. See Section 9.1. O

Remark 3.1. From the second assertion of the previous theorem, we are allowed to
search fi in U Fh.

h(fk—1)<h<N
Remark 3.2. In Inequality (3.1), the variance term P fucy.f depends on the functions
fr,0 <k < K. To get rid of it, we can weaken the bound and obtain the following

oracle inequality
r(fic) < min{r(f) + 8/ 4L

fer
Inequality (3.2) provides a smarter way of taking care of the variance term.

Remark 3.3. In our algorithm, there are several possible choices for the function
fr. Only the set ﬁhk, in which the function fj is, is well determined. A natural
choice consists in taking the minimizer of r(fx) — r(fx—1) + S(fx—1, fx) in the set
ﬁhk. This function is not necessarily the ERM in ﬁhk. However we can prove that
the theoretical guarantee associated with this function is not more than v/2 smaller
than the one associated with the ERM on ]:"h. In other words, for any 2 < h < N
we can restrict our search to the functions minimizing the empirical risk on Fh.

Remark 3.4. The parameter « essentially influences the constants in the bound.
Taking % or % for o will not in general modify drastically the final classifier.

This compression scheme will be useful when the initial algorithm f tends to
overfit the data (for instance, the 1-Nearest Neighbor algorithm, non pruned trees,
Support Vector Machine in the separable case!® when errors are heavily penalized,
lowly regularized boosting methods such as Adaboost, ...). Besides, contrary to
other compression schemes, our procedure takes into account the variance term

101t is in particular the case when we use the gaussian kernel and when the input data X; are
pairwise distinct.
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so that we can expect much better results than for other compression schemes
(specially in noisy classification tasks).

Since to scan all the possible subsets {(xi,yi)?zl sl XEN gyt e yh} is
not computationally tractable, we can use some suboptimal heuristics such as the
following one.

Detailed algorithm 3.1. The function f; is chosen as the function in fg mini-
mizing the empirical risk. Let 22 € Z2 such that fy = le
We repeat for any k > 3,
o = argmin {r(fa) = r(f) + S(Fps foa) |-
2, €Emisclassified points in Z¥ —2z2
until the minimum is negative (or until we have no more point to add). When
the minimum is negative, we define fi = f » . To define fy, we repeat for any
1
k> kot 1,

2 = argmin {r(f) =r(fa) + (g, L)}

2z €Emisclassified points in ZN—zl1

until the minimum is negative (or until we have no more point to add), and so on. A
less costly alternative is to stop when adding one more point increases the criterion
(i.e. when the growth of complexity is no longer compensated by the diminution of
the empirical risk). At the end, we classify using the function denoted fx obtained
for the last negative minimum.

Let Z C T be the set of compression sets considered in the previous heuristics
and define for any f € F £ {f[; I e I} the integer

k(f) & max {0 < k < K;C(fi) <C(f)}.
We have the following guarantee:

Theorem 3.2. With (P®2N)*—pr0bability at least 1 — ¢, for any k € {1,..., K},
we have

o 7(fx) <r(fr—1) and r'(fx) < 7' (fx—1),
o '(fx) <mingez {r'(f) +2S(fecr), ) }-

o ()< inf sup  f2r(f) = o (g) + 8y ZralZHOR L
€7 geFie(g)<c(f)

Proof. The proof is similar to the one of Theorem 3.1. 4
3.2. PAC-Bayesian complexity.

3.2.1. Kullback-Leibler complexity. In this section, the complexity of a randomized
estimator is measured by the KL-divergence between the posterior distribution and
a prior distribution 7 which is introduced in order to put a structure on the model.
This approach pioneered by McAllester [16] has been developed in [5, 18, 7] among
others.

For any € > 0, A > 0 and o/, p” € ML (F), let

L 2 log[log(eN)e 1]

Ky = K(p ™)+ K(p",m) + L
Sx(p' ") & B(p @ p")P.. +f Kot o
S(',p") &  min Sy(p,p")

AE[VN;N]
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Algorithm 3.2. Let pg = m_x,r. For any k > 1, define py, as the distribution with
the smallest complexity K (pg, ) such that ppr — pr—17 + S(pk—1, pr) < 0. Classify
using a function drawn according to the posterior distribution obtained at the last
iteration.

The following result guarantees the efficiency of the randomized estimator.
Theorem 3.3. Let

(3.3) G\ = —% log 7 exp ( — )\r’) + % log 7m_ v exp <72Nﬂ71'_)\7«/I:P.’.> + %

The iterative scheme is not infinite: there exists K € IN such that px exists but
not pr 1. With (P®2N)*—pr0bability at least 1 —e¢, for any k € {1,..., K}, we have

® prr — pr—17 + S(pr, pr—1) =0,
o ppr < pr—1r and ppr’ < pp_q1’,
o K(pp,m)> K(pp—1,7),

o prr’ < min G(\).
X\/NESASG@E:K(W—ATUW)Z[{(POJ")
Proof. See Section 9.2. ]

Let us explain why we believe that the guarantee on the generalization ability of
our procedure is tight and satisfactory. First, consider a prior distribution X2N)
which is uniform on one of the smallest set S of functions such that for any f € F,
there exists f' € S equal to f on {X1,..., Xon}. Using this prior distribution, we

have
@(1§)§w05+0¢m%0ﬁﬂ+bﬁﬁ”,
6v/e N
hence our randomized estimator achieves the optimal convergence rate for VC
classes (up to the logarithmic factor).
Secondly, consider the following complexity and margin assumptions which will
be refered to as (CM) assumptions:

e there exists C/ > 0 and 0 < ¢ < 1 such that the covering entropy of the
model F for the distance P. . satisfies for any u > 0, H(u, F,P..) < C'u™9,
e there exist ¢/, C” > 0 and k > 1 such that for any function f € F,

C[R(f) = R(P)]* <P, ; < C"[R(f) - R()]*,

where we recall that by definition f € argminzR. Under (CM) assumptions, one
can prove'! that with (IP®2N )*—probability at least 1 — ¢,

G\ <7 (f) + log(ee*1)0<N*25_—'€1+q)

provided that Ay = 0, A\ = Nz=1%q (€ [VVN; N]) and 7 is taken independent from
the data and such that

(34) 7T<]P 7 < élN_ 2"*1““1) > exp < — CQN_ 2N*q1+q)

for some constants C; and Cs. The convergence rate N~ 7177 is known to be

optimal in this situation (see [14, 19] for original results and [1] for more details on
the assumptions and their implications).

Hgee Appendix B for the main lines.
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Remark 3.5. Let us describe approximatively the quantity G. It is made of three
terms.

e The first term is a decreasing function wrt the parameter \ with limit equal
to 0 when A — +o00. It is linked to the error on the second sample associated
with the randomized distributions 7_ ¢, through:

—+ logmexp (—A fo T dry.

e By Jensen’s inequality, the secon(i term is upperbounded with
36\/5%(7r7/\[r,772\/€iﬂ B ® m_xr)P. .,and lower bounded with
N " —Ar N

36@% (7T,)\r/ X W,,\T/)I:P.7..
So it can be seen as a variance term.
e The last term roughly behaves as % (we neglect the loglog N factor).
Remark 3.6. Let us explain why the condition

g/\/__ < )\ S 6\/_ K(ﬂ-f)\r’aﬂ-) S K(ﬂ-onT‘?ﬂ-)
in the last assertion of Theorem 3.3 is not harmful.
Since we have Py, 7, > 1]P./f17 £ M , the second term in the quantity

G is very loosely lower bounded by
%r;%{% log <7T(7°’ —ming 7’ >n)exp [ — A+ MW_MI(W — ming < g)]) }

When A > N7 with 8 > 0, it is reasonable to believe that in general there will be

a fixed 7 > 0 such that 7_y,/(r' — ming < 7) = 1 and (7' — ming 7’ > n) > % SO

that the previous lower bound ensures that % log w_ - exp <M7r M,/]T) ) is at
least of order C'4 (when A > N'*# with 8 > 0). Therefore the condition A < 5

\/_
can be disregarded. Let )\mm = 6—*/\% For any A < X/ . . we have
G()\inul) A/ 10g7rexp ( )\inln ) -+ %

—chr)‘gﬂexp ( - )\7“) %

hence G(X.,;,) — 7'(f") = O(G(\) — '(f")). So the condition A > X . is not
harmful wrt the order of the convergence rate. Note that the optimality of the
procedure under (CM) assumptions also justifies to have restricted ourselves to
Gibbs distribution with temperature in [%, \/%}

So the only strong constraint on A is that K(w_x,,m) > K(7m_x,r, 7). Taking
Ao = 0 solves this problem. However if we are not pleased with a poor starting

distribution, a tempting choice is to take Ay of order v/ N since it is very likely that
K(WfC\/Nr“ﬂ-) 2 K(ﬂ'_@r,ﬂ')12

IAINA

121, fact, this assertion is not as trivial as it may seem. By symmetry and from the inequality
K(r_qoy ™) 2 K(m_ cyN ,» ™), the assertion holds with P®2N _probability at least % To prove

that the inequality holds viith high probability (up to unimportant additive quantities depending
on the confidence level) requires most of the technical tools developed in this paper. The proof
is left to highly determined readers. Naturally, the factor 2 in the inequality has no fundamental
meaning: it can be replaced with any constant greater than 1 at the price that the confidence
level term explodes when the constant goes to 1.
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Now one can argue that the previous algorithm is hard to implement. For-
tunately, if we search the posterior distribution only among the standard Gibbs
distributions 7_,, of inverse temperature parameter A belonging to a finite geo-
metric grid of [\/N : N], we can prove'? a similar guarantee as in Theorem 3.3 and
shows its optimality for VC classes or under (CM) assumptions.

3.2.2. Localized complexity. Here we use localized complexities to choose the tem-
perature of a standard Gibbs estimator in a finite grid. Specifically, we arbitrarily
use the grid A £ {)\j 2 \/Ne2 ;0 <7 <log N}. Consider the randomized estimator

associated with the posterior distribution 7_y . For any 0 < j < log NV, its com-
2

plexity is defined as C(j) = logm_ A, €XD ()\ T, . ) For any 0 <i < j <logN
and € > 0, we introduce L £ log[log®(eN)e~'] and

5(6.3) & B (r_sr ©71_s, ), + LRSS

The following algorithm appropriately chooses the integer 0 < j < log N such
that the associated Gibbs classifier satisfies a localized version of the guarantee in
Theorem 3.3.

Algorithm 3.3. Let u(0) = 0. For any k > 1, define u(k) as the smallest integer
€lu(k — 1);log N] such that m_x,,r — T_x,;_yrT + S(u(k — 1),j) < 0. Classify
using a function drawn according to the posterior distribution associated with the

last u(k).

Theorem 3.4. Let
(3.5)

sup { log T_x;r! @ _x, pt €XP (C;? P’ ) }

<i<j ' log|l N)e 1!
Gloc( ) 27y, 1r’7°/ + 0<i<j - +C og[og(;. Je 7]
J J

for an appropriate constant C' > 0. The iterative scheme is not infinite: there exists
K € N such that w(K) ezists but not u(K +1). For any € > 0, with (P®2N) -
probability at least 1 — ¢, , for any k € {1,..., K}, we have

/
& T,y < M) e T and T_) (k)rr < m_y e’

o T_ )\“(K)TT < min Goc()).

u(k—1

Proof. See Section 9.3. U

Remark 3.7. The localized guarantee (3.5) has the same form as the non localized
one (see (3.3)). The first term is localized since

T < fol Tt dy = — 5 log mexp(—Ar).

The second term seems to be worse than in the non localized bound since the
supremum appears. In fact, this supremum has no effect since when we upper
bound this term in order to recover the known convergence rates (either under
Vapnik’s entropy condition or under (CM) assumptions), the bound increases with
the parameter \. Besides, the discretization of the parameter A\ does not influence
the convergence rates under these assumptions, and in general will not be harmful.

13We do not provide the proof of it since in Section 3.2.2 we give a more difficult-to-prove
guarantee in the case of localized complexities.
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Detailed algorithm 3.2. This is a possible implementation of Algorithms 3.3
and 3.6. Set M depending on the computer resources available and the required
accuracy of approximation.

j =0
Simulate M functions fj/ ,,, m =1,..., M under the distribution T_X,r
While j' <log N do
j=3
Repeat
=g
If 7/ <log N Then
Simulate M functions fj/m, m =1,..., M under 7_x ,,
Using fjm and fj n, estimate m_x .7 — 7_x;» + 5(j, j')
End If
until j* > log N or m_x 7 — 7_x;r + 5(j,j') <0
End Repeat
End While

Classify using f; 1 or to follow the lines of boosting methods classify using

X > argmax, cy Z llfj,m(x):y.
mée|[1;M]

Remark 3.8. To simulate under the Gibbs distributions 7_y/. and 7_y,, we may

use the Metropolis algorithm. To avoid numerical troubles due to the exponential

in logm_», exp (’\—;W_MI_P.,.), we can approximate this quantity by

=i

A2 P A2 _
N<7T_)‘T®7rf)\r+%7r,>\rﬁ’w)]]?'f or N(W®W)f,\r(fl)fxr(fg)jt%lf’fl,fz

since it is lower bounded with ’\WQ (7L A @ M)I:P.7. and upper bounded with

2 =

(T ®m I:P.y./\%2(7r®7r)

—Ar+%w_M1?,) —Ar(fl)—Ar(f2)+*W21?fl,f2IPw"
3.3. Mixing both complexities. This section explains that, by rewriting the
algorithms given in Section 3.2 for an appropriate prior distribution, we obtain an
algorithm combining the compression scheme approach (Section 3.1) and the usual
PAC-Bayesian approach (Section 3.2).

Consider a “family of algorithms”:

F:UfSzZtx0xx — Y.

For any 0 € O, Fy is an algorithm to the extent that, with any training set Z7",
it associates a prediction function FZ{vﬁ : X — ). In this sense, the parame-
ter # “indexes” the algorithms. We assume that these algorithms Fy are almost

exchangeable.

LetZ= U {1,...,2N}" Any I € T can be written as I = {i1,...,i,} with
2<h<2N

2 < h < 2N. Let a €]0;1] and 7; be a prior distribution on the set © (possibly
depending on Z2 in an almost exchangeable way). Consider on the set Zx Y% x©
a distribution such that mo(I, y,df) > =2 (ﬁm)hm (df) when y; = 0 for ¢ > h.
The model is defined as

Fa {FZM;QShgzN,xi G{Xl,...,XgN},He@}.
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The prior distribution on the model is  given by: for any measurable set A C ]—"

= 7r0{ (I,y2N,0) e T x YN x 0O : F(wal) S(Xiy yn),0 € A} Since the algo-

rlthms Fy are almost exchangeable, the distribution 7 is also almost exchangeable
so that we can apply Algorithms 3.2 and 3.3 introduced in Section 3.2.

Remark 3.9. When the family of classification rules is just a family of functions
(i.e. when the function F.» o does not depend on the training set 27'), we recover
the algorithm described in Section 3.2.

Such a procedure can be useful to choose the similarity measure on the input
data, and in particular to choose the kernel (its type and its parameter) of a SVM.
It is an alternative to the commonly used cross-validation procedure which has the
benefit to be theoretically justified. When || is countable, we can also give the
following non randomized version of the algorithm.

Algorithm 3.4. Let us take 0y € argmazgcomi(0) and fo 2 Fx, x,.0,- For any
function f € F, define its complexity as

c(f) & min {n1og (2X2) + 10877 (0)}.

(12N ,0)€TxY2N x©: f£ F(;Q1 Y1) (X, 0RO

For any k > 1, define fi as a function with the smallest complexity such that

sP C(fr—_1)+C log[(1—a)2a%e—1
r(fs) = r(fs 1)+\/ fi—1 05 U= 1) +C(fr) Hlog[(1—a) )

v <0.

Classify using the function obtained at the last iteration.

From the arguments used in Section 3.1, one can prove a guarantee for this
algorithm similar to the last assertion in Theorem 3.1.

Remark 3.10. When |©] = 1, we recover the algorithm described in Section 3.1.

3.4. Similar algorithms in the inductive setting. In the inductive setting,
new difficulties arise and the adaptation of the previous results requires i.i.d. com-
pression schemes similar to the ones developed in [18, 7].

In this section, we only describe an algorithm using a mixed complexities when
the set of primary algorithms is countable. When this set is not countable, we will
give the algorithm without compression scheme and for a localized complexity (and
obtain results of the same nature as the ones in Section 3.2.2).

Remark 3.11. We could have described a general algorithm from which these two
algorithms would have been derived up to some variations. We will not give it since
notations become quite messy and the practical utility of the resulting classification
rule is not obvious since to choose both the algorithm # and the compression set [
is computationally expensive for “huge” set O.

3.4.1. Mixed complexities. In this section, we consider a family of algorithms:
F:UfRZ"x0x X — ).

Introduce for any h € IN*, Z,, = {1,...,N}*. Any I € I}, can be written as
I = {i1,...,ip}. Define I £ {1,...,N} — {i1,...,in} and Z; = (Z;,,..., Z;,).
The law of the randorn variable Z; will be denoted Pf. For any J C {1,..., N},

J A
introduce IP |J| Y ics0z
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Finally, for any I,1;,I, in T £ per O 1Ih and 6,01, 60, in ©, introduce

R(I,6)
r(1,0)
]P(Ila 017 IQ; 02)

]P(Ila 017 IQ; 02)

P[Y # Fz, 0(X)]

PY # Fz, 0(X)]

P[Fz, 0,(X) # Fz,, 0,(X)]
POV By, 0 (X) # Fz, 0,(X))]

> 1> > [

Let m: U2 2" — M! (©) associate a prior distribution on the set © with any
training sample Z;. For any # € © and any I € Z;, the complexity of the estimator
Fz, . is defined as C(I,6) £ log ngl (0) 4+ hlog (&). To shorten the formulae, intro-

duce Cy 5 2 CUI791>+C<127|9(21331;;g)[5|1*a>‘2a46‘11 .For any (1,01, I, 0) € TxOxIx6,
define

5(117917127 92) é \/201,2:[_P(117 917[2792) + 0%72 + 4%1,2-

The following algorithm appropriately chooses the primary algorithm # € © and
the compression set I.

Algorithm 3.5. Let Iy € Iy and 0y € argmazycgmz, (0). For any k > 1, define

I € U 7y and 0, € © such that
2<h<N-1

(I, 0r) € argmin C(1,0).
(170):T(I70)7T(Ik71 79k71)+s(17071k7179k71)SO

Classify using the function FZIK,GK where (I, 0k) is the compression set and al-
gorithm obtained at the last iteration.

Define for any (I,0) € Z x ©, k(I,0) £ max {0 < k < K;C(Ix,0) < C(I,0)}.
The following theorem guarantees the efficiency of this procedure.

Theorem 3.5. The iterative scheme is not infinite: there exists K € IN such that
(Ik,0k) exists but not (Ix41,0k41). With (P®YN) -probability at least 1 — 2e, for
any k € {1,..., K}, we have

o (I, 0k) <r(lp—1,0k-1) and R(Iy,0r) < R(Ix—1,0k_1),

o C(Iy,0r) > C(I—1,0k—1),

[ ]
(36) R(IK, 9}() < (170%161£X® {R(I, 9) + 28([“[79), ek(Lg), I, 9)},
and consequently
R(Ix,0x) < inf sup  {(1+OR(L,0)— ER(I',0')
(1,0)€EIxO (1" 9"yeT xO:
(3.7) £20 o .9h<c(1,0)

+2(1+6)S(I, 0,1, 9)}.
Proof. See Section 9.4. O

Remark 3.12. Define Oz, £ argming oP![Y # Fyz, ¢(X)] and let v be a prior

distribution on © independent from the data. A natural choice for the prior dis-
1
tributions is to take 7z, () = % -v(0) so that for each compression set I, we
I
consider only the algorithms which minimizes the empirical risk on /. The resulting
classifier is based on the ERM principle but does not overfit the data thanks to the

compression scheme regularization.
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3.4.2. PAC-Bayesian complexities. In this section, we consider a model F which is
structured by a prior distribution 7 € M? (F) independent from the data. Introduce
for any 0 < j <log N and € > 0,

(A, £ 0.19v/Net

C(j) £ logm_x,rexp (%iﬁ_)\er_P.’.)
g(u) = %

a(d) = {91+ 5y)

by 1{1+Ng %m%f]
( L 2 Jog[2log*(eN)e ]

and for any 0 <7 < j <log N and € > 0,
S(i,5) £ a(\;) (m-ar @ m_x;r )P+ b(X;) [2C(0) 4 2C(j) + 3L].

The following localized algorithm gives a way of choosing the standard Gibbs tem-
perature which ensures to get the optimal convergence rate under (CM) assump-
tions.

Algorithm 3.6. Let u(0) = 0. For any k > 1, define u(k) as the smallest integer

€lu(k — 1);log N] such that m_x,;pr — T_x,;_yrT + S(u(k — 1),j) < 0. Classify
using a function drawn according to the posterior distribution associated with the
last u(k).

Theorem 3.6. Let
(3.8)

cA2
sup { log m_x,R®T_x, R €XP ( L1P. )
0<i<j

-1
Gloc(j) £ W*Aj_lRR + — v + CIOgUOgE\iNk ]

The iterative scheme is not infinite: there exists K € IN such that u(K) exists but
not u(K +1). With (P®N)*-probability at least 1 — €, for any k € {1,..., K}, we
have

& T,y < M) e T and T_) (k)TR< T Nu(h 1)TR

R< min  Gipe(j)-
1<j<log N

Proof. See Section 9.5. U

® T—_Xu(x)r

An implementation of this procedure is presented in Algorithm 3.2.

Remark 3.13. The algorithms presented in this section are based on the same
principle since they all consist in “ranking” the functions in the model by increasing
complexity, picking the “first” function in this list and taking at each step the
function of smallest complexity such that its generalization error is smaller than
the one at the previous step. Note that this section has indirectly emphasized the
benefit of relative data-dependent bounds.

4. COMPARISON BETWEEN THE ERRORS OF ANY TWO RANDOMIZED ESTIMATORS

We start with the transductive setting which provides simpler formulae and in
which the variance term is directly observable. Results for the inductive setting are
collected in Section 4.4.
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4.1. Basic result. Let m; and mo: Z2Y — M (F) denote two almost exchange-
able functions. Let us introduce K; o 2 K(p1,m) + K(pa, m2) + log(e™1).

Theorem 4.1. For any € > 0, A > 0, with (P®2N)*—pr0bability at least 1 — €, for
any distributions py, p» € ML(F), we have

2\ - K
(4.1) par’ — p1r’ + pir — par < N(Pl ® p2)P.. + %
Proof. Using Theorem 8.4 for G = F x F, W[(f1,f2),Z] =lyzpx) = lyzpxo
and (u,v) = (p1 ® pa, ™ & m3), we obtain Inequality (4.1). 0

The bound consists in a variance term %(,01 ® pg)I:P.’. and a complexity term

’C;’Q. The variance term will be small when the distributions p; and ps are con-

centrated around the same function. The complexity of a randomized estimator is
measured by the Kullback-Leibler divergence of its posterior distribution wrt the
prior distribution. - -

Since the variance term %(Pl ® p2)P.. = Epl(dfl)Epz(fz)I_Pfl,fz is to be large
when the distributions p; and py are close and not concentrated, we might want to
improve this term by coupling. This is done in Appendix A.

2
N

Remark 4.1. Since the labels Yy 1,...,Yon are unknown, the prior distributions
will only be observable when they do not depend on the labels.

4.2. Optimizing the result wrt the parameter \. First let us show how to
optimize the free parameter in Theorem 4.1. Let A C R’ be a finite set and

/1,2 = K(plaﬂ-l) + K(pg,ﬂ'g) + 10g(‘A|€_1).

Theorem 4.2. For any € > 0, with (P®2N)*—pr0bability at least 1 — €, we have for
any A € A, p1, p2 € ML (F)

2\ = K12
4.2 "~ prr’ — < min< — P .4+ —=>7.
(4.2) par’ — p1r’ 4 p1r pzr_grlelg{N(p1®pz) Y }
Proof. The result just comes from a union bound and Theorem 4.1. 0

Remark 4.2. Let us take p; = m; = (5f. To shorten notations, introduce p = p2 and
m=ma. We get pr' —r'(f) < pr—r(f)+ g\nei/r\l{%p]?,f + %},Where

K2 K(p,n) +log(|Ale ™).
Then the previous results compare the generalization errors of a p-randomized
estimator and a reference function f . To understand well the bounds of this paper,
it is important to keep in mind that we are interested in bounds having the order
of 1/N” where 3 €]0;1]. The power 3 of the bound appears to be closely linked
to both the complexity of the model and the order of P ’F when f gets close
to the reference classifier. This idea already appears in [14, 19, 4] which assume
(IPM;)R < R(f)— R(f) for some x > 1 and then deduce the convergence rate of the
ERM-algorithm. In this paper, we obtain empirical bounds in which the same kind
of trade-off (here between P p.7and r(f) —r( f)) takes place. When the posterior

distribution p is fixed, the optimal parameter A has the order of +/NK/(pP. 7) and

for this parameter, %pI:P”; + § has the order of ,/ICpI:P‘yj;/N.
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Remark 4.3. There is a simple way to recover non relative results in which the
deviations of the functions f and f were added (as explained in Section 2). It
consists in upper bounding ]lf(X#f(X) by~ Ty px) + ]lyjéf(x). This inequality
implies that 2pP 7 < pr + pr’ +r(f) +r'(f). Replacing pIP_; by its upper bound,
we find inequalities to which non relative PAC-Bayesian bounds lead to.

Another way of recovering non relative PAC-Bayesian bounds is to use the
results of Section 8 (such as Theorem 8.4) with W(f,Z) = 1y x) instead of
W(f1s f2), Z) = Ty ) = Ly gy (x)-

In non relative bounds, the optimal randomizing distributions (i.e. the ones
minimizing the bounds) are standard Gibbs distributions. In relative bounds, P. .-
terms appear but, finally, the form of the optimal distribution is not very different:
the relative approach just really improves the bounds in noisy situations and leads
to a less conservative choice of the temperature (i.e. to larger \).

. . . . N’Cl,g Nlog(e—l)
. - = > — a .
The optimal parameter A in Inequality (4.1) is 1/z(p1®p2)P,‘ > 4/ S

Besides, for A > N, the bound is greater than 2(p; ® p2)P. . which is a trivial upper
bound on por’ — p17’ + p11r — por.

So values of the parameter smaller than /N or greater than N can be disre-
garded. Then a good set of parameters is

N k. log N
(4.3) A—{x/ﬁc,ogkgzlogc}

where ¢ > 1. Using this family, we obtain the following continuously uniform bound
wrt A:

2log(
With (P®2N)_-probability at least 1 — €, for any p1, p2 € MLY(F), we have

Theorem 4.3. Let ¢ > 0 and KY , £ K(p1,m) + K(p2,72) + log [log(CQN) 6*1}.

2\ -
4.4 - ! — < 1 P. . > )
(44)  par’ = pur’ + p1r = par < Aefngl;m{ (P ® )P+ (— }

To conclude, it does not cost much (just a loglog N factor'?) to gain uniformity
in the parameter \. We have shown how to get this uniformity. The same tools
can be used to write uniform versions in real parameters of results claimed in this

paper.
4.3. Localization.

4.3.1. Localizing both KL-divergences. In Theorem 4.1, the global size of the model
appears in the Kullback-Leibler divergence. The complexity term K (p,7) can be
large and will be all the more substantial as we had in the model irrelevant func-
tions for our classification task. This is clearly a drawback that we want to correct.
By replacing the prior distribution 7 by a suitable almost exchangeable Gibbs dis-
tribution (71'_0[7«_,_7«/]) and by managing smartly the inequalities in order to recover
an observable upper bound, we can correct it. We will use the following lemma.

1Note that loglog N < 4 for N < 1023
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Lemma 4.4. For any e >0, A\ > 0 and £ €]0; 1], with (P®2N)*—pr0bability at least
1 —¢, for any p € ML(F), we have

(4.5)
K(p, ﬁ_%[rJrr,]) < 1—35 [K(p, 7r_>\r) + log w_», exp (22—;];)]13) + £log(e*1)].
Proof. See Section 9.6. U

Combining Theorem 4.1 for prior distributions (1) _1x, (4 and (72) _ 13,4
(where 7 and 7y do not depend on the labels to be observable), and Lemma 4.4,
we obtain the following localized inequality.

Theorem 4.5. For any ¢ > 0, £ €]0;1[ and A\, A\, Az > 0, with (P®2N) -probability
at least 1 — 3¢, for any distributions p1, p» € ML (F), we have
]Cloc

22 =
4.6 ' — pyr’ — por < 2 P4+ —2_
(4.6) par’ — pir’ + pir — por < —(p1 @ p2)P.. + AN

N
where
2 =
KP5 £ K(p1, (m1)-x,r) + K (p2, (m2) xpr) 4 10g(71) -2, xp (22—}\;,0119,.)
+ log(m2) —a,r €XP (22—%;)2]13.7.) + (14 &)log(e™1).

For A\ = Ay = £ — 0, we recover the non localized inequality. As a special case
of Theorem 4.5, for an almost exchangeable prior 7, we have

Corollary 4.6. For any e > 0 and any finite set A C R, with (]P®2N)*—pr0bability
at least 1 — 3¢, for any (\, N, \") € A3, we have

Y

> | &

(47) 77;)\//7"7“/ — 7T,,\/r’r‘/ + T e — T < ﬁ(ﬂ',,\/r X ﬂ',)\//T)I:P.’. +

where

= ’

K £ 2logm_y, exp <)‘

12 =

277' A IP ) + 2log m_ i exp <)\N W,A//TIP.7.>
+3log (JA]Pe ™).

Proof. Use the previous theorem with & = %, (p1, 71, pa, m2) = (T_x, T, T_xrp, ),
A1 =N, Ao = )\, and make a union bound on the parameters A\, \’ and \". O

To conclude this section, localization leads to smaller complexity terms and
smaller influence of the choice of the prior distribution. Corollary 4.6 also shows
that the complex1ty term can be seen as a variance term since the quantities

log m_», exp ( N7r MIP ) are roughly approximated with A (T @ T_ )P (at
least for small enough )\)

4.3.2. Localizing one KL-divergence. When we want to localize just one of the
two KL-divergences, we can obtain a simpler result (without terms of the form

log m_», exp {C%pI:P}) by using a more direct proof:
Theorem 4.7. Let p be an almost exchangeable prior distribution (for instance
T_C(rgr’) OT (5f). For any e >0, A >0 and £ > 0, we have

e when & < 1, with (]P®2N)*—pr0babz'lity at least 1 — 2¢, for any randomizing
distribution p € M (F),

o 14€ 22 = K(p,7m_ r)+(1+§)10g(671)
(4.8) pr’ —pr’ < pr—pr+ - N (p ® P)IP-,- + wu A
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o with (P®2N)*—pr0bability at least 1 — 2¢, for any randomizing distribution

p € ML(F),
o o A\ 15 K(p,m_oexr)+(14&)l0 e !
pri—pr' < pr—pr+2(p@p)P.. + e 5*(2+é)/\5) gle ).
Proof. See Section 9.7. U

For £ = 0, we recover the non localized bound. We can also give uniform results
in both parameters A and £ as the following remark shows.

Remark 4.4. Let A C [V/N; N] and E C [0; 1[. The previous bound holds uniformly
in A € A and ¢ € = by replacing the term log(e™!) by log(JA||Z]e1).
Again, good sets of parameters have the following form A £ {\/N F0<k<

;ig]\g} and 22 {aF1<k< %} where @ > 1, ( > 1. Using these sets, we

can obtain continuously uniform version of the previous results. The union bound

. . . - log(¢2N) log(aN)
just introduces loglog N terms since |A||Z| < S To2(C) Tos(a)

4.4. In the inductive setting. We can adapt all the methods developed in the
transductive setting to the inductive setting when the prior distribution is indepen-
dent from the data. The only extra difficulty comes from the variance term (since
we have to transform P. . into P.. when we want an observable bound and P. . into
IP. . when we want theoretical bounds) but this problem is solved by using Theorem

8.1 with W(f1, f2, Z) = =1y, (x)£f.(x) and W(f1, fa, Z) = Ly, (x)2 52 (x)-
Theorem 4.8. For any A > 0, 71,73 € ML (F), € > 0, we have
o with (P®N)*—pr0bability at least 1 — ¢, for any p1, p2 € ML(F),

paR — 1R+ pir — por < 39(5) (1 @ p2)P. . + 'C;’Q

o with (]P®N)*—pr0babz'lity at least 1 — €, for any p1, p2 € ML(F),

Y

P ) K12
(01 @ p2)P.. < (14 2 ) (91 © po)P. 4 UFax) iz

where K12 2 K(p1,m) + K(p2, m2) +log(e™!) and g(u) = exp(u)—l-u

w2
Proof. Apply Theorem 8.1 for G = F X F, u = p1 ®pa, v = m1 Qo and successively

for W(f1, f2,2) = Lyzp(x) — Lysp(x) and W(f1, f2,2) = =1y (x)2p(x)- For

the second inequality, we change the parameter A\ « ﬁ to obtain the desired
2N

formulation. O

As a consequence, we have:

Corollary 4.9. For any A > 0, m,m € M}F(}'), € > 0, with (P®N)*—probability
at least 1 — 2¢, for any p1, p2 € MY (F), we have

(4.9) p2R — ,01R + p1r — par < @()\)(,01 & pz)]l_).v. + B()\)ICLQ

where a(\) £ 2g(%)(1+ 5x) and b(A) = %[1 +29(2)(1+ ﬁ)Q]

2[>

Remark 4.5. To recover a simple formulation, it suffices to note that a(\) < 1.1
and b(\) < %L for any 0 < A < N.

To localize the KL-terms, we can prove the following result which is similar to
Lemma 4.4 and which is used to justify Algorithm 3.6.
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Lemma 4.10. For any ¢ > 0, £ €]0;1] and 0 < A < 0.39¢(N, with (]P®N)*—
probability at least 1 — 2¢, for any p € ML(F), we have

(4.10)
K(p7 7T—)\R> < 1—i§ |:K(p7 7T—)\7‘) + lOg T—Xr €XP (25_/]\\;:017P,> + glog(eil)} :
Proof. See Section 9.8. U

5. COMPRESSION SCHEMES

5.1. In the transductive setting. The compression schemes were introduced by
Littlestone and Warmuth ([12]). The results presented here are directly inspired
from [7, Chapter 3.1]. The notations are the same as the ones used in Section 3.1.
We have an exchangeable algorithm

f:ruZ'xx—Y
nelN*

which produces for any training set £ the prediction function fc : X — Y. Let
Fn & {f(X, vl (i1,...,ip) € {1,..., 2N} oyt ¢ yh}. We consider the data-
i5091) 5=

dependent model FL2 U F,.
2<h<N

Theorem 5.1. Let € > 0, a €]0; 1] and L £ log[(1 — a)2a*e]. With (P®2N) -
probability at least 1 — €, for any f1, fo € f", we have

P(f) = (1) < r(f2) = r(fr) + ) Ponta SOV o) s los N o))

where the integers hy and ho satisfy f1 € ﬁhl and fy € .7:'112.

Proof. Let m be a prior distribution such that it is uniform on each %, and 7(F3,) >
(1—a)a"~2. We have log |F,| = log [(2N)"|Y|"] = hlog (2N|Y|). The result comes
from Inequality (8.7) in which we take W[(f1, f2), Z] = Ly 2f,(x) — Ly+f,(x) and
vV=mQT. U

Remark 5.1. This compression scheme can be extended to a family of algorithms
F U:{i%Z” x © x X — Y. In the inductive setting, we will directly give the result
for this family.

5.2. In the inductive setting. Compression schemes in the inductive learning
are not a direct consequence of the one in the transductive learning. Here we adapt
the ideas developed in [7, Chapter 4]. The notations are the one introduced in
Section 3.4.1. Let 7 : ZN¥ — ML (Z x © x T x ©) be some regular conditional
probability measure such that

® iTyn (I, I5) is independent from Z{V,
® gy (d61,db2|11, I2) depends only on Z, and Z, (and so will be denoted
T2y, Zr, (b1, dbs)).

Theorem 5.2. We still use g(u) = %. Introduce Ny o £ |(I; U I2)¢| and
Ki2= K(p1 @ pa, ) +log(e™ ). For any e >0, A > 0, we have
o with (P®N) -probability at least 1 — €, for any p1, p2 € ML(T x ©),

p2R — p1R+ pir — par < (p1 ® p2) [NT’QQ(N?’Q)]P(IL 01, I, 92)] + K2
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o with (]P®N)*—pr0bability at least 1 — ¢, for any p1, p2 € ML (I x O),

(pl ® p2> |:(1 2N ) (I].a 917[27 92)] < (,01 X ,02>I_P(I].701712702> + ’C;\,Q-
o with (P®N)*—pr0bability at least 1 — €, for any I1,Is € Z and 61,05 € O,

R(I2,62) — R(I1,61) +17(I1,601) — r(I2,02)
[10 T 1([1,91,]2792)+10 (6_1)]IP(11791712792) log 7~ (11791712,92)+10 (6 )
= \/ s Ny, 2g + s 3N1,2 s ’

o with (IP®N) -probability at least 1 — €, for any 11,1 € T and 61,605 € O,

(11791712792 <\/IP 117017[2702> logﬁ_1(1179§71\17?7§2)+10g(6_1)

+ log #=1(I1,01,12,02)+log(e—1)
2Ny 2

Proof. Apply Theorem 8.7 successively with

G: (Z{L’ Z? ) (07 9,)’ (33, y)) = ]l?ﬁfﬁ'z?,e(x) o ]ly7fﬁz?/,e/(w)

A n r7n’ / . .
and G : (27,27 ,(0,0), (z,y)) — _]le;l,e(w#FZ?/,e,(x)' Then take
{ N(Ila IQ; d(917 02)) = pl(Ila del) & p2(127 d92)
v(I1,I2,d(01,02)) = it(I1,dby, I5,d6s)

6. SOME PROPERTIES OF GIBBS ESTIMATORS

6.1. Concentration of Gibbs estimators. So far, we have looked for controlling
the risk pr’ and pR in respectively the transductive and inductive setting. One can
ask whether the randomizing distribution p is enough concentrated so that, by
drawing a function f according to this distribution p, the resulting risk r'(f) or
R(f) has the same order as pr’ or pR. In the transductive learning, the following
theorem tends to say that this property holds to the extent that it holds for the
risk r + 7.

Theorem 6.1. Let m and p be almost exchangeable distributions. For any € > 0,
A > 0, with PN _probability at least 1 — € and m_or.-probability at least 1 — €, we
have

)
'%n

AL —logmexp { — 2A[r — pr]} + 2log(e™ ')
NPT )\ |
Proof. See Section 9.9. U

6.1) (r+7)—=pr+r)<

Inequality (6.1) is to be compared with

= 9 —1
T_oxe(r+ 1) = plr+1) < 2 (7_op, @ p)P.. + _logwexp{_w‘[;_m]}ﬂog(g ),

which directly comes from Theorem 4.1 (With (p2, T2, p1,m1) = (T—axr, T, Py ,5))
Theorem 6.1 implies that Inequality (6.1) holds with probability at least 1 — 2e wrt
randomness.

Remark 6.1. For sake of simplicity, the result has been given for the distribution
T_2ar- We can adapt the proof to take into account other Gibbs distributions in
which the variance term I_P.,. appears.
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In the inductive setting, when the prior distribution 7 is independent from the
data, the previous theorem becomes

Theorem 6.2. For any e >0, A >0, 7 € ML (F) and p € ML (F), with P2V -
probability at least 1 — € and m_y,.-probability at least 1 — €, we have

(62) R— ﬁR < %g(%)ﬁlﬂ + —logwexp{—)\[r)\—ﬁr]}—l—2log(6_ )
Proof. See Section 9.10. U

This result has to be compared with

TR =R < 29(2) (s ® p)P. 4 —losmexp {ZAr=pr]}tlog(e”).

which comes from Theorem 4.8.

6.2. Bracketing on the efficiency of standard Gibbs estimators. The follow-
ing theorem brackets the efficiency of a standard Gibbs estimator in the transductive
setting.
Theorem 6.3. For any A > 0,
o for any 0 <& <1, we have
_ logm_exp exp {—(1-&)Ar'} K(m_xp,Tm_x,1)
(1-5)A (1-9A

K(T_xp,T_

< Teowt T gn

IN

T T’

(6.3)

e for any x > 0, we have

log m_ 5, exp (—xAr’) K (T _xpm,T_5)
- XA - XA
T (1A T = Kranmoanr)
XA

71'_)\7«7’/

(6.4)

AVARLY,

These inequalities are completed by the following one: for anye >0 and 0 < v < 1,
with (P®2N)*—pr0bability at least 1 — €, we have

2 —
K(m_xr,m_xp) < ﬁ log m_xpr @ T_xp €Xp (170—1%]]?{,.)

6.5 2
(6:5) +(35 + ?;725]\?2 )% log(8¢1).

Proof. The first two results come from the Legendre transform of the function
p— K(p,m_x) and Jensen’s inequality. The last one is proved in Section 9.11. O

Remark 6.2. The constants are not very satisfactory since too many concentration
inequalities are piled in the proof. With this respect, the intermediate step
A2 D 20 -
K(m_zpmymmap) < % logﬁ_)\# exp <,Y—N7T_>\%7J]P.7.) + 7% log(4e b,
was tighter. The parameter v is here to balance the two terms of the RHS. For
instance, for small enough A (at least for \ = o(\/N)), the optimal v is o(1).

In the inductive setting, we have

Theorem 6.4. For any A > 0,
o for any 0 <& <1, we have

W?ATR < _logﬂ',@\Rexp{f(lfS)/\R} + K(’]T(_l):«é’i)'r;)\R)

6.6 -
( ) < 7T—§/\RR+ K(W—A_TJF—AR)
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o for any x > 0, we have

TR > _logﬂfo;);p(foR) _ K(m_xr,T—xR)
(6.7) > R K(7_xr,"—xR)
Z  T—(14x)ARLL — —

These inequalities are completed by the following one: for any e > 0, 0 < v < 1
and 0 < XA < 0.39vN, with PN -probability at least 1 — €, we have

(68) K(ﬂ',)\r,ﬂ',,\R) < % log m_\g exp <4.71]\?\2 7T—/\RIP-,-> + % 1Og(4e_1)~

Proof. The first two results come from the Legendre transform of the function
p — K(p,m—ar) and Jensen’s inequality. The last one is proved in Section 9.12. [

7. VAPNIK’S TYPE BOUNDS

To illustrate the relative data-dependent bounds developed in this paper, we
can use them to recover and improve classical bounds of Vapnik and Chervonenkis
theory. In particular, we will prove VC-bounds involving the pseudo-distance P. .
and localize them. We start with the transductive inference in which results are
much simpler. In Section 7.4, similar bounds are given for the inductive learning.

Let X £ X2V and A(X) be the partition of the model F defined by

AX) £ {{fe]—":f(Xi) = o; for anyizl,...,2N};afN€ {0;1}2N}.

Let N(X) £ |AX)| = [{[f(Xp)]?Y, : f € F}| be the number of ways of shattering
X using functions in the model and let m(x) denotes an exchangeable distribution

uniform on A(X) to the extent that m(x)(A4) = N(lx) for any A € A(X).

7.1. Basic bound.

Theorem 7.1. With (P®2N)*—pr0bability at least 1 — €, for any f1,fo € F, we
have

SI:Pfhf2 [2 log N (X) + log(efl)]
W .

' (f2) —r'(f1) < r(fe) —r(f1) + \/

In particular, introducing f' = argmingr', we obtain

[21og N(X)+log(e~1)]

(7.1) T/(fERM) - T/(f’) < T(fERM) — T(f’) + \/8PfERM’f/ = )

Proof. Let v[(dfy,df2)] £ mux)(dft)mux)(df2). By taking my(x) such that it put
masses on only one function in each set of the partition A(X), for any functions
f1, f2 € F, there exist functions f], f € F such that

e fi and f; are in the same set of the partition,
e f) and fo are in the same set of the partition,

o V(A ) = i
The result then follows from Inequality (8.7) applied to W [(fl, f2), Z] =Ny 4px)—
Lyznx)- -

In particular, when ) = {0; 1}, introduce the local VC-dimension

hx 2 max {|A] : AC X and [{AN f71(1): f € F}| =211}
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Since log N(X) < hx log <2§§), we get

. . 2hx log ( 22 ) +log(e—1
' (fErMm) — ming 1’ < 4\/ x o h§1\7) osle D)
Note that this last bound is very rough since we expect the variance term P P
to be much smaller than 1. In Section 7.3, we propose an observable upper bound
of this quantity, and more generally a way of empirically bounding any quantity
depending on f’.

7.2. Localized VC-bound. For any A € A(X), the empirical risks r and " are
constant on the set A. Let 4 and 7/, denote these values and (7 +7')4 = rq +1/,.

Theorem 7.2. For any A\ > 0, define
Cr(f) 2108 X geapy xp { = AL+ 74 = (r+ ) ()] }-

Let C(f,g) = minx>o {Cx(f) +Cx(g) }. For any € > 0 , with (P®2N) -probability at
least 1 — €, we have

2 ~ 2 ; 8P o 7 [C(Fera ') Hlog(e~1)]
(7.2) v (Ferm) — ' (F) < r(ferm) — r(F) + \/ fERM Ej}i\’]M .
Proof. The proof is similar to the one of Theorem 7.1. The difference comes from
the choice of the prior distribution. Let r”” £ 7+  and A : F x F — R be a
real-valued function possibly depending on the data Z?V in an exchangeable way.
We take the exchangeable prior distribution

a exp{ —A(f1, f2)[r" (fO)+r" (f2)]}
v(dfi, dfz) = o0 ®mu(x) Pl NI ) T+ (F2)]}  TUX) ® 71-M(X)(dfl’ dfa).

So for any functions f,g € F such that myx)(f) = mux)(9) = W, we have

log v (f, 9) = C(t.9)(f)+Cr(£,9)(g)- Since the parameter minimizing Cx(f)+Cx(g)
(at some small positive constant if the minimum does not exist) depends on the
data in an exchangeable way, we can choose A(f, g) equal to this parameter. 0

For A =0 (i.e. by using that C(f,g) < Co(f) + Co(g)), we recover Inequality
(7.1). By appropriately choosing the parameter A, we may expect to have C( fERM)

and C(f’) much smaller than log N(X).

Remark 7.1. To illustrate this assertion, consider the toy example in which we
have X = [0;1], F = {Lpa:0 € [0;1]}, Y = 1., for some 6 € [0;1] and
P(dX) absolutely continuous wrt Lebesgue measure. Then we almost surely have
N(X)=2N +1 and for any A >0

A E Y peax) P (= Alra+7y]) < 1+230 eXP(l—’f%() N
= 1+2exp(— )bk,

Let # 2 /(frm) + (). Inequality (7.2) gives # < rgg\/ LlzlogertXrtlogl= )],
Taking A\ = 2—]\6, we obtain -
i < I){lzug{ Slog{1+zexp(l—_xe/xz%zv[_lffig(—x)] }+4log(e 1) } < :«’,7-1—51?5;(6*1)7
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which has to be compared with 7 < 810g(2N+113]+410g(671) obtained for A = 0, i.e.
from the non localized bound. So localizing allows to have sharper bounds and in
particular to get rid of the log N which appears in classical VC-bounds. However,
numerically, since the previous minimum does not differ much from its value at
A =0 for N < 200, this improvement is not significant for small training samples.

7.3. Empirical VC-bound taking into account the variance term. This
section proposes a way of locating the best function f’ in the model in a small
subset containing the empirical risk minimizer. This can be useful to give observable

bounds of any quantity depending on f ' and in particular to upper bound P 2

Lemma 7.3. Let € > 0 and

8P ; 7[21log N(X)+log(e~1)] }

f"é{fe.?-":r(f)gr(fERM)—F\/ 1EEM: ~

With (IP®N)*-probability at least 1 — €, we have f’ cF.
Proof. Tt directly comes from Inequality (7.1) and ' (ferm) — ' (f/) > 0. O

As a consequence, Inequality (7.1) leads to

Theorem 7.4. For any € > 0, with (]P®N)*—pr0bability at least 1 — €, we have

F £ R 8P ; [21log N (X)+log(e—1)]
' (ferm) — 7' (f') < sug{r(fERM) —r(f) + \/ o 218 D g }

fer

To simplify, we can weaken the previous inequality into

8sup z I?)fERM .[2log N(X)+log(e~1)]

T’(fERM) — T’(f’) < \/ N

7.4. In the inductive learning. The following theorem is Theorem 7.1 adapted
to the inductive inference.

Theorem 7.5. With (P®2N)*—pr0bability at least 1 — €, for any functions f1, fo €
F, we have

8P®2N [p ZN{2(P®2N)*[log N (X)| XN ]|+log(e—!
R(f2>—R(f1) Sr(f2>_71(f1)+\/ Pry. s ]{ ( ]\)[ [log N(X)| ] g( )}
Proof. The result is similar to the one of Theorem 7.1 except that we use Inequal-
ity (8.9) instead of Inequality (8.7), and we conclude by using Cauchy-Schwarz
inequality. U

In the inductive setting, the variance term P2V [P ;. [XN] = ]Pfl’fQ—J;Pfl’fQ and

the complexity term (P®2V )>k [log N(X)|X{] are not observable and we need extra
concentration inequalities to convert them into observable quantities.

7.4.1. Complexity term. For the complexity term, the following lemma proposes
theoretical and empirical bounds of it.

Lemma 7.6. The conditional expectation (IP®2N)* [log N(X) | X{¥] can be upper
bounded
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o by
(7.3) sup log N(X{", a}f%,),

N+1€XN

o with (P®N)*—pr0babzhty at least 1 — €, by

_ 2log N(XN
(7.4) 21og N(X]) + (log2)log(e ™) (1+ /1 + ZEXEEL),
o with (P®?N)_-probability at least 1 — 2, by
_ 2log N(X2N
(7.5) log N(X7Y) + 2(log 2)log(e ™) (£ + /1 + FBREE) ),

o with (P®N) -probability at least 1 — ¢, by

(log 2)log(e™ ") 18(P®2N)* Jog N(X2IV)
(76) (IP®2N) IOgN(X2N) + = g <1 T \/1 (log 2)10gg(6_1) )

Proof. The first bound is trivial. For Inequalities (7.4), (7.5) and (7.6), we use fine
concentration inequalities due to Boucheron, Lugosi and Massart ([3]). Let log, de-
note the binary logarithm: log, z £ log > for any « > 0. The quantities log, N(X7"),
logy N(X?N) and (P®2V)" [log, N(XQN)\XN] are self-bounded quantities in the

sense given in [13, p.23]'5. By Theorem 15 in [13, p.40] and some computations,
any self-bounded variable Z satisfy

e with probability at least 1 — ¢, Z < BZ + 251 (1 v 1+ lolg?f_zl)),

e with probability at least 1 — ¢, EZ < Z + log(e™ 1) (1 +4/1+ log(e_l))

From the inequality log N(XZV) < log N(X{V) + log N(X]%]]il) and bounding the
expectation of log, N (X3 ;) using the previous inequality, we obtain (7.4). Using

both previous concentration inequalities, we link (P®2Y) i [logy N(XV)|X{] with
(P22N)" [log, N(X?M)] and (P®2N)" [log, N(XZN)] with log, N(X2Y). After
some computations, we get Inequality (7.5). Inequality (7.6) directly comes from
the first of the two concentration inequalities. O

Remark 7.2. Bound (7.5) is useful only if the user possesses N extra input points
XoN+1,-- -, Xon drawn independently according to the distribution P(dX). Con-
trarily to the transductive setting, these points are not necessarily (the) points to
be classified. In the absence of these extra points, we should use Inequality (7.4)
to give an empirical bound of the complexity term.

7.4.2. Variance term. Let KK = P®2N[2log N(X)|Z{¥]+log(e~'). We have just seen
how to bound K with an observable or theoretical bound. To deal with the variance
term, we can use the following lemma:

Lemma 7.7. For any e > 0, we have
e with (P®N)*—pr0bability at least 1 — ¢, for any functions f1, fo € F,

(7'7) ]Pflz.fQ < Pf17f2 + 2\/% (Pf17f2 + %) + %

15For the self-boundedness of the quantity (P@2N)" [log, N(X?N)|X]N], we first prove that
for any x?\,]\_’i_l € XN, the quantity log, N(X{V,x?\,]\_’i_l) is self-bounded. This can be done by
introducing the quantities log, N(Xl,...,Xi_l,Xi_,_l,...,XN,m?V]\_fH) for any 1 < ¢ < N and

slightly modifying Han’s inequality ([13, p.31]). Then we take the outer expectations.
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o with (]P®N)*—pr0babz'lity at least 1 — €, for any functions f1, fo € F,

(78) I7Pf17f2 < ]Pf17f2 + 2\/% (IPflva + %) + %

Proof. By using the same prior distribution as in the proof of Theorem 7.1 and by
applying Inequality (8.9) to W[(f1, f2), X] = 1, (x)#f.(x), We obtain

IPfoQ — Pf1,f2 _ (IP®2N)* \/4]?f1,f2 [210g]}]\}(X)+10g(6—1)] < 0,

hence, setting P = \/ Pg s+ P 1,1 and using Cauchy-Scwarz inequality, we obtain
s K
P? < 2Py, s, + P/ 2.

Solving this quadratic equation leads to the first assertion of the theorem.
For the second inequality, it suffices to take W[(f1, f2), X] = =1, (x)25:(x)
O

instead of W[(f1, f2), X] = Lp (x)#f2(x)-

7.4.3. Conclusion. Let f € argming . Combining Theorem 7.5, Lemma 7.6 and
Lemma 7.7, we obtain an empirical bound of R( fERM) —R( f ) except for the P Fora. f
quantity. This last quantity can be bounded using a locating scheme as the one
given in Section 7.3.

Combining the three previous results, we can also give a theoretical bound of
R(ferm)—R(f) except for the P Forng, 7 duantity. Under Tsybakov’s margin assump-

. L1
tion, this quantity can be bounded with C' [R( ferm) — R(f )] = for some xk > 1. This
leads to the following satisfactory theoretical bound:

Theorem 7.8. When F is a VC-class of dimension h, with (]P®N)*—pr0bability at
least 1 — ¢, we have R(fgru) — R(f) < Clog(ee ™) (& logN)Tn‘l.

This is the known optimal convergence rate in this situation up to possibly the
logarithmic factor (see [15, Corollary 2.2] and [1] for more details).

8. GENERAL PAC-BAYESIAN BOUNDS

Let Z1,...,Zn be N i.i.d. random variables distributed according to a proba-
bility distribution IP on a measurable space (Z,Bz). Let (G, Bg) be a measurable
space and Mi(g) be the set of probability distributions on this space. Let Bgr
denote the Borel o-algebra on R.

8.1. A basic PAC-Bayesian bound.
Theorem 8.1. Let W : (G x Z,Bg®Bz) — (R, Br) be a measurable function. Let
€e>0,A>0, B2 supW, g(u) = W, ac(A) £ 2g(4c) and v € ML(G).
gxZ
We have
o with PN _probability at least 1 — €, for any distribution p € Mi(g),

K (1, ) + log(™)

(8.1) pPW — uPW < ap(\) uPW? + X :
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e with (]P®N)*—pr0babz'lity at least 1 — ¢, for any function f € G,
I_PW(f,) _IPW(fa) . .
8.2) < infyng { () PW(f, )7 + v Uos(e ) |
logv—1 log(e—1 ;)2 logr~—?! log(e™?!
S\/2[ 8v ! () Hos(c DIPW()? | (g ) logv ™ (P Hlos(c™) |

The proof relies on the following lemma and on Legendre transform.

Lemma 8.2. Let W be a random variable bounded by b € R. Then for any n > 0,
we have

log Eexp {n(W — EW)} < n?EW?g(nb).
Proof. We have
exp (MW) = 1+ W + n*W3g(nW).
Using that log(1 + ) < x and that g(nW) < g(nb), we obtain
log E exp (nW) < nEW + n°g(nb)EW?,

which is the desired result. U
Now let us prove Theorem 8.1. We have
(8.3)
PEN [ sup { [PW — PW — ap(\)PW?] — KW’””;O%(E_I)} >0
peM (9)

= PN (Llog [el/ exp {A\[PW — PW — aB(A)IPWﬂ}} > o)
= POV (evexp {APW — PW — ag(\)PW?]} > 1)
< PN (evexp {A[PW — PW — ap() )IPWZ]})

= PN exp {A[PW — PW — ap(\)PW?]}

— evexp{ — ap(\)PW?} (IP exp {2 W — ]PW]})N
<e,

where at the last step we use Lemma 8.2.
To prove Inequality (8.2), it suffices to note that when we allow the parameter
A to depend on f, we get

p{A[PW — PW — ag(\)PW?]} < K(u,v) + log(e ™).
Taking ;1 = 0, we obtain
PW(f,-) — PW(J,-) < ap\(IPW(f, )? + sl (L)l os(e” ),

Choosing A(f) appropriately, we obtain the first part of Inequality (8.2). To prove
the second part, it suffices to note that for any A > 0, we have'¢ inf {xg + A—z} <

A—|— ° and 1nf { 5 +4 S } < A. The last inequality is used when B < 0 since g(u) < %
for u S 0.
2 2
16proof: we have gnfo{xg(x) + ‘;‘—x} < log(l + A)gllog(1 + A)] + m = A+
2 1+A+ A% A+ A2 .
AT — mk(A) where k(A) £ log(l + A) — 1+A+2A?2' Since k(0) = 0 and k'(A) =
Al >0, we get k(A) > 0, hence the result.

36(1+A)(1+A+A2/6)2
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Remark 8.1. In Inequality (8.1), we can replace PW? with VarpV provided that

B £ supW is replaced with B’ £ B — PW. To obtain this result, it suffices to
gGxZ

substitute Lemma 8.2 with: for any random variable W such that ' £ sup W —-PW,
we have log P exp {n(W — PW)} < n?*VarpWg(nt').

Remark 8.2. Inequalities (8.2) can also be proven using a Bennett’s type inequality:
for any i.i.d. random variables W; upper bounded by B, we have

PN (ZLUNW > np fug(upPw? + 50 <

and a union bound. The link between both inequalities in (8.2) is similar to the
one between Bennett’s and Bernstein’s inequality (see for instance [10, p.124]).

8.2. Concentration of partition functions. The following result is in particular
useful for localizing and for getting theoretical bounds from data-dependent bounds

and vice versa. We use the same notations as in Theorem 8.1. Let us introduce

AZE —inf W.
GxZ

Theorem 8.3. For any € > 0, A > 0 and any probability distribution v € M (G),

o for any N > 0, with PO -probability at least 1 — €, we have
_ A
(8.4) logvexp{— APW} >logrexp { — A[PW +ap(N)PW?|} — y1og(e*1),
o for any N > \, with PN -probability at least 1 — €, we have
_ A
(8.5) logrexp{—APW} <logrvexp{— A[PW —aa(XN)PW?]} + ylog(efl).

Remark 8.3. Recall that a.(\) £ 2g(4c) and g : u W is a positive

convex increasing function such that g(0) = % by continuity. Theorems 8.1 and 8.3

trivially hold when A, B and PW? are replaced with respective upper bounds.
Proof. For the lower bound of loguexp{ — )\I_PW}, the proof is inspired from [6,

Section 3]. Let p/ £ V_APW+as(n)Pw2]- Applying Theorem 8.1 to W and the pair
of distributions (i/, u’), we get, with P®¥_probability at least 1 — e,

_ 1 -1
—MWW+&AXWWﬂS—MMN+E%%J'
So we have

logvexp { — A[PW + ap(N)PW?]}
=AM [PW + ap(N)PW?] — K (i, v)

< —MPW + Slog(e™t) — K (i, v)
<  sup — A\uPW + %log e — K(u, 1/)}
HEML(G)

= loguexp{ — )\]I_DW} + %log(efl).
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For the upper bound of log v exp { - )\I_PW}, introduce v/ & V_APW—ax(\)PW?]-
We have

]P®N[loguexp{ )\]PW} >logyexp{ A[PW — aa(N)PW? }—i— +log(e 1)}
= PN (i exp {APW — PW — aa(X)PW?]} > 7 )

= PN ([ exp {APW — PW — aa (X)PW?]}] X 1)
PN ([ exp {APW — PW — aa(V)PW? 1] F)

I/\ I/\

where at the last _step we use Jensen’s inequality, Fubini’s theorem and
PN exp {N[PW — PW — as(N)PW?]} < 1. O

8.3. PAC-Bayesian bounds with almost exchangeable prior.

8.3.1. Basic bound. We still use the same notations as in Theorem 8.1. How-
ever in this section, YW are allowed to depend on the data Z?V in an exchange-
able way. Introduce v: Z?Y — M! (G) an almost exchangeable (not necessa-

rily Bz®*V- measurable) function (see Definition 1.1). We define the distributions

P2 127, 10z, and]P—QNZ

Theorem 8.4. Let W = Zi:l[w("zii\;w("ZN“)]Q. For any e > 0 and A > 0, we
have

o with (]P®2N)*—pr0bability at least 1 — €, for any distribution p € ML (G),

K(pu,vzen) +log(e!
(8.6) uPW — MPW<%MW+ G ZINL B ).

o with (P®2N)*—pr0bability at least 1 — ¢, for any function f € G,

_ _ F){1og [van (f)] + log(et)
(8.7)  PW(,) - PW(f) < \/ toe] i | }
o with (P®N)*—pr0bability at least 1 — €, we have
(8.8)
. K(p,v + log(e~?
(IP®2N> { sup |:,uIP W — M]PW—LIUW_ (M Z%N) g( )} ‘Z{V} <0.
peMl (G) 2N A
o with (P®N)*—pr0bability at least 1 — €, we have
(8.9)
N _ _ 2W(f)| logv_,y (f)+log(e™1)

Note that we have W < 4PW? (and even W < 2PW? when W is either positive or
negative).

Remark 8.4. To understand how the quantity W behaves, we can compute its
expectation P®2¥W = 2Varp)V and note that, according to Corollary 8.5 with

Zi A (ZiazN+i) and W(g,Z) — W(gv(sz/)> =S [W(ga Z) - W(ga Z,)}27 the
quantity pW is concentrated around its expectation.
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Proof. e Let F(G;R) be the set of real-valued functions over G. Introduce an
almost exchangeable function'” 1 : 22V — F(G; R) such that for any Z2V ¢ 22N
the function n(Z2Y) is Bg-measurable.

Let us prove the first inequation. To shorten the inequalities, we introduce
Si(9) =WI(g, Znyi) —W(g, Z;) for any (g, Z2V,i) € Gx 22N x {1,..., N}. For any
A > 0, we have

)" ven L exp [n(Z2Y) + AP'W — IPW)}}
PE2N) o L exp [n(23Y) + & L, 1] |
)’ [n(Z3")
(n(Z3N) +

2
1
2
1

2N |11 1Cosh( SZ)}
2N2 Zz 152]}

where, at the last step, we use cosh z < exp {%} Taking the exchangeable function
n(ZiN) = —%W —log(e™1), we obtain

(IP®2N)* Vgan { exp [n(ZTN) + MP'W — PW)] } <,

Vgyan g €XD |7

< Vzanq €XD |1

hence (]P®2N)* <log VZ%N{ exp [n(ZEN) + AW — PW)]} > 0) < ¢, Introducing

U2 sup {un(ZiN) + Mu(P'W — PW) — K (p,vz2n) },
neM(9)
we have proved (P®2V )* (U > 0) < e. Therefore, we get Inequality (8.6).
e The second assertion is deduced from the first one by using the same trick as
for Inequality (8.2) and by noting that

. T log[v 1! log(e™ ! 2W(f)q loglv=1(f)]+log(e™1)
inf 0 { 5y W) + U os ) ) :\/ {togt 3

e We have seen that (IPWN)’k exp(U) < e. By Jensen’s inequality, we obtain'®

(PEN)" exp {(P2N)* (U] Z])} < €, hence (P=N)™{ (PE2N)" (U]2]Y) > 0} < e
which leads to Inequality (8.8).

e We obtain Inequality (8.9) by using the same argument as for Inequality (8.8).
O

The following corollary shows the interest of Inequality (8.8).

Corollary 8.5. Assume that the function W does not depend on the data Z*N . For
any € > 0 and \ > 0, with (P®N)*—pr0bability at least 1 — €, for any u € Mi(g),
we have

(8.10)

_ PE2N) | K (v |ZN | +log(e™ 1)
PPW — uPW < A puPON[W|ZN] + (o) (e ZiN) et
with PE2N[W|ZN] = PW2 +PW? —2PWPW < 2(PW? + PW?). (This last factor

2 can be omitted when W is either positive or negative).

176 the extent that we have
n(Za(l)"")Za'(QN)") = n(Zl,“')ZQNa')

for any Z2N € 22N and any permutation o of {1,...,2N} satisfying {o(i), (N +14)} = {i, N +i}
for any i € {1,...,N}.
I8Naturally, (P®2N)*(U|Z}{) should be understood as [P®2N(.|ZN)|*U
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Proof. We use Inequality (8.8) and note that (]P®2N)* {,uI_P’W|Z{V} = pulPW and
(PO2NY" {uPW|ZN } = pPW. O

Remark 8.5. When the prior distribution Vzz2n puts masses on a finite set of points
(chosen in an exchangeable way) and when we are in the inductive setting, the
previous corollary is very limited since in general the posterior distribution which
is taken using only the first sample will not be absolutely continuous wrt Vgan . This
happens in particular for the ERM-algorithm on an uncountable model. However,
with nets and using differently (8.8), we can also deal with this case.

8.3.2. Concentration of partition functions. The following result is an adaptation of

Theorem 8.3 to the exchangeable setting. We use the same notations as in Theorem
8.4.

Theorem 8.6. For any e >0 and A > 0,
e for any N > 0, with (P®2N)*—pr0bability at least 1 — €, we have

logrvexp{ — 2APW} > logrvexp { — INPW + )‘W/I:PWQ]} — 2 log(e 1),
e for any N > X\, with (P®2N)*—pr0bability at least 1 — €, we have
logvexp { — 22\PW} < logvexp { — 2A[PW — X PW?]} + Jlog(e ).

Proof. For the lower bound, let p/ £ Vo PW AL Pwel- Applying Theorem 8.4 to W
N

and the pair of probability distributions (u', u’), we get, with (IP®2N )*—probability

at least 1 — ¢,

1
WPW + %Pwﬂ < WPW+ lggi).

So we have
logrexp { — 2\ ]PW + A ]PWQ]}
= —2\/[PW + IPW2] Ky, v)

< QAMIPW—F;‘,log( - K@/, v)
< s {—20PW Plog(e ) — K(p,v) |
peMi(G)

=logrvexp{ — 2APW} + $log(e™?).
For the upper bound of loguexp{ — 2A\PW}, introduce v/ £
We have
P2V [logvexp { — 2APW} > logvexp { — 2A[PW — X PW?]} + Jlog(e )]
= PN (V exp {A\[P'W — PW — QJf} IPW2 ]} >e AA’)
= P2V <€ [V exp {A\[P'W — PW — QT”\/I:PWZ]H xS 1)

< EIP®2N<[V/ exp {A\[P'W — PW — 2WA/IP)/\/Z]H AT/)
<e

V_oaPw— A Pw2):

where at the last step we use Jensen’s inequality and

2 /
P2V exp {X {IP W —PW — W)\IPWQ} }
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8.3.3. Comparison between Theorem 8.4 and Theorem 8.1. For comparison pur-
poses, Theorem 8.1 leads to

K (1, v) + log(e™!)
- |

We see that, thanks to the symmetrization argument, we can deal with un-
bounded variables W. Inequality (8.10) is meaningful when the RHS is not infinite
which is not a strong constraint on the unboundedness of W.

The cost of taking an exchangeable prior is that, since g(z) — %, we roughly

_ A (A
pPW — uPW < —g(— sup (—W))MIPWQ -
N NQXZ

lose a factor 4 in the first term of the upper bound.

If W is either everywhere positive or everywhere negative, we just lose a factor 2.
Otherwise, we can apply (8.10) to show that P®2VN[W|Z¥] is concentrated around
its expectation 2Varp)V. So even in this case, we lose a factor 2.

This factor 2 comes from the step in which we “take the conditional expectation”
in (8.6) to obtain (8.8). In fact, we believe that Inequality (8.6) is tight since to
some extent the difference PW — P’W contains twice the deviations of W around
its expectation.

8.4. Compression schemes in the inductive learning. The compression
schemes in the inductive learning was recently developed in [18, 7]. Let G be
a measurable real-valued function defined on U2 Z" x U2 2" x G x Z upper
bounded by a non negative constant B.

Introduce for any h € IN*, Z,, & {1,...,N}". Any set I € I;, can be written
as I = {i1,...,ip}. Define I° £ {1,...,N} — {i1,...,in} and Z; 2 (Z;,,..., Z;,).
The law of the random variable Z; will be denoted P’.

Let T = 2<th 1Ih and v : ZN — MY (Z x I x G) be some regular conditional
probability measure such that

. VZ{V(Il, I5) is independent from ZVV,
e vyn(df[I1,I2) depends only on Zj and Zj, (and so will be denoted
Vzi,,Z1, (df>)
For any J C {1,..., N}, introduce P’ £ |—}‘ > ics9z,. Let W be the measurable
real-valued function defined on ZN xZ xZ x G X Z as

W(ZN, I, 1y,9,2) = G(Z1,, Z1,, 9, Z).
Finally, for any sets I; and I, in Z, introduce I; o 2 (LU LL)e.
Theorem 8.7. Let € >0, A > 0 and for any n € N*, a.,(\) £ %g(%c) We have
o with P®N -probability at least 1 — €, for any p € ML (Z XTI x G),

K (p,v) +log(e™)
A )
o with (]P®N)*—pr0bability at least 1 — ¢, for any I1,Io € Z and f € G,

(8.11) PP W — iPW < plap, 1, ) (NPW?] +

I_PILQG(ZIU Z127 fa ) - IPG(ZIU ZI27 fa )
S rxn>i{)l{a37|11,2|(x>IPG2(Zha Z]Q? f? ) + logv™" (11,12, f)+log(e )}

x

(8.12)

< 2[logv—1(I1,I2,f)+log(e~)PG2(Z1, , Z1,,f,") + Blog v (I, I, f)+log(e” ) .
[11,2] 3|11,2|
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Proof. e It suffices to modify the proof of Theorem 8.1. Specifically, in Inequali-
ties (8.3), we can no longer use Fubini’s theorem to swap P®Y and v. However, we
have

PNy (dly, dly, df ) = v(dly, d) P2 (dZ10r vz, 2, (df )P 2(d2), ),
which is sufficient to get the result, since for any (I1, I, f) € Z x T x G we have
P72 exp {A[P"2W — PW — ap 1, ,| (A PW?]} < 1.

e We use the same trick as for Inequality (8.2) by considering a parameter A
depending on (I, I, f). O

9. PROOFS

9.1. Proof of Theorem 3.1. In this proof, we put ourselves in the event

{for any fi, fa € F, 7' (f2) — 7' (f1) <r(f2) —r(f1) + S(f17f2)}'

From Theorem 5.1, with (IP®2N )*—probability at least 1 — ¢, this event holds.

e Since we have S(fr—1, fr) > 0 and r(fx) — r(fe—1) + S(fr—1, fx) < 0, we
obtain r(fx) < r(fk—1). As a consequence, the iterative is not infinite: there exists

0 < K < N such that fx exists but not fx1.
We have
r'(fi) = 7' (fr—1) < r(fe) = r(fo—1) + S(fr—1, fr)-
From the definition of fy, we obtain v'(fx) < r’'(fx—1)-
e Let us prove the second item by induction. Since fy has been taken in the set of
smallest complexity, we have necessarily C(f1) > C(fo). When C(fr—1) > C(fr—2),
we will prove that C(fx) > C(fx—1) by contradiction. We have

r(fe—1) = r(fe—2) + S(fi—1, fr—2) <0,
and
r(fx) = r(fe—1) + S(fe, fr—1) <O.
Assume that C(fx) < C(fr—1), then, by definition of f;_1, we also have

r(fx) = r(fr—2) + S(frs fo—2) 2 0
and we get
S(frs fe—2) > S(fes fe—1) + S(fe—1, fr—2)-
Since we have Py, s, . <Py o +Ps_ iy forany a,b>0Va+b < a+b,

C(fr—2) <C(fx—1) and Py, _, 4, # 0, we obtain that C(fx) > C(fx—1), hence the
contradiction. This concludes the induction.

o Forany f € F, we have ' (fx) < 7' (fucr)) < 7' (f)+r(Fucp)—r(F)+S(Fucp) [)-
Since by definition of k(f) we have r(f) — r(fis)) + S(fr(s), f) = 0, we obtain

r'(fx) <v'(f) +25(frcp)s ) )
e We have just seen that for any f € F, v'(frs) < 7'(f) +25(fr(y), f), hence

2P g, 1 [COH+C(fr) L

' (frepy) <20 (F) =" (fuepy) + 8\/ Y

Therefore we have

r'(fx) < sup {QT’(f) —r'(g) + 8\/2]Pf’9[c(f1)v+c(9)+11]}
9EF:h(g)<h(f)
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9.2. Proof of Theorem 3.3. e The first assertion holds by continuity.

e Since S)(p, pr—1) > 0, we have prr < px_17, hence pxr < pr_17 — % So the
iterative scheme ends at some step K < N.

Consider the event on which Inequality (4.4) holds for ( = y/e. Theorem 4.3
ensures that it has a (IP®2N )*—probability at least 1 — €. In the remainder of the
proof, we put ourselves on this event. Consequently, for any k € {1,..., K}, we
have

prr’ = pr—1r’ < prer — pr—17 + S(pr, pr—1) < 0.

e By definition of pg, we have por + %‘;’ﬂ < pir + %ﬁ)’w). Since we have

p1r < por — S(po, p1), we obtain %‘;’ﬂ) + S(po, p1) < %;’”), and consequently
K(p1,m) > K(po, ).
For any k € {2,..., K}, by definition of py_1, for any p € ML (F), we have

either K(p, ) > K(pg_1,7) or

pr — pr—ar + S(p, pr—2) > 0.

This last inequality implies that pr + S(p, pk—2) > pr—17 + S(pPk—1, Pr—2)-

Let us prove the inequality K(pg,m) > K(pr—1,7) by induction and contra-
diction. Assume that the inequalities K (pg,7) < K(pg—1,7) and K(pg—1,m) >
K (pg—2,m) hold. Then we have

prr + S(Pr—1, pr) < pr—17
pr—17 + S(pr—2, pr—1) < prr + S(pr—2, Pi),

hence S(pr_1, pr) + S(pr—2, pr—1) < S(pr—2, pr). Define A\ € [V/N; N] such that
Sxy (P =1, prr) = S(prr—1, prr). Let A= Ap—1 A A, We have

Sar (Pr—1,p) + Sx, 1 (Pr—2, Pr—1) < Sx(pr—2, pi)-

From the inequality pi ® pk_2]137. <pr® pk_llzP.,. + pr—1 & pk_gll:).,., we get

K

PEoPE=1 4 Kop—1.01—2 Kok pr—2
Ak Ak—1 — AAAp—1”

Since we have K(pg_1,7m) > K(pr_2,7), we obtain successively A\ > A\y_; and

K(pg,m) > K(pg—1,7). So the result is proved by induction and contradiction.

e Let n > 0. Consider X\ > 0 such that we have W\/QN)\/E < A < W and

K(m_5,..m) > K(po,m). Define p = m_5,,. Introduce the largest integer k such

that K(pj,m) < K(p, ). We have min {pr — pzr + Sx(p, p)} > 0, hence for
AE[V/N;N]

any A € [V/N; N] and n > 0,
pir’ —pr' < 25\(p,pp)
< R(Gop)P.. + 22+ n)K(5,7) + L] — 24K (pg, ),

where L £ log[log(eN)e !]. Now let us take A = 2(n + 2)v/ex € [V/N; N] and
introduce £ € [0; 1[. By Legendre transform, we get

L—Oppr’ < —Eppr' + (5@ pp)P.. — 2K (pp, 7)
+pr' + LK (p,m) + BEL
A(n+2) 8A2(n+2)2 /e ~7
— 77777 &r' + 777771\] pP. .

n
< CEE3) log 7 exp { !

(n+2)X°

—% log mexp ( — 5\7”) +
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A natural choice for the parameter £ is £ = # such that we obtain

8X (4 2) /% -7 ;
ppr’ < %logwf;\r,exp{%)*ﬁpP’.}—%logwexp(—)\r’)+%.

Taking n = 1 to simplify the result, we obtain the last assertion of the theorem
since prr’ < ppr'.

9.3. Proof of Theorem 3.4.
9.3.1. Preliminary lemma. We will need the following technical lemma.

Lemma 9.1. Let 7 € M}F(}") possibly depending on Z2N in an exchangeable way.
Lete >0, N >X>0, )" >0 and o > 0. We have

o with (P®2N) -probability at least 1 — 2e,

log m_ - exp (oﬁrIZP.,.) )
<logm _, pyr exp{(a—k%%—%)fr]@.,}%— ()}, )\,,))\log( -,
2

e forp,q > 1 such that % +

(9.1)
% =1, with (P®2N) _-probability at least 1 — 4e,
log ( _arer Qm e ) exp (a)\I:P.,.)
(9.2) 210g( T+T ®7T7/\T+T/)exp<2q+1 [)\/—f—)\”(l—f—oz )})\I:P )
+p log (7LM ® T_xr) exp (paAP. ) + q+2 (/\, /\,,)log( -,
PT’OOf. e Let W(f, Z) = ]lY;éf(X) - 7~T]ly;,g(X) We have
log w_», exp (oﬁr]@,.) = log 7w exp ( — \PW + oﬁr]l:).’.) — log mexp ( — )\I_PW).
By using Theorem 8.6 for appropriate prior distributions, we obtain
log m_x, exp (047?]1:).7.) < logﬂexp{ —APW + <a + é—j\\; 7P, ) + %log(e_l)
— log mexp ( APW — M 7P )
= logﬂ_)\rw M exp{(a + 2%\/,/ + 23‘\/]/>7~1']P.7.}

< logw_)\%rf exp{(a—i— % + );]‘\/]/>7~TI:P }

where we used at the last step that
(1) Toaztrl A ap = (W Azl ) W AP,
(2) for any a > 0, E(% exp(aX)) < Eexp(aX) (since we have
Cov(exp(aX),exp(—X)) <0).
e Let us introduce W’((fl fg) ) = ]lY;éfl(X) + ]lY;éfg(X) — 277']1)/75.()() and
W,/<(f17 f2)a Z) = ]lY;éfl(X) + ]ly;éfg(x) — 27~T]ly7g.(X) — a]lfl(X);éfg(X)- We have
D _ AW
log (7T_)\T+TT ®7r_>\,,+Tr)exp (a)\]P.,.) —log7r®7rexp( APW ) i
—logm ® mexp ( —)\]PW’).
From Theorem 8.6 and the inequalities
IPW’Z < 20521Pf1 fo + 27TIPf1 + 27T1Pf2 < 2(1 + « ) (I:Pfh. + I:Pf27.)
PW'? <27 (Py, . + Py, ) ’
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we have
log ( At ® 7T7/\L7J) exp (a)\]lz).y.)
< logw ® T exp ( — APW” + %I:P_)/V”Z) 7 log( -1
—10g7r®7rexp(—)\I_PW’—g‘—%]@W’ﬁ.—# X log(e ;1) o )
< logﬂ- ® WeXp{ - )‘[T(fl) + T(fQ) - aIPfth} + wﬁ«th + IPfQ:‘)}
—10g7r®7rexp{ Ar(f) +r(f2)] — 2% (IPfl’.+]l:)f27.)}
+<% + )\//)log( 1)
<logm_xr @ T_xr €xp {oz)\IPfth + M (IPf1 + IPf27 )}
—logm_\, @ T_ ,\rexp{—— (IPf1 —i—IPf2 )}+<>\' )\,,)log( -1,
From Holder’s inequality and Jensen’s inequality, we get
log ( N ® WﬁALT/) exp (oz)\I:P.’.)
< ]10 log7r Ar @ T_)\p €Xp (paAI?.7.)
"’ a2 - = =
+% logm_xr @ T_xp. eXP {M (Pfl + IPf%‘)}

—210g7r Ar €XP ( 7rIP ) + (;, )\,,)log( -1
<= logﬂ A @ T\ €Xp (pa)\]P
QAN (14+a?) ~ IP )
5 7P..

+ logm_ Mexp(

+(AA + 2 )log(e™t)
< —logﬁ ar @ T\ €Xp (pa)\]P )

— glogﬂ_)m exp ( — q”]\\?/ﬁ]l:).v.)

+E log m_ 5 exp {% [N+ X1+ 042)]7?1_?.7.} + (3 + 2 )log(e ™).
Now from Inequality (9.1), we have
log m_ 5 exp {Q [N+ X1+ &2)]7}1237.}

<logm it exp{N [N+ M"(1 +a2)}7~rIZP.’. + [QN + )53‘\/]/]7?]1:) }
(2 + ) log(e ) )
<logm_yawr exp { CHRA IV 4+ X/(1+ 2] 7P, |+ (3 + ) log(e ™).

Taking 7 =7 _ Azt and using Jensen’s inequality, we obtain Inequality (9.2). O

Remark 9.1. Since

e we want the first term in the RHS to be more than compensated by the
LHS,

e the smallest \' we are allowed to take is A,

e we can take A" > 0 as small as necessary (when we do not concentrate on
the confidence level term),

the last assertion of Lemma 9.1 will be interesting when either

qg<2 q>2
Erhr<a s i <o

So Inequality (9.2) asserts that for a large enough, with high probability, we have
: P.)< P
log ( Az ® 7T_)\T+TT) exp (a)\]P.y.) < log (71'_)\7« ® 7T_)\7«) exp (C’a)\]P.y.)

+ confidence level term.
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9.3.2. Proof. e Let us define for any 0 < j <log N, p; = T_x;r From Lemma 4.4
and Theorem 4.1 applied to prior distributions of the form 7, ...v, 0 <j <log N,

with (IP®2N )*—probability at least 1 — ¢, we simultaneously have

Y

V0 <j<logN, K(,Oj,ﬂ' jt ) <210gpjexp<NpJ]P )+L
V0<i#j<logN, pir’—pﬂ szr—pﬂ+5(MJ,@\/9)

and in particular p, 7" — Puk—1)"" < Pu(e)” — Puk—1)T + S(u(k —1),u(k ) Now
we have S(u(k),u(k — 1)) > 0 and py )7 — pue—1)r + S(u(k — 1), u(k)) < 0. So
we obtain py, ) — pu—1)" < 0 and py)7" — puk—1)r" < 0.

e For any 0 < j < log N, there exists k such that u(k) < j. To simplify the
formulae, we will not be too careful on constants. If j = u(k), then we trivially have
puk)”’ < pjr’. Otherwise, by contradiction, we prove p;r —pu(k)r+5(u(k),j) >0,
hence

Pu(k)T — pjr’ pu(kyr — pyi7 + S (u(k), 5)
35 (u(k),j) — Pu(k)T + PjT

6T>\j(,0u(k) ® pj )]P s 6C[u(k:)]4>r\6c(3)+9L

Let C(j) £ SUPg<;<; C(i) and 7; = Ty, el

VANVANRVAN

PutiyT + pjT-

Since we have

(Puiry @ p)P... < (pugry @ 75)P.. + (75 @ p;) P..

and —putyT + o7 = *K(pum7Pj)+K§fu(k>vﬂ)*K(pjm) < _K(pu;5>7pj),
we obtain
Putiy™ = Py’ < B (pugry @ 7 P+ B (p @ 7).+ L2EGHOL _ Klbwyn)
< sup {%(p@ﬁj)fﬁ, - Klped 4 S (p; @7, P,
pEM(F) )
| 12CG)+9L

Aj
By Jensen’s inequality, we get

6)7 . = Gli
Puy — pir’ < 2 logp] exp( ;P >+12(§\#_

Now, from the inequality p,-IP.7 § < (pi®7~ri)IP.7. +7~TiI:P.7 ¢ which holds for any function
f € F and using once more Jensen’s inequality, we have

C(1) < 2log p; exp <%27~TZI:P> 1 5 log p; exp < .. )

We obtain

6M2 - =
Pu)r’ — pir’ < ’\%'OS;;—E]'{ log pi exp ( N WiIPn-)} +57

2 =
Let p] £ 71_,,. It remains to prove that the quantity log p; exp <6>\ b )

behaves like the quantity log p}exp <TipiIP’ ) for an appropriate constant C.
To simplify, let us forget the index “i” for a while. From Inequality (9.1) with
(a, N, V') = (82X, \), we have

2 = =

log m_», exp (f’ﬁ] T_yrtr! P ) <logm At exp <7”\27r /\LT/IP.7.) + 2L.
2
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From Inequality (9.2) with (a, AN p, q) = <7)‘ A, ﬁ, 3,3), we have
~

logm_ At ®m e exp<7]’\\] ]P)
< glogw rtr! QT kel €XP <7—ﬁ,2]l:))
‘f‘% logﬂ-f)\r & T_\p’ €XP <221]i\]2 IP/7> + g(z + 419\]—/\22>L7

hence
]- r+r! <M r+r! ]:P >
0g7T7A+T exp N 7T7A+T , N
< log m_\pr @ T_\pr €XP <%]P’) + 5(

49>\ )L.

Therefore with (P®2Y) -probability at least 1 — 6 ogzenvy» We have

2 D 2 _
log p; exp <%7?¢]P.7.) < log p} ® p) exp <%]p/> 4 <12 . 245,\ )L.

Introducing C'(j) £ sup0<i§j log p} ® pl exp <Lj\?21_P’> With (]P®2N)*—pr0bability

at least 1 — 6|A| 7=, for any 0 < j <log N, we have

2( N)?
sup {log,oZ exp ( i WZI_P )} < C'(j) + 257L.
0<i<y
Therefore, with (IP®2N)*—pr0bability at least 1 — (|A|? + G‘ADW’ we have

Pu(EYT < pueyr’ < pir’ + 6—6;(]7) + 1551%.

To finish the proof, we use Theorem 6.3 to replace m_y .’ with m_5,_ 7' At

last, by counting the number of deviation inequalities we used, we obtain that all

(|A]P+14]A|)e
W Z 1 — 15e.

Setting € < 15¢, we get rid of this factor 15 by putting it in the constant of the last
term of the bound.

the previous inequalities hold with probability at least 1 —

9.4. Proof of Theorem 3.5. By construction, we have r(Iy,0r) < r(Ix_1,60k_1).
Let mg € M}r(I) satisfy for any 2 < h< N —1land I € 7,

—a)ah?

mo(I) > %

Let 7t : ZN — ML (T x © x T x ©) be defined as
7'7.'(11, 01, ]2, 92) é WO(Il)WO(IQ)Wle (d@l)ﬂ'zl2 (d@g)

By applying the last two inequalities in Theorem 5.2, since we have
lOgﬁ'il(Il, 01, I, 92) < C(Il, 91) + C(IQ, 92) + log[(l — 04)72044],

we obtain that with (P®N)*—pr0bability at least 1 — 2¢, for any I;,Is € 7 and
01,02 € ©, we have
R(I5,05) — R(I1,01) + r(I1,61) — r(I2,02)

S \/201721P(11, 917 IQ; 02) + C;’),Q

< \/201,2<\/IP(I1,91,I2,92) +Ci2/2+ \/01,2/2) + £
S 5(117017]2702)-

By definition of (Ik, Qk), we get R(]k;, Hk;) S R(kal, Qkfl).
e The proofs are similar to the ones of Inequalities (3.1) and (3.2).
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9.5. Proof of Theorem 3.6. e For any 0 < i < j < log N we have S(i,j) > 0.
By definition of u(k), the first inequality holds.

Let J = {0 < j < logN}. The second inequality comes from Corollary 4.9
applied | 7]? —|J| times for pairs of standard Gibbs estimators (7_x,,, m_x,) with
i # j and appropriate prior distributions, Lemma 4.10 applied |J| times and the
definition of u(k).

e We need the following technical lemma.

Lemma 9.2. Let @ € M! (F) independent from the data. Let e > 0, X' > X\ > 0,
N> 0 and a > 0. Defineac(\) 2 4g(cx) and & £ a+ar(N)+2(1+a?)aria(N’).
With PON -probability at least 1 — 2¢, we have

(9.3) logm_xexp (Oé)\ﬁ'I—P.’.) <logm_\grexp (d)\ﬂP.’.) + (% + %)Alog(eil).
PT’OOf. Let W/(f, Z) £ ]ly7éf(x) —ﬁﬂy;é.(x) and W”(f, Z) = ﬂy;,gf(X) —7~T]ly7é.(x) -
amllyx)£.(x)- From Theorem 8.3, with PN _probability at least 1 — 2¢, we have

log m_x, exp (Oé)\ﬁ]l_).7.> log 7 exp ( — )\I_PW”) — log mexp ( — )\]I_DW’)

< logmexp{ — APW" + )‘a1+a()\,/)IP<W”2)}
—logmexp { — APW — Aa;(\)P(W'?)}
+(3 + 9 )log(e™ )

< logmexp{ — AR+ aA7P.. + 2(1 + a?)Aai 1o (N)7P...
—logmexp { — AR — Aay (N)7P..}
+($ + 2 )log(e!)

< 108 T_\R—xa; (\)7P.. €xD (AaAP. )
+(5 + 2 )log(e!)

< logm_xpexp (Aa7P..) + (% + %)log(e_l).

O

Since we will use the same ideas as in the proof of Theorem 3.4, we will just give
the main lines of the proof. For any 0 < j < log N, there exists k such that u(k) < j.
To shorten the formulae, introduce a; £ a(\;), b £ b(A;) and 7; £ 1_y,r- We have

pu(k:)r — p;T + S(u(k)vj)
SS(u(k),]) — Pu(k)T + pjr
BS(u(k:),j) o K(pu;:)vpj)
3a;(p; @ 7;)P.. + 6b;Clu(k)] + 6b;C(j) + 9b; L
+3aj (,Ou(k) ® ﬁj)I_P.7. — %ﬁ)?m
/\lj lOg pj exp (36Lj)\j7~7'ij.7.> + 12()‘7 Supogigj C(l) + 9bJL

PukyR — pj R

VANVANRVANVAN

For any 0 < i < log N, we have 0.5% <a; < 0.6% and )\l < b; < 1}\2 By
Jensen’s inequality, we get

) N

C(i) < 2log p; exp (’\W?ﬁifP. ) < %log P; €Xp (3ai)\i7~rifP )
Therefore we have

pukyR—p; R < %JQ SUpg<;<; log p; exp (1.8%?7?11? ) + 10.8L.

©

2 —
Then it remains to use Lemma 9.2 to convert the quantities log p; exp (1.8%7@»1?.7.)
2

into log 7; exp (C”]\VfriIP ) and Theorem 6.4 to replace 7m_y R with 7_),_ rR.

)
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Then it remains to count the number of concentration inequalities we used, to
check that with probability at least 1 — Ce, all the previous results hold.

9.6. Proof of Lemma 4.4. Introduce p £ T Ay We have

K(p,p) = K(p,®) — K(p,7) + 5 [pr + pr’ — pr — pr'].
Now, from Theorem 4.1, for any ¢ €]0; 1], with (P®2N) -probability at least 1 — e,
we have pr’ — pr’ < pr — pr+ N X (p@p)P.. + 'SK(p, p) + 2Tglog(efl). We get that

(1—&)K(p,p) < K(p,m)+pr+Elog(e™ ) = Apr + 25 (p @ p)P... — K(p, )
< K(p,m) + Apr + Elog(e™)

+ sup  { =M+ Zx(0 @p)P. — K(p',m)}
p'eML(F)

K(p,m) 4+ \pr + Elog(e™ )+log7rexp{ Alr —%Np]l:).,.]}
K(p,ﬂ' AT)+10g7T )\TeXp{Qng]P }+§log( 1)'

9.7. Proof of Theorem 4.7. e Let £ € [0; 1. Define p = e[+ 22 5P Apply
Theorem 8.4 for W(f, Z) = —Lyypx) + plyz.(x) with (u,v) = (p,p) and for
W(f,Z) = Ly 2px) — Plyz.(x) with (g, v) = (p, p), we obtain that with (P®2V) -
probability at least 1 — 2¢, we have

2 = K(p,p)+log(e”!
and
2\ = log(e !
(9-5) pr!—pr’ < pr—pr+ N(p ®p)P.. + L(; ),

From this last inequality, we have

logmexp { — 5)\7“—,07“—%7“ — pr! + 2 pIP 1}
—END[r — pr+1 = pr' + R pP. ] — K(p, )
—9¢A[pr — pr] + €log(e ) — K (5, )
glog(e™!) + log mexp { — 26A[r — pr]}.

Now from Inequality (9.4), we have

(9.6)

INIA

pr' —pr' <pr—pr+ % (p®p)IP +&éplr+1r' + % 2 5P ] )
+K(p 7r)+log7rexp{ 5)\[7"—1—7"'—}—%ﬁlﬁ,]}—i—log(eil)
A

)
hence

A=’ —pr'] < AL+lr—pl+1+OR(pep)P..
+K(p,7r)+log7rexp{75/\[r+r’+%ﬁﬁ",A]}Jrlog(e_l)

< (-Qr—pl+(1+R(pe P

+ K(p,m—2ear)+(14+8€)log(e™ )
A Y

where, at the last step, we have injected Inequality (9.6).

e For the second inequality, we use the same ideas. Here are the main lines of
the proof. From Theorem 8.6 applied to W(f, Z) = 1y ¢x) — ply+.(x), we have
(9.7) B

logmexp (— EX[r + 71/ + %ﬁI_P]) < logmexp ((— 26Ar) + EXP(r — 1) + Elog(e ™).
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Introduce p £ 7 . We have successively

—EX[rr + 22 5P,

= 5 -1
,51“/ _ p?“’ < pr—pr+ %(IO@ﬁ)Pw + %bg(”

Y

pri—pr' < pr—pr+&p(r+r)+(1+OR(pRHP.. )
+K(p,7r)+log7rexp (ng[rJrr'Jr%f)I?“])+log(e_1)

A
< pr—pr+&(prtpr +pr—pr')+ (1+O)R(p@ PP,
4 K(p.m)+log mexp(=26Ar) +(1+8)log(c ")
A

Y

L+ —pr') < A+E(pr—pr) + 1+ R (p@ p)P..
| Elpmoson) 148 logle ™)

9.8. Proof of Lemma 4.10. A numerical studies of the function b shows that it
decreases on ]0; zmin] and increases on [Tmin, +0o[ with 0.82N < z,;, < 0.83N.
We obtain that [22%; 400[C b(]0;0.77N]). Hence for any A €]0;0.39EN], there
exists 0 < X < 0.77N such that \ £ ﬁ. Introduce p 2 7 _\r. We have
K(p,p) = K(p,m)— K(p,7) + A\[pR — pR]. Now, with (IP®N)*—probability at least
1 —2¢, we have pR — pR < pr — pr+a(\N)(p® p)P.. + b(N)K(p, p) + b(X)log(e~1).
We get that

(1=&)K(p,p)

K(p,m)+ Apr + Elog(e™!) — A\pr + Aa(\) (p® p)P.. — K(p, )
K (p, )+ Apr + Elog(e ™) .
+ sup  { = MrHxaN)(p @ p)P.. — K(p', )}
p'EML(F)
= K(p,7) + Apr + Elog(e™1) + log m exp {}— Alr—a(N)pP..]}
= K(p, m—xr) + logm_x, exp {Xa(N)pP. .} + Elog(e™).

[This upper bound can also be written K (p, m_,_aoop. ) T Aa(N)(p ® p)P.. +

€log(e1).] Since 0 < ' < 0.77N, we have a(\') < )‘ﬁ/ < W < g—ﬁ‘]

<
<

9.9. Proof of Theorem 6.1. Let us apply Theorem 8.6 to the random variable
W = ly4rx) — Ply+.(x) and the exchangeable distribution v = ToAPW— 2 PW2)-
N

We obtain that with (P®*Y) -probability at least 1 — e,
log TAl(r4r")—p(r+r)— 22 g ] EXP { —2A[r - f”“]}
< —log mexp {)\[(r +7') = plr+1") — 2pP. ] } + log(e™ 1),
hence

(9.8) log TT_oxpr—pr) €Xp {AX[(r +17) — p(r +71') — 22pP. ]}
' < —logmexp{ —2X[r — pr|} +log(e™!).

By Markov’s inequality, with (]P®2N )*—probability at least 1 — ¢, we have

T o ((T’ —|—7°/) . [u)(T’ —|—7°/) > %ﬁI:P’ + 7logﬂ'eXp{72)\[;7;5T]}+210g(6_1)
T_onr €XP {)\ [(r +r") = plr+7r') — %[}]1:) 4 logmexp {_ZALT_ﬁT]}JrlegE}

= e*mexp{ — 2\[r — pr]}m_ox(— ) €XP {)\[(r +7r)—plr+7r')— %,51:?7}
< 6

IN

where the last step uses Inequality (9.8).
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9.10. Proof of Theorem 6.2. The proof is similar to the one of Theorem 6.1.
Let us apply Theorem 8.3 to the random variable W = Ty _fx) — ply.(x) and
the probability distribution v = WA[]PW_%g(%)]PWQ]. We obtain that with P®N-
probability at least 1 — e,
logwk[RfﬁRf%g(%)ﬁPw] exp{ — A[r — pr]}
< —log mexp {)\[R —pR—%9(%)pP. ] } + log(e™1),
hence
09) log 7 e exp { A|R = 3R = %9 (%) iP..| }
< —logmexp{ — A[r — pr|} +log(e ™).

By Markov’s inequality, with P®Y-probability at least 1 — €, we have

m_

ey)

(R . [)R > %g (%) ﬁ]P~,~ + — log 7 exp {f/\[r)\fﬁr]}erog(e_l)

< Ty exp {)\[R — R — %g (%) ﬁIP7 + logrexp{—)\[/?\“—ﬁT]}+2loge
= 627rexp{ — )\[T — ,57"] }W_A[r_ﬁT] exp {)\[R — pR — %g (%) pP. . }
< g

where the last step uses Inequality (9.9).

9.11. Proof of Inequality (6.5). This is the most technical proof. The basic idea

of the proof is that to go from quantities depending on the first sample to quantities

depending on the second sample, it suffices to know how to go from first sample

quantities to exchangeable quantities. Symbolically, we have PW — PW — P'W.
So we write the KL-divergence as

K(m_x\p,m_xpr) = logmexp(—Ar) + log wexp(—Ar’) — 2log 7 exp ( — )\_r—gr')
+2K(7T—)\T77T_AL"’/)'
2

Then we use the following lemma.
Lemma 9.3. Let ¢ >0,0< v <1 and A > 0. Introducing @ = T\ rar’ , We have
2
o with (P®2N)*—pr0bability at least 1 — 2e,

010 log T exp(—Ar) + log mexp(—Ar’) — 2log mexp ( — )\%ﬂ)
(9.10) < 2log T exp <2§—2N7}I_P) + 2vlog(e™ 1),

o with (P®2N) -probability at least 1 — 2e,
(9.11) K (r_xr, @) < 125 log 7 exp (j—;ﬂ?,) + 972 log(e ™)

Proof. e From Theorem 8.6 applied to W(f, Z) = ly.px) — Tly..(x), for any
N > A, with (P®2Y) -probability at least 1 — 2¢, we have

logmexp{ — A(r —7r)} < logwexp{ — A(%T, R %ﬂ?)}

logﬁexp{—)\(r’—frr’)} < logﬂexp{—)\<%ﬂ—%%ﬂ—%7ﬂl—)w)} 7
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The first assertion then follows by taking \ = %
e To prove (9.11), we start with the empirical bound of the KL-divergence
K(?T_)\T, W_%[HT,]) given by Lemma 4.4:

1
1€

SIS ST S
logm_xrexp{ ——=m_xP..p + log(e™ ).

K(mxrs ™y prer) < 26N 1-¢

Let us introduce p £ 7n_y, and p = 7 A For any fi, f2, f3 € F, we have

]Pfl fo < ]Pfl fa T IPf:s f2» hence ]Pfl f2 < p]Pfl + pIPf27" We get

B A2 B A2
log pexp {%—NP]P } < log p(ay,) exp {2§Np(dfz) [P, + Py, ]}

By Jensen’s inequality, we obtain log pexp {22—;],517?} < 2log pexp {22—;],51:?}
Introducing

Y

L= logwexp{ Alr — ]+2§NpIP}
£’ £ logmexp{ — A[r—pr]}

we have log pexp {QE—jVﬁIZP} = L' —L". These two quantities can be bounded using
Theorem 8.6 for
WS, 2) = 5[Uvrcx) = P Ty 250

(We use here that Theorem 8.6 still holds when the quantity W(f,Z) depends
on the data Z2V in an exchangeable way). For any A’ > X and A > 0, with
(P®2N) -probability at least 1 — €, we have

L < logﬂexp{ — %[(r +7r)y—=p(r+r") — ’\W”[)I:P] + 22‘—;][)]1:)} + %log(eil)
and
—L" < —logwexp{ -3 [(r +7r)—p(r+7r")+ %,5]1:)] } + 2rlog(eh).

Choosing ' = X" = we obtain

257
— 2 ~:
logpexp{ﬁ—NpIP.7.}
2 ~: J—
<logm _ ()= 17 )+ 52 P ] exp{g‘—Np]P }+4§10g(e 1)
<10g71' A[(T‘—i—r’) B(r+r)] eXp{ng]P }+4£10g( 1)
logpexp{éNpIP -} + 4€log(e™ ).

Putting the previous results together, we get

) -
K(W,,\r,wfé[rﬂ,]) < Tiﬁlogwfkrexp 22—N7T,)\TIP.7.}—|—1L_§IOg(E_1)
2 = J—
< 1—_€logﬂ'_)\7« exp %—NW_ATZ,J]P.’.} + %_glog(e 1)
< Zlogm / exp {ﬁw P } +9-—"log(e™ 1)
>~ 1—¢ _)\HTT EN _>\7’+T7’ N 1-¢ .
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We obtain that for any 0 < v < 1, with (IP®2N)*—probability at least 1 — 4e,

K(m_xp,m_xr) < 2log7exp <2?‘y—2N7}I:P> + % log 7 exp <7)‘—;7~T]l:)) + %&6_1)
5— - A2 - 20ylog(e~ ")
ﬁ log 7 exp <7—N7TIP.7.) S e

= —1
< ﬁ log ™ ® T exp <‘%§IP> + 720715(; )

IN

From Inequality (9.2) with

I A\ — (382 A A 4
(Oé;)\;)\ 7p7Q)_<7N7779’Y<1+25>\2)73;4>7
J2N2

with (P®2V) -probability at least 1 — 4¢, we have

log ™ ® 7 exp (%\i]}:}) < % log m_ " @ T_ )" €Xp (?,)%‘5 P’ )
2
+15v(1 + 3§J§]2)log(e_1)

To conclude, with (]P®2N ) -probability at least 1 — 8¢, we have

K(ﬂ',)\r,ﬂ',/\rl) S 1—~ 1Og7T Ar! & T x\p’ €XP <1O>\ IP/ ) + (35 + 37253\?\2) log( 1)'

9.12. Proof of Inequality (6.8). The proof is just slightly different from the one
of Inequality (9.11). We start with the empirical bound of the KL-divergence given
by Lemma 4.10. Let p £ 7_y, and j = 7m_sz. For any € > 0, £ €]0;1[ and
0 < A<0.39¢EN, with (IP®N)*—pr0bability at least 1 — 2¢, we have

— ~ —_ 2 —T p—
K(p,p) < 1—i£[logpexp %P]Pw} + &log(e 1)}
Inequality (6.8) is then a consequence of the following lemma.

Lemma 9.4. For any € > 0, £ €]0;1[ and 0 < X\ < 0.39¢N, with PN -probability
at least 1 — 2¢, we have
)\2

¢EN

4122
T ,\TIP ) §410g7T,\ReXp< N W,\RIP.7.) —|—4§log(€*1).

log m_x, exp (

Proof. Let 7, R, P. . and P. . respectively denote pr, pR, P(df )IPf/ and pgrry Py ..
Let o 2 2)‘ €]0; 0. 78] For any f1, f2 € F, we have Py, 5, <Py, .+ Py, . We get
log pexp {a)\[)IP.,.} < log p(af,) €xp {a)\ﬁ(dh) [IPfl,N + IPfQ,N} }

By Jensen’s inequality, we obtain log pexp (a)\[)I_P.,.) < 2log pexp (a)\]l_).y,v). Now,
we have log pexp (aAP. ) = L' — L”, where

£ 2 logmexp (—A[lr—7—aP..])

£’ £ logmexp{—A(r—r7)}
These two quantities can be bounded using Theorem 8.3 for

{ W'(f,2)
W'(f, 2)

Since P[(W')?] < (1 + @)?P.  and P[(W")?] < P. ., for any X" > X and X" > 0,
with P®N-probability at least 1 — 2¢, we have

L < logwexp{ — AR - ]ﬂ +Ala+ (1+ a)2a1+a()\”)]IP.7N} 2-log(e™!)

Lyzpx) = P Ly 2 x) = Pl px)zpx) € [=(1 4 a); 1]
Lyzpx) — Py x) € [-11]

> 11>



A BETTER VARIANCE CONTROL 121

and

—L" < —logmexp{ — A[R— R] — Aa1t(N")P. .} + 2 log(e™1).
Choosing M/ = " = 2, we obtain

3
logpexp (aAP. ) < logpexp {A[a+ (1 + @) ar1a(N/E)]P. o}
—logpexp { — a1 (A/&P. .} + 2¢log(e™!)
< logpexp{Aa+ (1+a)aita(A/E)]P. o}
+log pexp {)\al()\/f)IP.,N} + 2€log(e™ )
< 2logpexp {A[a+ (14 a)’ar1a(A/E)]P. ~} + 2Elog(e™h),

which leads to the desired inequality. U

APPENDIX A. OPTIMAL COUPLING

One drawback of the variance term 22 (p1 ® pg)]P.y. in Theorem 4.1 is to be large
when p; and po are close and not concentrated around a particular function. This
problem can be solved by coupling.

Let us start with some new notations. For any p1, p2 in [0; 1], define

K(p1,p2) £ prlog (B) + (1 —p1) log (1=2)
the Kullback-Leibler divergence between two Bernouilli distributions of respective
parameters p; and ps.

Let 7 € ML (F). Introduce ma the associated distribution on the diagonal of
F x F: wa(dfr,df2) = w(df1)dy,(df2), where §; denote the Dirac distribution on
the function f. In other words, 7 is the distribution in MY (F x F) such that
7TA(f1 = fg) =1 and WA(dfl) = W(dfl)

Let p; and p2 be absolutely continuous distributions wrt 7. Define the positive

measures p; Apg = (%1/\%2) s lpi—po| 2 ’pl p2’ - and (p1—p2)+ = (pl p7r_2)+'7r-
Let mi2 £ (p2 — p1)+(F). Then the positive measures (mel”;”, (plmlpz” and

% are probability distributions. An optimal coupling of p; and py is defined

as
/\ — —
o ®pe 2 (1 _mm)(lplif’?) +m172(w) . (M)
—Mmi2/ A mi 2 mi2
We obtain

Theorem A.1. For any e > 0, A > 0 and m1 2 € M}r(}“ x F), with <]P®2N)*_
probability at least 1 — €, we have for any p1, p2 € ML (F)

'%u

2
par’ — p1r’ 4+ p1r — par < —=(p1 © p2)P. . +

N
where K12 2 K(p1 © pa, m1,2) + log(e™1).

lC1,2
A

Proof. 1t suffices to modify the proof of Theorem 4.1 by taking (u,v) = (p1 ®
p2,m1,2) instead of (u,v) = (p1 @ p2, ™ ® m2). Then it remains to notice that the
marginals of p; ® po are respectively p; and ps. O
Corollary A.2. For any A > 0, m € ML (F), e > 0, with (]P®2N)*—pr0bability at
least 1 — €, we have for any p1, p2 € ML(F)

'%n
_|_
> &

2
par’ = prr’ + pir — par < <= (p1 © p2) P.
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where

]'C A m172K((P1—P2)+ >_|_m 2K((P2 P1)+, )

mi,2 mi,2

+(1 —mq2)K( 217\ps ™) + K(ml 2, 2) + log(e™1).

1—m1,2

Proof. Take 7y o £ %7? QT+ %WA in the previous theorem. The result follows from
(A.1)

K(p1 ©®p2,m12) = p1©p2log ;?52
< (82 wlog (28 A &) 4 my () o ({2
= K(mio,3)+ (1—my, 2)K<1plr/:£22’ ) |
oK (ke m) + my oK (520, 7).

Inequality (A.1) is an equality when ma and 7 ® 7 are mutually singular (i.e. 7
diffuse). O

The interest of coupling is to reduce significantly the variance term involving I_P.,.
at least when p; and ps are close to each other. From the last corollary, we see the
impact in the Kullback-Leibler term.

In the worst case (i.e. when p; and po are mutually singular, equivalently when
p1© p2 = p1 ® pa), we just lose an additive term log 2 in the Kullback-Leibler term
since we get K = K (p1 ® p2, ™ ® ) 4 log2 in this case. On the contrary, when
p1 = p2 = p, we have K = K(p, 7) + log2 = 1K (p1 ® p2, ™ @ 7) + log 2. Naturally,
p1 = p2 is not an interesting case since Inequality (4.1) is useless in this situation.
But to look at the Kullback-Leibler term when p; = p2 gives an idea of how it
behaves when ps is close to p;.

To conclude this section, we see that the basic Inequality (4.1) can be improved
to deal with close posterior distributions which are not concentrated!®. However,
the inequalities become less readable and less tractable both for theory and practice.

APPENDIX B. OPTIMALITY OF ALGORITHM 3.2 UNDER (CM) ASSUMPTIONS

We recall that C' denotes a positive constant which value may differ from line to
line. By using the same 1deas as 1n the proofs of Lemmas 9.1 and 9.2, we can upper
bound —logwexp{ — Alr } and log m_ s exp (C’)‘ m_ M/]P ) by similar
theoretical quantities. Indeed, schematically, by intensively using Theorems 8.6
and 8.3 and Jensen’s inequality, with P®2N_high probability, for any A < ¢N for
a small enough universal constant ¢ > 0 and any prior distribution 7 independent
from the data, we have

—logmexp { — A[r' — ' (f)]} —logmexp (— A[R— R(f)] - C)‘WQ]PH];) +...
—logmexp { — A[R — R(f)]} ]
+log m_xg exp (C)\W]P~,f) + ...

IA N

19When they are concentrated and close, the variance term is already small.
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and
log m_ ), exp (0%271”/1:?.7.) < logm_ - exp (C%Qwi/\#fﬂ.) + ...
< logwik%ﬂ exp (C%Wﬁ/\#fﬂ.)—k...
< logm_)-exp (0%271”1?,.) + ...
< logm_\grexp (O)\WQW,)\RIP.7.) + ...
< logm_\grexp (C)\_J\?]P~,f>+"‘

Let

GE(\) 2 —Llogmexp{ — A[R — R(f)]} + + logm_xrexp <C')‘W21P"J;)
_}_Clog[log)EeN)efl]

and A £ {\/Ne%;o < j < log N}. The precise result is that for any € > 0 and
A < eN, with (P®2V) -probability at least 1 — €, we have G(X) — 7/(f) < G&()),
hence with (IP®2N )*—probability at least 1 — ¢, for any A € A, we have

G(A) —r'(f) < GEN).

Then it remains to check that for a parameter A € A close to N¥~177 and a prior
distribution satisfying?°

ﬂ-(]P'vf < C’lez,i—_ll—O—q) > exp < — Cv’zN*ﬁ)’
we have Gg‘()\) < Clog(ee—l)N—rM_
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CLASSIFICATION UNDER POLYNOMIAL ENTROPY AND
MARGIN ASSUMPTIONS AND RANDOMIZED ESTIMATORS
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ABSTRACT. The aim of this paper is two-fold. First we want to develop the
PAC-Bayesian point of view [13, 3, 4, 1] and show how the efficiency of a Gibbs
estimator relies on the weights given by the prior distribution to the balls
centered at the best function in the model and associated with the pseudo-
distance (1, f2) — P[f1(X) # f2(X)].

Secondly, we show how to recover and improve results under empirical
and non empirical polynomial entropy assumptions and Tsybakov’s margin
assumption. We also study the links between empirical and non empirical nets
and give an observable version of the integral entropy [6, 9, 14].
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1. SETUP AND NOTATIONS

We assume that we observe an i.i.d. sample Z{¥ = (X;,Y;)Y, of random vari-
ables distributed according to a product probability measure P®", where P is a
probability distribution on (Z,Bz) £ (X ® V, Bx ® By), (X,Bx) is a measurable
space called the pattern space, Y = {1,...,|Y|} is the (finite) label space and By
is the sigma algebra of all subsets of . Let P(dY|X) denote a regular version
of the conditional probabilities (which we will use in the following without further
mention).

Let F(X,)) denote the set of all measurable functions mapping & into ). The
aim of a classification procedure is to build a function f € F(X,)) from the learning
sample such that f(X) predicts the label Y associated with X. The quality of the
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prediction is measured by the expected risk

R(f) = PY # f(X)].
A function f such that for any z € X,
fp(z) € argmax P(Y = y| X = x)
yeY
minimizes the expected risk. This function is not necessarily unique. We assume
that there exists a measurable one. We will once for all fix it, refer to it as the
Bayes classifier and often denote it f* to shorten. Since we have no prior information
about the distribution P of (X,Y"), this classifier is unknown.
Since there is generally no measurable estimator f : Z¥ — F(X,)) such that
im  sup {P®@”4>Y’ F(ZN) (X — inf Py X’}::Q
IRLUN (Y1 # F(Z7)(Xn41)] e ) Y # f(X)]
we have to work with a prescribed set of classification functions F, called the model.
This set is just some subset of the set of all measurable functions F (X,)). Let us
denote f the best function in the model, i.e. a function minimizing the expected
risk: .
f € argmin R.
f

For sake of simplicity, we assume that it exists!. Let

| N
D A
P= ; 0(x,,Y,)
be the empirical distribution. The empirical risk

r(f) £ PIY # f(X)]
gives an estimate of the expected risk : from the law of large numbers, for any
measurable function, it tends to the expected risk almost surely. An estimator
which minimizes the empirical risk

fERM € argmin r
f

is called an ERM?-classifier. The regression function will be denoted
0" (@) £ P(Y|X = a).

In the binary classification setting ()} = {0;1}), we have n*(x) = P(Y = 1|X = z).

Since we will study randomized estimators, we assume that we have a o—algebra
7 such that (F,7) is a measurable space containing the sets {f} for any f € F
and such that the function

FxX — Y
(f,z)  — f(z)
is measurable. A randomized estimator consists in drawing a function in F accord-

ing to some random distribution p : Z¥ — ML (F), where M’ (F) is the set of
probability distributions on the measurable space (F, 7).

1Otherwise we would have to introduce some small positive real 8 and consider f as an esti-
mator minimizing the expected risk up to 3. This real 8 would then appear in all the equations
related to this function and make things needlessly messy.

2ERM = Empirical Risk Minimization
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To shorten, we will use ph to denote the expectation of the random variable
h under the probability distribution u: ph = [ h(z)du(z). The Kullback-Leibler
divergence between two probability distributions is defined as K(u,v) = plog 3—5
when g is absolutely continuous with respect to v and K (u,v) = 400 otherwise.

The symbol C' will denote a positive universal constant whose value may differ
from line to line whereas the symbol C will denote a positive constant whose value

depends on other constants and may also differ from line to line.

We define
A exp(h)

mexp(h) 4

Th

for any measurable real function h such that exp(h) is m-integrable. The random-
ized estimators associated with the posterior distributions 7m_¢, will be called the

standard Gibbs estimators with temperature é

1.1. Measurability. Finally, to circumvent some measurability problems, we will
consider inner and outer expectations. Let (A, A, 1) be a measure space and C(4; R)
be the class of real measurable functions. For any (measurable or not) function f,
its inner and outer expectation wrt y are respectively . (h) = sup{u(g) : g €
C(A;R),g < h} and p*(h) = inf{u(g) : ¢ € C(4;R),g > h}. Naturally, for
any set B C A, p.(B) and p*(B) are defined by p.(B) = p.(1p) and p*(B) =
p*(1p). Note that p, and p* are not measures but satisfy p*(B) + p.«(B°) =1
and p*(B1 U By) < p*(B1) + p*(Bs2). Besides, if p*(h) < 400, then there exists
a random variable h* such that p*(h) = u(h*). For more details on properties of
inner and outer expectations, see [17].

1.2. Covering, packing and bracketing nets and entropies. Let Q denote a
probability distribution on the measurable space (X, Bx). The mapping Q.. from
F x F into Ry defined as

Qp.1. = QIi(X) # f2(X)]  forany fi,fo € F

is a pseudo-distance. For any u > 0, a set of measurable functions G C F(X,))
such that

sup inf <
fe?—‘ geg Qf,g -

is called a u—covering net of the set F wrt the pseudo-distance Q.

The log-cardinal H(u, F, Q..) of the smallest u—covering net (possibly infinite)
is called the u—covering entropy. A wu—covering net with log-cardinal equal to
H(u,F,Q..) is called a minimal u—covering net?>.

In bracketing nets, we require in addition that any function in F can be en-
capsulated by two functions of the net. Specifically, for any v > 0, a set of mea-
surable functions G C F(X,)) such that for any function f € F, there exist
fr, fu € G satisfying fr < f < fv and Qy, 5, < u, is called a u—bracketing net
of the set F wrt the pseudo-distance Q. The log-cardinal H(u, F, Q..) of the
smallest u—bracketing net (possibly infinite) is called the u—bracketing entropy.
A u—bracketing net with log-cardinal equal to H H(u,]—" ,Q...) is called a minimal
u—bracketing net.

3Here the functions in the net can be taken outside F. This is not so important since it is
well-known that a 2u—covering net with functions in F can be constructed from any u—covering
net.
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Packing nets are covering nets such that for any functions fi, fo in the net, we
have Qy, s, > u. The packing entropy Hy,(u, F, Q. .) is the log-cardinal of a minimal
packing net.

We have H(u,F,Q..) < Hy(u,F,Q..) < H(%,F,Q..). Any u—bracketing net
is a u—covering net. The converse is false since it is easy to find a set F with finite
u—covering entropy and infinite u—bracketing entropy.

Finally, we will say that a family of ux-nets, N € IN, is almost minimal when the
log-cardinal of the size of the u-net has the same order as the (uy, F,P. .)-entropy.

The paper is organized as follows. Section 2 recalls some PAC-Bayesian con-
centration inequalities which are extracted from [1]. In Section 3, we assume that
we have Tsybakov’s margin assumption and that the IP. .-entropies are polynomial.
In this setting, we study the convergence rate of standard Gibbs estimators and
classifiers minimizing the empirical risk on P..-covering nets. In particular, we
stresses on the influence of the chaining trick and the differences between brack-
eting and covering entropy assumptions. Section 4 tries to answer the questions:
what happens when we relieve the polynomial IP. .-entropy assumption? Can we
give an empirical equivalent (i.e. with I?.7.—entr0pies) of the previous results? Sec-
tion 5 gives a version of Assouad’s lemma dedicated to classification. The proofs
are gathered in Section 6.

2. KNOowN PAC-BAYESIAN BOUNDS

In this section, we recall some results of [1] which will be useful in this paper.

Theorem 2.1. Let g(u) = W for any uw > 0. For any A\ > 0, € > 0 and
m1,me € ML(F), with (PON) -probability at least 1 — €, for any p1, p2s € ML(F),
we have

(2.1)
paR — p1R+ p1r — par < %9(%) (o1 ® p2

)]P.v. + K(Pl,7T1)+K(p/\2,7r2)+10g(671)

As a consequence, with (P®N)*—pr0bability at least 1 — €, for any p1,p2 € J\/li(]:),
(2.2)

poR—p1 R+ pir — por < min {0.8A p1® p2)P. .
' Ae[VN;N] v )

K (p1,m1)+K (p2,72)+log[log(e N)e ]
+1.78e pa,m3) +logllog }

Besides, let S1 and Sy be finite subsets of F, with (P®N)*—pr0bability at least 1 —e,
for any (f1, f2) € S1 X Sa, we have

(2.3) R(f2) — R(f1) +r(f1) —r(f2) < \/mog(\slllsjvk— )P s £ + log(\813|k]92|e_ )

Proof. The first part comes from Theorem 4.8 in [1]. Then the second part is
obtained by a union bound on the set of parameters A = {\/Nek/2;0 < k <
log N'} (see Section 4.2 in [1] for details). The third part comes from Theorem 8.1
in [1] applied to W[(fl, f2), Z] = ly2px) — Ly2s (x) and v equal to the uniform
measure on S; X Ss. O

The following theorem ([1, Theorem 6.4]) brackets the efficiency of a standard
Gibbs classifier
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Theorem 2.2. For any A >0 and 0 < x < 1, we have

K (m_ap,m— K(m_xp,m—
T_(14x)arE — W ST xRS 7m__yarR+ (W*X—;AR),

and for any e >0, 0 < v < % and 0 < X\ < 0.39vN, with PN -probability at least
1 — €, we have

2
K(n_xr,m_ar) < %logﬂ_)\Rexp (4'11\;‘ 7T_)\R]P.7.> + %log(éle*l)

< 16logm_\gexp (4'71]\?2137];) + 10y log(4e1).

(2.4)

3. CONVERGENCE RATE OF CLASSIFIERS UNDER COMPLEXITY AND MARGIN
ASSUMPTIONS

3.1. Complexity and margin assumptions. The following assumptions have
the same form as the one used in the pioneering work of Mammen and Tsybakov
([11]). The margin assumption appears to be the key assumption to obtain fast
rates of convergence (i.e. N7 with 8 > 1).

3.1.1. Complexity assumptions. Let ¢ > 0. Define

s [ log(eu™) when ¢=0
g () = { u"? when ¢ >0

We will alternatively use the following complexity assumptions.
(CA1) : there exists C’ > 0 such that the covering entropy of the model F for the
distance P. . satisfies for any u > 0, H(u, F,P..) < C"hy(u).
(CA2) : there exists C’ > 0 such that the bracketing entropy of the model F for
the distance IP. . satisfies for any u > 0, HU(u, F, P..) < C'hy(u).
(CA3) : there exist ¢’ > 0 and m € MY (F) such that for any ¢ > 0, for any f’ € F,
we have 7(P. ; <t) > exp [—C"hy(t)].

We havet: (CA2) = (CA1) & (CAS3). Let t and C' be positive reals. We will
say that a probability distribution 7 satisfies (¢, C')-(CAS8) when we have

m(P. 7 <t) > exp[~C'hy(t)].
Note that this last assumption is, unlike the others, a local complexity assumption.

3.1.2. Margin assumptions. We will consider variants of Tsybakov’s margin as-
sumption ([11, 15]). Let & € Ry U {+o0} and k € [1; +o0]. We define

AR(f) £ R(f) — R(f).
(MA1): Y = {0;1} and there exists C”" > 0 such that for any ¢ > 0,
PO < [n"(X)—1/2| <t) < C"t*.
(MA2) : there exists C"" > 0 such that for any function f € F,
P, ;< C"[AR(S)]™.
(MAS3) : there exist ¢, C" > 0 such that for any function f € F,

=

(3.1) '[AR(f)]" <P, ; < C"[AR(f)]".

4To prove (CA1) = (CAS3): for any k € IN*, introduce m;, the uniform distribution on a
(2=, F,P..)—minimal covering net. The prior distribution 7 £ Zkzl % satisfies the claim.
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(MAY4) - there exist ¢’,C"” > 0 such that P 7 < C”[AR]*, and for any t > 0,
(AR <t) > c"W(IP_Jg < C”t%)f’_

This last assumption makes sense only in the bayesian context where a prior
distribution 7 is put on the model. It is easy to check the following implications:
(MA3) = (MA}) = (MA2). Besides when f* € F (= no bias assumption), we
have: (MA1) = (MA2) for k = 1£2. When k = 400, Assumption (MA2) is empty®
and Assumptions (MA3) and (MA/) are not satisfied by non-trivial models. The
margin Assumptions (MA1) and (MA2) are all the stronger as x is small. When

x = 1, the lower bound in inequality (3.1) holds trivially for ¢ = 1 and we have:
(MA3) & (MA4) < (MA2).

Remark 3.1. For sake of simplicity, we have assumed that there exists a function
f € F such that R(f) = infz R. Then, under Assumption (MA2), this function
needs to be unique. In fact this is not more necessary than the existence of the
minimum. To be more specific, the results in this paper under Assumption (MA2)
will still hold when this assumption is replaced with: there exists k € IN* such that
for any 3 > 0, there exists f1,..., fr € F

1

VfeF, Jie{l,....k}, Pry, <C"[R(f) —infr R]~ + 3.

Note that this implies that for any i € {1,...,k}, R(f;) —infz R < 8. Similarly, we
can give weakened versions of Assumptions (MAS8) and (MA/). Naturally, the value
of k will influence the value of the constants in the results under Assumption (MA2).

3.2. Gibbs classifier.

3.2.1. Under Assumptions (MA4) and (CA3) for ¢ > 0. In this paper, we will
often consider prior distributions 7(™) which may depend on N. To shorten, we
will simply write it . The following lemma guarantees the efficiency of the standard
Gibbs estimator for a temperature appropriately chosen.

Lemma 3.1. Let w be a probability distribution such that
(3.2) T[AR < CuN~ 7] > ¢ CaN T
and A\n have the same order as N%, i.e. such that
(3.3) CaNT—1Fi < \y < Oy NZ-1r

for some positive constants C;,i = 1,...,4. Then, under Assumption (MA2), the
standard Gibbs classifier in which the prediction function is drawn according to the
posterior distribution w_y,» has the convergence rate N~ 2<=1+4 to the extent that

PENr_y R — R(f) < CN™ ==

for some constant C' > 0 (depending only on ¢’ ,C", k and Ci,i=1,...,4).
More precisely, with PEN -probability at least 1 — €, with 7_jr-probability at
least 1 — €, we have

(3.4) R — R(f) < é’log(ee_l)N’ﬁ,
for some constant C>0 (depending on C" |k and Cii=1,... 4).

5As a consequence, T(AR < t) has the same order as (P, F< C”t%).

6since the inequality trivially holds for C” =1
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Proof. See Section 6.1. O

Theorem 3.2. Let m be a distribution satisfying Assumptions (MA4) and
(C’lN_ﬁ,C'g)—(CAB) for ¢ > 0 and An be a real satisfying inequality (3.3)
for given positive constants C;,1 =1,...,4. Then we have

PENr_y R — R(f) < CN™ 7=
for some constant C' > 0 (depending only on ¢, C" Kk and Cyi,i=1,...,4).
Proof. It suffices to check that, under these assumptions, we can apply Lemma 3.1.

O

Remark 3.2. To make the link with previous works about non randomized sieve
estimators, one can choose 7 as the uniform distribution on an almost minimal

(C’lN *ﬁ,]—" ,]P.v.)—covering net. Then Assumption (CAZ1) implies that the
distribution 7 satisfies Assumption (C’lN 72f”~+1+q,6v’2)—( CA3) for some constant
Co >0 (depending on C1, on the almost minimality constant and on the constant
C’ involved in (CA1)). Note that, as in Mammen and Tsybakov’s work ([11, 15]),
the computation of the estimator requires that, without knowing P(dX) exactly,
one can construct a (¢, F,P..)-net with log-cardinality of order H (¢, F,P..).

The convergence rate of the standard Gibbs estimator in Theorem 3.2 is optimal
since the following lower bound holds.

Theorem 3.3. Let ¢ > 0 and k € [1;+00]. There exist an input space (X,Bx), a
model F and a set P be the set of probability distributions satisfying

o foranyP € P, f € F
o Assumptions (CA2), (MA3) and (MA1) with o = = € [0; +00]

such that for any measurable estimator f: ZN — F(X,Y),
sup {P®NR(f) — R(f)} > ON~z=r7a.
PeP

Proof. See Section 6.2. O

Remark 3.3. In [15], the same result is proved (using the classes of boundary frag-
ments) for the set of probability distributions such that the Bayes classifier is in
the model and Assumptions (CA2) and (MA1) with o = —15 hold.

Remark 3.4. The previous theorem is stronger than what is required to prove that
the convergence rate obtained in Theorem 3.2 is optimal since the set P in Theo-
rem 3.3 is smaller than the set of probability distributions IP such that there exists

a distribution 7 satisfying Assumptions (MA/) and (C1 N~ TiTa C5)-(CA3).

3.2.2. Under Assumptions (MA2) and (CA3) for ¢ = 0. Using the same tools as
in the previous section, we can prove

Theorem 3.4. Let w be a distribution satisfying Assumption (C’lN_Til,Cv’g)—
(CA3) for ¢ =0 and \y be a real satisfying

(3.5) C3Nz—T < Ay < 4Nz

for given positive constants C;,i =1, ...,4. Under Assumption (MA2), we have
PEN7_y R — R(f) < Clog N)N ™21

for some constant C' > 0 (depending only on C",k and Cy,i=1,...,4).
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Proof. We use Lemma 6.1 and the inequalities

Ty(m) < é}‘(%)ﬁ
Ti(m) < —log[r(AR<CiN ==1)] 4+ AC\ N~ 71
< —log (P ;< CiN = 1) £ A\C1N 3T

O

From Theorem 3.3, since we have (CA2) = (CAS8) and (MA3) = (MA2), this
convergence rate is optimal up to the log NV factor.

3.2.3. Under Assumption (MA2) and a local complexity assumption. The following
theorem considers a local complexity assumption and its first and second parts
respectively complete Theorem 3.4 and Lemma 3.1.

Theorem 3.5. Let e >0,s>0,C" >0, C" € R and 1 < k < +o00. Consider A
depending on N such that A — 400 and that Assumption (MA2) holds.

N——+oco

First, assume that logn~"{R — R(f) < x} = —C"logx + C" + oo(azs). Then
we have
e forA\= o (NTK—l), with PON -probability at least 1 — e,

N—+oc0
o 1 s (2r—1)C’ _ wC! 1
rowR=2 ¢ —{ o (A 5+ O (,\z<2~c'+n—1>N 2<2r~c'+r~—1>) log(ce™ }

o when A = cNZ-1: for any 3 > 0, there exist ¢ > 0 and Ny > 0 such that
for any N > Ny, with P®N -probability at least 1 — e, :

H <7r_>\rR§ w‘

Secondly, assume that log7m ' {R — R(f) < z} = C'x RO+ 00(1) with
q >0 and Kk # +0o0. Then we have

o for \ = N (N_ %leiq), with PON -probability at least 1 — e,
——+00
C’4o0(1 —Nﬁq log(e~ 1
TR = (q M( )) + +N8Loo(1) g(/\ )

o when A\ = cN ™ T-TFa for any 0 < B < qC’, there exist ¢ > 0 and Ny > 0
such that for any N > Ny, with PN -probability at least 1 — ¢, :
(qC *B)H_ﬂ <7_\R< (qC;;\LB)H—ﬂ_

KA

Proof. See Section 6.3. O

It is interesting to note that this asymptotic behaviour only depends on the local

complexity given by the weight of the sets {f eF :R(f)—R(f) < x} when x — 0.
R
Had we had P, ; ~ c” [R — R(f)} = on these sets, the complexity assumption
) xr—

would be similar to the ones introduced in Section 3.1.1 to the extent that we would
have logm ™! (P ; < x) -~ Chy(z).

In Theorems 3.2 and 3.4, we have seen how to choose the parameter \ depending
on N such that the Gibbs classifier has the optimal convergence rate. The previous

result shows that for A smaller than these “optimal” parameters and a slightly
modified complexity assumption, we can tightly bracket the efficiency of standard
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Gibbs classifiers. For larger A, the picture is not clear: it seems that the KL-
divergence term in Theorem 2.2 becomes the leading term. This KL-divergence
will in general explode for A > N, and finally we just know that

A f]: IL'r(f):min]: ,,.R(f)dﬂ'(f)
T_xB  —  Tlreming T =
AT A——+o0 ‘r—mln}-r f]: ]l'r(f):min}— ,,.dﬂ'(f)

Remark 3.5. The confidence level € does not appear in the main terms of the
expansions of m_, R, hence the asymptotic orders of 7_», R hold with exponential
probability.

3.2.4. Adaptive choice of the temperature. Here we consider that Assumption
(MA3) holds for an unknown margin parameter x and we prove that under assump-
tion (CA8) a standard Gibbs classifier with an appropriately chosen temperature is
adaptive wrt this parameter, i.e. without prior knowledge of x, the generalization
error of the randomized estimator is upper bounded by C N7z when g > 0 and
by C(log N)N%-1 when ¢ = 0. The adaptation to the margin problem has also
been studied in [15, 16]. In particular, in [16], Tsybakov and van de Geer proposed
an adaptive penalized classifier using wavelets.

Theorem 3.6. Under Assumptions (MA3) and (CA3), the algorithm given in
Section 3.4.2 of [1] achieves an adaptive choice of the temperature of the standard
Gibbs classifier wrt the margin parameter k.

Proof. See Section 6.4. U

3.3. Empirical risk minimization on nets.

3.3.1. Under Assumptions (MA3) and (CA1l) for ¢ > 0. This section shows that,
by using inequality (2.1), we can recover results on sieve estimators given in [11, 15].
These results have to be compared with the ones in Section 3.2.1 (recall that (MA3)
= (MA4) and (CA1) & (CA3)).

Theorem 3.7. Under Assumptions (MA3) and (CA1) for q > 0, for any classifier
[ minimizing the empirical risk among a uy-covering net Ny, such that

(3.6) CiN~ =11 < uy < O, N~ 7=
and

(3.7) log [Ny | < Chg(un)

for some positive constants Cy,i=1,...,3, we have

PEN [R(f) - R()] < CN~ =
Jor some constant ¢>0 (depending only on C',¢",C" and C;,i=1,...,3).

Proof. See Section 6.5. U

Remark 3.6. Inequality (3.7) just says that the net AV, is almost minimal.
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3.3.2. Under Assumptions (MA2) and (CAl) for ¢ = 0. Since (CA1) & (CA3),
this section gives results to be compared with the ones in Section 3.2.2.

Theorem 3.8. Under Assumptions (MA2) and (CA1l) for ¢ = 0, for any classifier
[ minimizing the empirical risk among a uy-covering net Ny, such that

(3-8) N~ < uy < Cy(log N)N 77
and

(3.9) log [Ny | < Csho(uy)

for some positive constants C;,i =1,...,3, we have

PEN[R(f) - R(f)] < Clog N)N~ 7
for some constant C' > 0 (depending only on ¢’,C" and C;,i=1,...,3).

Proof. It follows the lines of Section 6.5. This time, we take (%) =T and M
of the same order and greater than u. This is realized when inequality (3.8) is

satisfied and \ = N 21, O

3.4. Chaining. When a class of functions has a polynomial entropy, there is a
trick called the chaining ([6]) which allows us to improve the previous results.
This technique is used to get tighter upper bounds of the difference R(f1) — R(f2)
between the expected risk at two different functions f; and f,. It is based on finer
and finer approximations of these functions. The advantage of considering rough
approximation of these functions is that the set of all possible rough approximations
is small (in other words, has a small complexity). On the contrary, the set of fine
approximations is big, but the distance between the fine approximation and the
function approximated is small. So there is a kind of bias/variance trade-off and
for polynomial entropy classes of functions, it is interesting to have this trade-off
on a sequence of links and not directly on the big link f;--- fs.

Let us give some results due to this technique. Consider the context of The-
orem 3.7. Let us see what happens if we replace the margin Assumption (MAS3)
with Assumption (MA2). Then we can no longer upper bound AR with Cst P* ;

(inequality which is used to obtain (6.8)). We only have AR < P 7. This leads to
the convergence rate N~ ==i¥a= instead of N~ %1%7. Using the chaining trick, we
will prove (see Theorem 3.10) that this rate is suboptimal and that, by minimizing
the empirical risk on well chosen nets, we can still reach the rate N ~2-17a when
0 < q <1 and the rate N~ T when q > 1.

Remark 3.7. The convergence rate N Titar s optimal under Assumption
(MA2) and the complexity assumption H(uy) < C’hg(un) for the radius
uy = N~ = itas. The lower bound comes from Lemma 5.1 applied to a

(NQH—qlnﬂﬁ,N* 2*@1—+1qfq“,%N*ﬁ)—constant hypercube. By slightly modifying
the proof of Theorem 3.7, we can obtain that, under the previous margin and
complexity assumptions, any classifier f minimizing the empirical risk among a
un-almost minimal net satisfies

PEN[R(f) = R(f)] < CN~wta.
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The chaining technique appears to be the only tool which allows to take into
account an entropy assumption which holds for any radius such as (CA1) and

(CA2).

The chaining trick may also be used to prove that the empirical risk can be
minimized on tighter nets (provided that they are still minimal, or at least almost
minimal, under polynomial entropy assumptions).

Before giving results concerning nets, one can illustrate the chaining technique
by considering randomized posteriors concentrated on small balls of fixed radius.

For any u > 0, introduce By, = {f € F : Py, f/ <wu}and 7y, W]tg’;“) -7. Define
h(v) £ sup log " (By.0) and by (v) 2 h(v) v
fer

Theorem 3.9. Letu >0, [ 2 26201 " & JAhel) g o) 2 9\ /3[1+2g(Ch)].

log 2
For any € > 0, with P®N -probability at least 1 — €, for any f1, f» € F such that
P, r, > u, we have

7Tf27uR - 7Tf17uR + 7Tf17ur - 7Tf27ur

<R 3 Vu2Fh (u2F) + 64/ 2222 log[Le ]

keN: u2k<IPf1 fo
200 IPfl f2 h+(U dv + 6 f1 fo log[L 1]‘
Proof. See Section 6.6. O

Had we not chained inequality (2.1), we would have obtained

h log(e™!
WnyuR - 7Tflyu'R + 7Tf17ur - 7Tf27ur S %g<%) <]Pf17f2 + 2u) + & (u)+)\og( )

This upper bound is greater than infy<q {ﬁﬂ)h,fz + thu) } = 2/ %2’1(“), which
is much bigger than the chained bound for polynomial entropies h(u) =~ u=9, ¢ > 0
when” N~ T < u < Py, s,

The following result is an extension of Theorems 3.7 and 3.8.

Theorem 3.10. We assume that Assumptions (MA2) and (CA1l) hold. When
Assumption (MA3) also holds, we define

<[lo]ng} ﬁ,exp{ — C(log N) 7=z Nis=2 }) forq =0
K . (k=D <1+q
<N_W,01N*W>

(UNaaN) £

forq >0

and by £ C'Q(UN)%
When Assumption (MA3) does not hold, we define

( [71%(6]]\]\]1/&)] 7T exp{ — (/V’l(log[eNl/"‘])TK—Q]\74’1—:12 }) forq=0
. N 3n-11q C1N 11D lhq)) for0<qg<1
(o, an) = (log N)N—%, Ci (log N)*EN*%> forq=1
\ N_ﬁ,élN_ﬁ> forqg>1

and by £ Cyun.

__1
"The quantity Cy behaves as a constant only when hf\,—(uu) < (C, so when u > CN 1+a.
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For any classifier minimizing the empirical risk among a upy-covering net Ny
such that

(3.10) any <uny < by
and

(3.11) log [Nuy | < Cshg(un)
for some positive constants C’i,i =1,...,3, we have

PENIR(f) = R()] < Cuy

for some constant C' > 0 (depending on C", Cs,i=1,...,3 [and also on ¢ under
Assumption (MA3)]).

Proof. See Section 6.7. O

Remark 3.8. When ¢ = 0 and kK = 400 (i.e. no margin assumption), the log N
factor in log(eN 1/ #) disappears. The suppression of the logarithmic factor, obtained
by chaining, is similar to what occurs for VC classes (see Corollary 4.6). The
difference is just that the complexity assumption concerns IP-nets here instead of
empirical nets.

From Theorems 3.3 and the following theorem, these convergence rates are op-
timal (up to the logarithmic factor when we have g € {0;1}).

Theorem 3.11. There exist an input space (X,Bx), a model F and a set P of
probability distributions satisfying Assumptions (CA2) and (MA2) such that for

any measurable estimator f: ZN — F(X,)),

sup {PENR(f) — R(f)} > CN ™.
PeP

Proof. Apply Lemma 5.1 for a set P equal to a (N T S N—L %)—constant hypercube
and take F £ {ff : P € P}. O

In Theorem 3.10, we consider classifiers which minimize the empirical risk on an
almost minimal net A/. The following result just asserts that the same convergence
rate holds for randomized estimators which “roughly” minimizes the empirical risk.

Theorem 3.12. For any randomized classifier p : ZN — ML (N,y) such that
there exists a function f € F satisfying

o Py ;< Cun,

o for any e > 0, with PN -probability at least 1—¢, pr < r(f)—FClog(ee_l)vN,
we have

PN R — R(f) < Coy.

Proof. It suffices to rzlodify slightly the proof of vTheorem 3.10. Let fN be the
nearest neighbour of f in N,,. We have P Pvf S Cupy. From inequality (2.3) with
S1 = {f} and Sy = {fN}, with P®NV-probability at least 1 — €, we have

r(f) < r(fa) + Cy/ uNlegV((l) + Cu*log(]f;l) + sup AR,

P,f”SéuN
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hence r(f) < r(fa) + Clog(eeHvn. We obtain that pr < r(fy) + Clog(ee 1 )uy.
From this inequality and by using the last bound in Corollary 6.6, we obtain a new
version of inequality (6.12) from which the convergence rate follows. O

As a consequence, the Gibbs estimators 7_», in which the prior distribution is
the uniform distribution on a net N perform as well as an (ERM, N)-algorithm
(i.e. a classifier which minimizes the empirical risk on the net A) as soon as the
inverse temperature parameter \ is sufficiently large. This is not surprising to the
extent that the Gibbs estimator m_), when A — +oo classifies, roughly speaking,
as an (ERM, N)-algorithm.

The following theorem completes Theorem 3.10.

Theorem 3.13. Let N, be a upy-covering net such that inequations (3.10) and
(3.11) hold, let Ay > 6’4%?]), and let ™ be a probability distribution on the net
Nuy satisfying (un, Cs)-(CA3) for some positive constants Ci,i = 1,...,5. Then
we have

PEN [1_xyrR — R(f)] < Con
for some constant C' > 0 (dependmg onC”, Cii=1,...
Assumption (MA3)]).

.5 [and also on ¢ under

Proof. Introduce the function fy in the net Ny, such that P iy S un- By

Assumption (uy,Cs)-(CA3) and inequality (3.11), we can choose the function %
such that we also have 7({fa-}) > e~ (C5+C3)ha(un) Qo we have

2 loglr(fx) "] _ pha(un)

7L>\Nr7"—7”(f/\/) < ¥ < y < Con.
The result then follows from Theorem 3.12. O

3.5. Bracketing entropy. To minimize the empirical risk over all the model F
can lead to inconsistency even for models with small covering entropy. For instance,
define the set X = [0; 1], the functions fo = 0 and f; = 1, and the probability distri-
bution P such that P(dX) = U([0;1])(dX) (uniform law over X) and ¥ =1y s.
Consider the model formed by f; and all the functions equal to fy except on a
finite number of points. For any u < 1, we have H(u, F,P..) = log2. However,
in general, the ERM-algorithm will classify poorly®. (On the contrary, the clas-
sifier based on the ERM-principle over a (u,F,P..)-net for small u is efficient).
This phenomenon occurs since the covering entropy does not suitably measures the
complexity of models. In this section, we will see that the bracketing entropy does
not suffer from this drawback.

Under polynomial bracketing entropy conditions, the empirical data contain
what happens in expectation to the extent that two functions close for the dis-
tance P. . are also close for the distance I?.7..

Recall that if G is a u-bracketing net of the set F, then for any function f € F,
there exist fr, fu € G satisfying fr < f < fu and Py, ¢, < u. Let us define the
mappings nr,ny : F — G such that ny(f) = fr and ny(f) = fu (from the axiom
of choice, they exist).

The following theorem, to be compared with Theorem 3.10, shows the influence
of considering bracketing entropy assumptions instead of covering ones.

8That is why, in Theorem 3.10, we need to consider almost minimal nets (inequality (3.7)).
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Theorem 3.14. Let us define

[%} T under Assumptions (MA2)+(CA2) for ¢ =0

wy 2{ N” %= TFd 1 under Assumptions (MA2)+(CA2) for0 < g <1
(log N)N—= under Assumptions (MA2)+(CA2) forqg=1
N~ T under Assumptions (MA2)+(CA2) for g > 1

For any classifier fERM,N manimizing the empirical risk in a uy = Ciwy-covering
net N for some positive constant Cy, we have
PN [R(fermn) — R(f)] < Cwy
for some constant C' > 0 (depending on C',C" and C’l).
Proof. Let N' be a uy-minimal bracketing net of the net A. Let far be the nearest
neighbour of the function f in the net N’. By definition of the set N’,
e we have log |N'| < C'hy(un),
e there exists a function fxr such that np(far) = far or ny(fa) = far;
consequently, we have r(fa) < r(fn7) + un,
e there exists a classifier far : Z2¥ — N’ (fN/ £ nr(ferm ) for instance)
such that we have r(fy) < r(fERM,N) + uy and

(3.12) R(fermn) < R(far) + un.
So the estimator fa : ZN¥ — N7 satisfies

r(far) < r(ferma) +un < r(fa) +un < r(fa) + 2un.
Then the result follows from Theorem 3.12 and inequality (3.12). O
Remark 3.9. Since we have (CA2) = (CA1), Theorem 3.10 can be applied when
the assumptions of Theorem 3.14 hold. We see that, under bracketing entropy
assumptions, the ERM on nets containing a huge (possibly infinite) number of
functions has also the optimal convergence rate. This was not the case under
covering entropy assumptions.

Remark 3.10. The same convergence rate holds for classifiers minimizing the em-
pirical risk up to an additive factor Cwy.

The following theorem completes the previous one.
Theorem 3.15. Let Ay > C’l%ﬁ]\’) and 7 be a probability distribution satisfying
(Cowp, C3)-(CA3) for some positive constants C;,i = 1,...,3. Then we have
PEN [1_xyrR — R(f)] < Cun
for some constant C' > 0 (depending on C", Cii=1,...,3).
Proof. See Section 6.8. O

Remark 3.11. From the previous theorem, the inverse temperature parameter Ay
should be taken as

(log NYNz==T under Assumptions (MA2)+(CA2) for ¢ = 0

\ws>cd N Bty under Assumptions (MA2)+(CA2) for 0 < ¢ < 1
M= 7(10gNN)2 under Assumptions (MA2)+(CA2) for ¢ =1

N under Assumptions (MA2)+(CA2) for ¢ > 1
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The threshold value is all the smaller as the model is small® (i.e for small ¢) and
the margin assumption is weak'? (i.e for large ).

Finally, the following theorem shows that, under polynomial bracketing entropy
assumption, with high probability, the empirical covering nets are similar to the
covering nets wrt the pseudo-distance P(dX).

Theorem 3.16. Let C be positive constant and define

B (%,10]%1\7) when ¢ =0
(g, Bq) = { (exp { _Nl—iq},]\ﬁﬁ) when g > 0

With P®N -probability at least 1 — (aq)é, there ezists Cy,Co,Cs,Cy > 0 such that
for any u > Gy,

o a (u,F,P..)-covering net is a (C’gu F,P..)-covering net,
e a(u,F,P.)- covermg net is a (Cou, F, P. ..)-covering net,
o H(u,F,P..) < Cyhy(u).
Proof. See Section 6.9. U

Therefore under polynomial bracketing entropy assumption, we can classify op-
timally by using the minimizer of the empirical risk on an empirical net of radius
less than Cwy. Note that another way of proving this result consists in saying
that this classifier minimizes the empirical risk on the set F up to an additive Cwy
factor.

4. CLASSIFICATION UNDER EMPIRICAL COMPLEXITY ASSUMPTIONS

In this section, we will see that if we replace the complexity assumption con-
cerning P-entropies with a similar assumption on the empirical entropies, the same
kind of convergence rates appear. VC-classes are a special case in which for any
u > 0 and any training set, we have H(u,F,P..) < CVhy(u) where V is the
VC-dimension of F.

4.1. Concentration of the empirical entropies. In general, the link between
the PP-entropies and P-entropies is not known. However, thanks to recent work by
Boucheron, Bousquet, Lugosi and Massart, we are able to prove that the empirical
entropies are concentrated.

Theorem 4.1. For any e > 0 and v > 0

o with PN _probability at least 1 — €, we have
(4.1)

_ _ log 2)log(e™1) 18P®N H (u, F, P)
H(u, 7, B) < PON H(u, 7, P) + ¢ 1+4/1 I
(u, F,P) < (u, F, P) + 3 YT (log 2)log(e~1)

9This might be explained by looking at the size of the sets {feF:r(f) —mingr = %}
Indeed, when the model becomes larger and larger, the weight on these sets increases much more
for small k than for very small k£, hence we need to have larger \ to get rid of functions having a
not-so-small empirical risk.

10This is not surprising since the stronger the margin assumption is, the smaller the optimal
convergence rate is, and consequently the more selective we need to be.
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equivalently

PON [ (u, F,P) > H(u, F,P) + 2(log 2)log(e ™) (1 B \/1 n 2(9H(u,f, P) )

3 log 2)log(e~1)

o with PN _probability at least 1 — ¢,

H(u, F,P) > PN H(u, F, P) - | /2(log 2)log(e~ 1) PN H (u, F, P)

equivalently

(4.2) PN H(u, F,P) < H(u, F,P) + (log2)log(e!) (1 + \/1 + (QH(%]:? P) )

log 2)log(e~1)

o with PN _probability at least 1 — 2e,

2H (u, F, D) )
)

log 2)log(e—!

(4.3) H(u,F,P) < H(u, F,P) + 2(log 2)log(¢ 1) (g + \/1 + (

Proof. See Section 6.10. U

The previous result shows that the empirical entropies behave with high proba-
bility as the non empirical quantity P H (u, F, P). Specifically, by using a union
bound on the different possible radius, we obtain that for any C’ > 0 there exists

C > 0 such that with probability at least 1 — Nc, , for any u > 0, we have!l

PENH(u, F,P..) < C[H(u,F,P..)+logN]
H(u,F,P.) < é[IP®NH(uf1P ) +log N|
H(u, F,P..) < C[H(u,F,P..) +log N]
H(u, F,P..) < H(u/2,F,P.)

4.2. Chaining empirical quantities...

4.2.1. ...in the transductive learning. In this section, we assume that we possess
two samples of size N. The first sample is labeled: {(X1,Y1),...,(Xn,Yn)}. The
second one {Xny1,...,Xon} has to be labeled: the outputs {Yny1,...,Yon} are
unknown. We will use the following notations:

(P = NZZ 1 0xiv)
]:P/ = N Z SN+1 0(x:.Y)
P = 2N Zz:l (5(X1-,Yl-)
r(f) 2 X i byvispx = PIY # f(X)]
L 7(f) & NZZNN_H]IY;éf(X)— Y # f(X)]

Let us start with a basic result which is not “chained”.

Lemma 4.2. Let §; and S be two finite sets of functions from X into Y possibly
depending on the data Z?N in an exchangeable way. For any ¢ > 0, with P®?N -
probability at least 1 — €, for any functions f1 € S1 and fo € Sy, we have

8Py, 1, log(|S1]|Sz2le~1)

r'(f2) — ' (f1) +7(f1) —r(f2) < \/ N

HFor the third inequality, we use the inequality H(u,}',f",) < H(u,F,P..)+ H(u,F, If’f")
and inequality (4.3). The fourth inequality always holds.
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Proof. The result comes from inequality (8.7) in [1] in which we take v equal to the
uniform distribution on 81 x S and WI(f1, f2), Z] = Ly 2p,x) — Ly 4, (x)- d

By chaining this inequality, we obtain:

Theorem 4.3. Let U € N* and u = 2=Y. Let N be an u-minimal covering net.
For any k € IN*, let Hy, be an upper bound of H(27%, F,P)V1. For any e > 0, with
P®2N _probability at least 1 — €, for any fi, fo € N,

r'(f2) = r'(f1) +r(fr) = r(f2)

< 3 4\/6><2—k{2Hk+log[fi\l;:(k+1)]+log(e—1)}‘

kEN*:u<2=k<Py 1 Vu
Proof. See Section 6.11. U

Remark 4.1. The previous result can also be written in terms of integral. For
instance, for H, = H(27%, F,P) V 1, the previous RHS is upper bounded by'?

P 1 / P / - P u) log(3e~
j—%féPflhvu)/\Q < H(w,];,IP)Vl + 10g(41(;gw 1)) d$+34\/(IPf1’f2VJ\)]l g(3 1)‘

4.2.2. ...in the inductive learning. The empirical bound for the inductive learning
is derived from the one for the transductive learning and from the concentration
properties of the pseudo-distances and the empirical entropies.

Theorem 4.4. Let € >0 and Ho, £ 16log N(X{V) + 201og(5log N) + 12log(e71).
With P€2N _probability 1 — 3¢, for any functions fi and fy in the set F, we have

' (f2) — 7"'(1{;1) +1(f1) —r(f2)

< or ke% VS8H(27F F P. ) +6log[k(k + 1)e 1]+ 1.

—k b H
ﬁSQ S%Pf1,f2+ N

Proof. See Section 6.12. U

The previous theorem gives, for instance, a guarantee of misclassification rate of
the ERM-classifier on N new input data to classify. We recall that the leading term
in the square root is generally the entropy one. Once more, we can upper bound
the associated sum with the integral entropy

C f%fPflan—i_H#.o H(mv}_va)d:L.
VN J & V T

Note that this result is less general than the one for transductive learning since
the integral starts from ﬁ, which means that the largest complexity terms are
taken into account. In Section 3, we have seen that for polynomial entropies with
g > 1, the optimal convergence rate (which was of order N ~ T up to the loga-
rithmic factor) was proved since the largest complexities were not in the integral
entropy.

On the contrary, for ¢ < 1, we can recover the same convergence rates under
the assumption H(u, F,P) < C'h,(u) for any u > 0, as under the polynomial
bracketing entropy assumption. The following section deals with a special case of
the case ¢ = 0.

12p1roof at the end of Section 6.11.
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4.3. Application to VC-classes. At first sight, it is not obvious that Theorem 4.3
gives a tighter bound than Lemma 4.2 applied to (S1,S2) = (N, N). We will see in
this section that for V' C-classes, the two bounds gives the same convergence rate
for the ERM-classifier, except when we have no margin assumption. In this last
case, the chained result allows to get rid of a logarithmic factor.

Let us consider the binary classiﬁcation setting: ) = {0;1}. Introduce the shat—
tering number N (X2ZV H fe}“}}_ u]:IP) for any u < 2N
Let V be the VC- dlmensmn of the set .7:

V £ max {|A|: A € X*" such that [{ANf'(1): feF} = 2“4‘}.

The empirical entropies satisfy!'®

= Vlog(QNe)
H(u,]—',IP) < { Vlog (472;/)

Let fERM be the minimizer of the empirical risk on the set F and f’ be the
minimizer on F of either ' or R. From Lemma 4.2, with P®?V_probability at least
1 — €, we have

T/(fERM) < }gé{r’(f) +4\/PfERM,fiV10g(N )+ 3log(e=1)] }’

and consequently, after some standard computations:

oND . 2P®2NP

~ ~ VP® _
(4.4) IP@NR(fERM) . R(f) S 4\/ NfERM7f log (%) +9 NfERM f

To compare, from Theorem 4.3, we obtain

Corollary 4.5. For any € > 0, with P®?N -probability at least 1 — €, we have

o)
and, consequently,

; : (V+1)P®2NP :
IP@NR(fERM) —R(f) < 47\/ . FrrMf log <§7)

'%u

r'(ferm) < ]inff{rl(f) +47\/(V+)w log (=8¢ —
€

FERM:F

PR2NP .

(4.5) Feruf
IP®2NIPfERM f
+34\ | —FEmes

Proof. See Section 6.13. O

As a consequence, we obtain

Corollary 4.6. Under assumption (MA2), for any set F of VC-dimension V', the
ERM-classifier satisfies

IP®NR(f ) - <C’{ (%log]\f)TH‘1 when 1 < Kk < +00
ERM) — <

\/% when Kk = +00

Proof. See section 6.14. O

13The first inequality is well-known consequence of Sauer’s lemma; the second one comes from
Haussler’s formula ([7]), which asserts that for any u > 0, H(u, F,P) < Vlog (2¢) +log[e(V +1)].
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Remark 4.2. This is an improvement of Massart and Nédélec results [12, Corol-
lary 2.2] to the extent we do not have an extra additive term R(f) — R(f*), where
f* is the Bayes classifier. The second part of the corollary is a well-known result
which is given with a simple proof in [5, p.31].

Remark 4.3. By comparing Inequalities (4.4) and (4.5), we see that the constants in
chained inequalities are not satisfactory. The gap between the upper bound (6.23)
and the lower bound (see Theorem 5.2) is the factor 8 x 83! We do not know how
to chain inequalities with significantly tighter constants.

5. ASSOUAD’S LEMMA

Definition 5.1. Let m € IN*, w €]0;1], b €]0;1] and b’ €]0;1]. A (m,w,b,b)-
hypercube of probability distributions is a family

{Ps e ML(2):6 2 (01,...,0m) € {-1;+1}"}
of 2™ probability distributions having the same first marginal:
Pz(dX) = P11, 41)(dX) £ p for any & € {~1;+1}",
and such that there exists a partition Xy, ..., &, of X satisfying

e for any j € {1,...,m}, we have u(&;) = w
e for any j € {0,...,m}, for any X € &}, we have

Ps(Y = 1|X) = 2F288 g _p (v = 0|X),
where 0p 2 1 and ¢ : X — [0;1] is such that for any j € {1,...,m},
b= \/1— VI-&X)|X e 1))
Vv = )|X6X]

When ¢ is constant on X, j = 1, ...,m (which implies £ = b =b on X — Xy), the
hypercube will be said a (m, w, b)-constant hypercube. The hypercube will be said
noiseless when £ =1 on Aj.

The following lemma is Assouad’s lemma adapted to the classification framework.

Lemma 5.1. If a set P of probability distributions contains a (m,w,b,b’)-
hypercube, then for any measurable estimator f : ZN — F(X,Y), we have

I?)ug{IP®NR]p(f) — Rp(fp)} > U mub.
€

Proof. See Section 6.15. U

Lemma 5.1 gives a very simple strategy to obtain a lower bound for a given set
P of probability distributions: it consists in looking for the (m,w, b, b’)-hypercube

which is contained in the set P and for which 1= b‘/—mwb’ is maximized.

In general, the order of the bound is given by the quantity mwb’ and w, b are
taken such that v Nwb = Cst < 1. To obtain this order, we do not need the
sophisticated computations detailed in the proof of the lemma. We can use two
well-known lemmas instead (Birgé’s lemma and Huber’s lemma) as it is proved in
Appendix E.

Lemma 5.1 implies lower bounds for VC-classes with decent constants. The
following result is to be compared with Theorems 14.1 and 14.5 in [5].
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Theorem 5.2. For any model F, define Py, as the set of probability distributions
such that inf e Rp(f) = L for a fized L € [0;1/2].

e When L =0:

for any classification model F of VC-dimension V > 2, for any measurable estima-
tor f: ZN — F(X,)), we have

. L when N > (V —2)Vv 1
sup {IP@NRIP(f) . RIP(ffE)} 2 ?E(NJrl) ) N
PePo 5(1_ V—l)

o When0< L <1/2:

for any classification model F of VC-dimension V' > 2, for any measurable estima-

tor f . 2N — F(X,)Y), we have

L(V-1),, V-1 (1-2L)2N 1
. \/ Zasn— V e when ——4— > 2
Sup {IP®NRP(f) _ R]p(ff?)} > 32N 6N V-1 1
PEP, (3 — L)\/g otherwise
Proof. See Appendix F. O

Remark 5.1. It is a well known result that, when inf jc 7 Rp(f) is of order 1/N and
when the complexity of the class is not too high, there exists an estimator such that
PN Rp(f) — inf rer Rp(f) = O(%). The previous theorem gives a corresponding
lower bound.

6. PROOFS
6.1. Proof of Lemma 3.1. Let T} () = —log mexp (—A\AR) and
Ty(m) 2 0V log 7 exp (8.2%2137]; _ ,\AR>.
We start with the following lemma.

Lemma 6.1. For any € > 0 and 0 < X\ < 0.19N, with PN -probability at least
1—¢€, we have m_ R < % [Tl (m) + To(m) + log(4e*1)].

Proof. Taking y = % and v = % in Theorem 2.2, we get

T_x»AR < Wﬁ%RAR + % [1610g T_\R €XP (%P’J;) + 510g(46_1)]

<

—% logmexp (—AAR) + 3—/\2 log 7 exp <—)\AR + %IP‘J:)
+12log(4e1).
O

Remark 6.1. In order to explain the assumptions used in Lemma 3.1, let us give
upper bounds for the quantities 7T} and 75 using the strong complexity and margin
Assumptions (CA1) and (MAS3) for a well chosen distribution 7. Under Assumption
(CA1) (which is equivalent to Assumption (CA3)), there exists a distribution 7(*)
such that for any f' € F, n()(P. ; <t) > e Ot

For any 0 <t < 1, we have

Ty [W(C”tl/n)] < —log [W(Cntl/ﬁ) (AR < t)e ] (by Markov’s inequality)

—log [W(C”tl/ﬁ)(]P.f < c”t%)] + At (according to (MAS3))

<
< C'TUTR M (by definition of 7T(t)).
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Assumption (MA2) (recall that (MA3) = (MA2)) implies that for any A > 0

824 P :—MAR < 82C"2(AR)* — AR
< Asup{S.QC”%x% —a:}
x>0

(s — DA(5292) 7T,

hence Ty(m) < é’A( )ﬁ for any distribution 7 and a constant C' > 0 depending
on C” and k. (Note that for the limit case k = 1, we have Ty, = 0 for any A <
Therefore, with (IP®N )*—probablhty at least 1 — 4¢, we have

8. 2C”')

t=% +log(e1) N <)\>ﬁ}

(r"N R R(f) < é{w < ~

> -4 K
where the constant C' > 0 depends on C’, ¢’ and . The sum ¢+ ¢ e (%) ==1 has

the minimal order N~ 7777 when A has the order of N?*-177 and ¢ has the order
of N~ 2<=1%4¢. This computation explains the choice of Assumptions (3.2) and (3.3).

From inequality (3.2), we have Ty(7) < CN¥=17 4+ AyN " #=t7. From As-
sumption (MA2), we have seen in the previous remark that Th(7) < CAy (32) G
From inequality (3.3), we obtain the desired convergence rate.

Now let us prove the sharper result: inequality (3.4). Let a()\) £ Ng(%) From
Theorem 6.2 in [1] and the same computations as_ for the quantity £” in Section
9.12 of [1] to upper bound — logﬂexp{ Alr—7r( }, we obtain :

Lemma 6.2. For anye >0, A > 0 and & > 0, with P®N -probability at least 1 — 2e,
with m_x,.-probability at least 1 — €, we have

AR < a(NP_;+ “logmoxp { AR Da( )P, f}HC+E0s( )

)

Taking { = 1 and A = Ay, using the margin assumption P_; < C”(AR)* and
noting that a(An) < g(Ca)3, we get

ARSCY—N AR % 310g(e )—|—sup é—N %—JZ' _10g7rexp(—2)\NAR)’
N 2300 N AN

where the constant C' > 0 only depends on C” and C4. Now from the same
computations as in Remark 6.1, when the Inequalities (3.2) and (3.3) hold, we get

Ay
AR <
R_CN

1 -1
(AR)* + N~ vt | 4 28
AN

We obtain successively
AR<C[N25 1+q(AR) _|_10g( )Niﬁ]

and

AR < Clog(ee V)N~ 2%,
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6.2. Proof of Theorem 3.3. A standard idea to prove lower bounds is to consider
an adequate hypercube of probability distributions and to use Assouad’s lemma (see
Section 5 for the definition of the hypercube of distributions).

Consider a (N %*qlﬂ,N B 2~1j1q+q,aN _ﬁ)—constant noiseless hypercube of
probability distributions {IPg : 0 € {—1; +1}m}, where a > 0 is a constant which
will be chosen later.

Had we replaced Assumption (MAS3) with Assumption (MA2) in Theorem 3.3,
the result would have been a direct consequence of Lemma 5.1 applied to this
hypercube with a = %

In this proof, we will not apply Assouad’s lemma but Fano’s lemma since As-
sumption (MAS3) is not satisfied by the whole hypercube. First let us state the

following classical result on the hypercube which is a refined version of Varshamov-
Gilbert bound (1962).

Lemma 6.3 (Huber,[8, p.256]). Let 6(3,Y') denote the Hamming distance between
Y and X in {=1,1}™: §(8,%) £ Y7 Is, 45, There exists a subset S of the
hypercube {—1,1}™ such that

o forany X # X' in S, we have 6(3,%') > 7

o log|S| > 7%.
Proof. It suffices to upper bound the number of points in the ball centered at a point
o of the hypercube and of radius %*. Consider the uniform distribution v(dX) on

the hypercube {—1,1}"™. Specifically, we have

m 1 -1 m
y(é(z,g) < %) < ye%_é(z’a) = e% (ye_]lzﬁéai) = (M) < e~ ,

o3

2
which leads to the desired result. O

Let S C {—1;+1}™ such that |S| = |[e¥ | and forany £ # ¥’ in S, §(%, %) > 2.
From inequality (5.1) in [2], Birgé’s version of Fano’s lemma can be stated as

Lemma 6.4. Given a non-trivial (i.e. cardinal > 2) finite family D of probability
measures on some measurable set (E, &) and a random variable X with an unknown
distribution in the family, we have

. Kp
infsupP[T(X) £ P] >036A (1 - ——2 ),
araup PITC6) # 8] 2 0300 (1 iy
where Kp = ]Pi)n% ZQ#P K(Q,P) and the infimum is taken over all measurable

€

(possibly randomized) estimators based on X with values in the finite set D.

Define D' & {]Pg 0€eS8S } Let us apply Birgé’s lemma to the set of probability
distributions

D2 {P®N:PeD}.
With any estimator f:ZN = F(X,)), we can associate an estimator 7' : ZN — D
defined as T(Z{) = P®YN, where P € D’ minimizes M[S(X)]lfg(X);éf(Z{\’)(X)]’ where
fp denotes the Bayes classifier associated with the distribution P.
By Birgé’s lemma, we have SE%Q [T(Z{V) + Q} > 0.36 A (1 — IDlﬁﬁ) Now,

when T(ZN) # P®N, we have u(fi # f) > Tw, hence Rp(f) — Rp(f3) > Zawf.
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Therefore, we get

N R * KD

For any P # Q € D, we have K(P,Q) < Nmwflog (%) Since we have
|D| = |e% |, we obtain Nmuw(3log (%) < 20Nwf3? for m large

|3

KD < 1
|D| 1Og|D| - ]ogLe%J
__a __1ta
enough and ( small enough. In our case, we have m = N2=1+¢, w = N~ 2+-1+¢ and
_ _ k=1
(8 = alN~ 2==1fa. So for N large enough, we have Wlﬁﬁ < 20a?. Let us choose a

K

such that 20a? = 0.64. We obtain sup IP®NRIP(f) — Rp(fp) > 0.008 N~ 2+=1+4 for
PeD’

N sufficiently large.
Finally it remains to check that the set of distributions D’ is included in P. For
any IP € D', the complexity Assumption (CA2) is satisfied since

o for u < mw, H(u, F,P..) <log|F| < Cu~9 for some constant C' > 0.
o for u>muw, H(u, F,P..) =0<Cu 1.

For any P € D', the margin Assumption (MA3) is satisfied since for any functions
ferF—{f} P, 7 has the order of mw = N~ 7177 and AR(f) has the order of
mwf = N~ %=1, The margin Assumption (MA1) also holds since we have

. 0 when t < 3
P(0<\n($>—%|§t):{mw when § <t <1

Remark 6.2. The proof also holds when ¢ = 0. In this case, we take m = 1,

— N~ 3T _  ]064 nr—a=h
w=N and § = 50 IV .
6.3. Proof of Theorem 3.5.

6.3.1. First case: logm (AR < z) = —C'logz + C"" 4 o(x*). Since we have!*
C/+>\_2FOO(A7.S)

(6.2) N S

from Theorem 2.2, for any 0 < x < 1, we get
O I O CND A o i €0

oo K (T ap,m
7T7)\TR S 5 + + (7T >;<>\7T )\R)
c’ AT O
R > +N—>O+oo( )+N—>+oo(x) K(m_xr,T_AR)
Tarll 2 ) - %

Taking x = \/K(7LM, T_\R), We obtain

_ / —S
(6.3) Mo R=C4 o (A7) 4 9+w(¢K(w,AT, ).
First subcase: \ = O(N 1 ) Assume that A\ = N 0+ (N 1 ) Then there exists
.1 _ A \FeT 15
7 €]0; 5] such that v = NHoJroo(l) and )\(’YN) = N£+m(1). We have
(6.4)
(r—1)C’
}\2 1 o —s 2\ nil kCT+r—1
log xR exp {CW_N(AR)K} - N—>O+oo()\ )+N—(>)+oo([)\<7_N) ] )

l4gee Appendix A.
15proof in Appendix B.
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Let L £ log(ee!). From Theorem 2.2, for any 0 < v < 2 and 0 < A < 0.397N,
with P®N-probability at least 1 — €, we have

K(m_xr,m-xr) < 10g7LAReXp{C$—;(AR)%}+CyL

rC’

(k—1)C’
= o 00 0 (@S T ).

N—+oco N——+oco
. (2r—1)C’ - el _ kC'4r-—1 .
Taking v = A\2:C7+r—1 N 2xC’+n—1 [, 2:C"+n—1_ we obtain
(6.5)
(2r—1)C’ _ wC! wC!
K(ﬂ'—)\r,ﬂ'—)\R) = O A2nC+rn—1 N~ 26C7+r—1 [[2sC’+r—1 | + o ()\_3),
N—-+oc0 N —+o00

which, combined with equality (6.3), gives the desired result.

Second subcase: X\ = cNT—1 for a small enough c.

Then the previous computations can be adapted and we obtain that for any g > 0
there exist ¢ > 0 and Ny > 0 such that for any N > Ny with P®N-probability at
least 1 — ¢, :

Cc'— c’
by b < WfArR < T+ﬁ

6.3.2. Second case: logm ' (AR < x) = C'z~ % + C" 4 o(1). Since we have'®

(6.6) T_ARAR Nete (i—?)ﬁq,

from Theorem 2.2, for any 0 < x < 1, we get

TR < (M4 o )+ 0 (y)]+ Klr=awmoan)

- N—+o0 N—+o0 XA
C'\ mra K(m_xr,T_AR)
ok > ()[4 o ()4 0 (y] - Krasron

Taking y = A\~ Pl \/K(ﬂ'_)\r, T_A\R), We obtain

= ()T 1 o 0+, 0 (v RG]

First subcase: A = o(N~ 2,;1*1—11;). From Theorem 2.2, for any 0 < A < 0.19 N, with
P®N_probability at least 1 — €, we have

K(m .7 an) <logm anexp {CX (AR } + Clog(ee ).

k—1
We can provel” that for any a < ¢\~ =¥« for ¢ small enough, we have

(6.7) log m_ g exp {)\a(AR)%} = QL ()\%ﬂa)\z_lclz»
Let us assume that A = o <N*%>. Then we have %)\Z—;; = o (1),
N—4o0 N—+4o00

hence
K(m_xr,m-xr) < 0 ()\KLM)—FClog(ee*l).

16g5ee Appendix C.
175ee Appendix D.
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So we obtain that for A\= o (N*%K——tqﬂ),
N——+oco

TR = (95)7 1+ N£+OO<1)].

Second subcase: A = ¢cN ™ 2154 for a small enough c.

Once more, the previous computations can be adapted in order to obtain that
for any 8 > 0 there exist ¢ > 0 and Ny > 0 such that for any N > Ny with
PN _probability at least 1 — ¢, :

<%)#q <7m_ywR< (qc’+6) ==

6.4. Proof of Theorem 3.6. For any 0 < j <log N, introduce J\; £ 0.19v/Nez.
Define L = log[log(eN)e~1]. In [1, Section 3.4.2], an algorithm is proposed to choose
the temperature of the standard Gibbs classifier. The associated generalization
error is bounded by

sup {logw N ROT_x, Rexp(CA?IPw)}

s . 0<:i< L
G = min {ﬂ'_)\leR+ g " "’CT}'

1<j<log N J

Under Assumptions (MA3) and (CA1), for any 1 < j < log N and t > 0, by
Jensen’s inequality, we have

a2
e, (e ()
og T ex; <i
G S g ;\3 1] 1 4 <j - —|—CL
Jj— J

logﬂ'exp(f)\j_lR) Ozlzlgj{logﬂ'exp( /\AR+ z(AR) )}

— - )\j,1 )\j
+ sup { . logrexp(—)\iAR)} + CL
0<i<y X Ai
2 1}
< R( ) 2\/flog7rexp( AjR) +O<7,<j m>0 )\j +C)\_I;
< R( ) 2\/*10g (AR<t)exp( Ajt)] +C( ~),€,1 —f—C%
< R(f)+ ¢l ) “ )+Ct+(]L.

Taking j such that \; is of order NZ=TF and t minimizing C'—5—= ‘J(t Doy Ct, we

obtain the desired rates (the ones given in Theorems 3.2 and 3.4). So the algorithm
is adaptive wrt the margin parameter x.

6.5. Proof of Theorem 3.7. We will prove the result for a minimal net. It is
easy to generalize it to almost minimal nets. Let u > 0. Let m be the uniform
distribution on a minimal (u,F,P..)-net denoted N,. Let fu be the the nearest
neighbour of f in the net N,. Define a()\) £ 29(%). From inequality (2.1) for
(p2, 72, p1,m1) = (6 m,07 507, ), with (P®Y) -probability at least 1 — ¢, we have

H(u,F,P..)+log(e™ 1)
)\ 9
When f = fERM’u minimizes the empirical risk over the net N,,, we obtain

F 7 1
R(f) - R(.) < a5, + TR o8

R(f) - R(.fu) + T(.fu) - T(f) < Q(A)Pﬁfu T
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hence

H(u,F,P..) +log(e!)

R(f) = R(f) < R(fu) — R(f) + a(NP; ; + a(A)P; 5 + Y

Let C' > 0 denote a constant (possibly depending on ¢, C”, C’, Cy and C5) whose
value may differ from line to line. For any 0 < A < N, we have

IN

63 AR(f) C(P% . + AARE(f) + 3Py 7 + “ -t >>
| < C(RAR=(f) +ur + qu+ 7“?(6_1)).

Let us take v and )\ such that u u" and %— have the same orders. This is
realized when Inequalities (3.6) hold and A = N 2177 . We obtain
AR(f) < C[N~ =5 AR (f) + log(ee )N~ 7174 ].

Simple computations lead to

A

AR(f) < Clog(ee )N~ 7173

and, then, to PENAR(f) < CN ™~ z=1¥a,

6.6. Proof of Theorem 3.9. The chaining idea comes from [6] and is well pre-
sented also, for instance, in [5, p.19-21]. Let 9(p1,p2) = poR — p1R + p1r — por.
Let up = u2k. Let ¢ £ h+(uk) To shorten, denote ; j £ Tfu,- Let K be the
nonnegative integer such that Py —52 L2 <wug < Py, . The integer K exists as soon
as Py g, > u. Let L’ be the nonnegatlve integer such that ; < up < 1. Let
A1, ..., AL41 be real positive parameters to be chosen. We apply inequality (2.1)

for this L’ + 1 parameters and for m; = m = 7.
With (P®Y) -probability at least 1 — (L' + 1)e, we have

(71,0, 2,0)
O(m1,k,T2,K) + ZkK A0 g—1, mk) + O(mo ks T2 k—1) }

>\K+1 >\K+1 K(Tl'l K, 7I')+K(7T2 K, 7I')—|—10g(6 1)
< g dur +
oy Az A g T Dby Ko m)
+Zkz 1{2 9( ) (up—1 +ug) + PR 7 }
€ Mg (M + 2l )

2log(e 1) +4cy
Py 1{6“ (W'“)u—  Hosl ey |

K+1 >\k A 2log(e™ 1) +4ep_1

Let us choose the \;’s such that they do not depend on € and they roughly minimize
the RHS of the last bound. Taking A\, = 4/ 4;\];% for £ > 1, we obtain

-1

8(7T170,7T270) < i(:qul [1_}_29(%)} [ 12¢cy, 1\1]uk 1 +ZK+1 2103;}5; )
K+1 12¢c4— _ _ K+1
< k:+1 1 29(%” \V Rt + 2log(e 1)\/ f_}\br Zk:ﬁ
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For any k € {1,...,L'+1}, we have 3¢ < a0 £ (. Since Cp = 2v/3[1+29(Ch)],

we obtain

2C K+1 Ch— 6P, 5y log(e "
O(m1,0,m2,0) < TS (g1 —up—2) /T R \/(5_1)

< 200 IPfl f2 h+(U dv + 6 f1 fa log( —1)

A

Remark 6.3. We have used the “global bayesian entropy” h(v) £ sup log 7 *(By.,)
fer
since it was convenient to have an (almost) optimal A’s which do not depend on the

functions f; and fs. Had we done a union bound on the parameters A\, we would
have been able to make it depend on the functions f1, fo. Then the global bayesian
entropy would have been replaced with the local ones h(v, f1) and h(v, fo) where
h(v, f) £ logm~1(By,). In other words, the quantity d(m1 o, m2,0) is mainly driven

by the two integrals ff/;h \/ h’(v fl)dv and f ARERY %dv.
6.7. Proof of Theorem 3.10.

6.7.1. First step: upper bounds due to the chaining technique. We start with the
following chained result which is slightly different from Theorem 3.9 to the extent
that we chained functions belonging to covering nets instead of chaining balls. Had
we been interested in results for packing nets, Theorem 3.9 applied to an appropriate
prior distribution'® would have been sufficient. Let H(u) = H(u, F,P..).

A 10g(2u71). We

Theorem 6.5. Let u > 0, N' a minimal u—covering net and L log 2

have
o for any € > 0, with P®N -probability at least 1 — €, for any f1, fa € N,

R(f2) — R(f1) +7(f1) —r(f2)
(69) < 8\/7fIPf1 faVu H(”)d 4 W IP/f21 fa Vu H(v)d

log(3Le 1) ]Pf VUt 2Llog(3Le h
\/ 1,f2 )

o for any e > 0, for any f1 € Ny, with PO -probability at least 1 — e, for any
f2 € Nu;

R(f2) — R(f1) +7(f1) —r(f2)
<4,/3 fIPfl F2 VU H(”)dv+ f/f; F2 VU H(v)d

Llog(2Le™ 1)
3N

+8.5¢/ PRI Py Vot

Proof. The proof is similar to the one of Theorem 3.9. Instead of chaining balls, we
will chain on covering nets. Let O(f1, fo) = R(f2) — R(f1) +7(f1) —r(f2), ur = u2”
and ck £ H, (ug). Introduce P £ Py, 4, Vu and let 0 < K < L’ be integers such
that f1f2 <ug <Pand 3 <up <1

Con51der the family (/\//@)k:{()’...’L,}
{1,2} x {0,..., L'}, introduce f; € argmin,, IP. ;. a nearest neighbour of f; in

of minimal nets of radius ug. For any (j, k) €

181 et Np be a u-packing net. Using the notation of Section 6.6, an appropriate prior dis-
tribution is m = ﬁ Zﬁ;o Tk, where 7y is the uniform distribution on a ug-minimal packing
net of the set F built using points in Np. The log-cardinal of such a set is upper bounded by
H(ug_1,F,P..), hence h(ug) < H(ug_1,F,P...) + log(L' +1).
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Nygr. Since f1, fo € Ny, we have f1 9 = f1 and fa o = fo. Let 7 be the uniform
distribution on the net Nj.

Let [ 2 1log[(3L' + 1)e!]. By applying 3L’ + 1 times inequality (2.3), we obtain
that with P®N-probability at least 1 — €, for any functions fi, f> in N,,, we have
(6.10)

Of1,f2) = Ofri, forx) + iy {0(f1k—1: frk) + O(fas frr—1)}

S \/2[2H(uK)+JlJvIPfl’K!f2’K + 2H(§L]<[()+l
+Z£{_1 {\/2[H(uk—1)+H(u]’i{)+l]Pf1,k1,f17k + H(’uk_l?g-i]-vﬂ(uk)-f—l
+\/2[H(uk—1)+H(uk)+l]IPf2,k71,fgyk +H(uk,1)+H(uk)+l}
N 3N
S 22K+1{\/ 2H(uk J\?)+l]uk 1 + QH(%%1)+Z}
< 22K+1{\/12H(uk_1)uk_1 _}_\/GZuj\I; Ly 2H(uk 1)}+ 2(1;4\;1)1
< 9 &Wu\f/éjll +2(K+1)l +2ZK+1{ /12H(uk]\71)uk,1 4 2H(31j\,;,1)}

Now the last sum can be upper bounded using integrals since the function v — H (v)
is non increasing on R . We obtain

l 1 log(2 P H(v P Hw
6(f17f2)§\/§471 0B+ lgog2 +8\/%fu/2 f})dv+3§;\, w2 1(1)d

For the second part of Theorem 6.5, it suffices to modify slightly the previous
argument. This time, the functions foj are defined as previously. The functions
fir are defined as fi £ f,. Therefore we have O(f1.k-1, f1.k) = 0, hence the
modification of the constants. 0

Consider that Assumption (CA1) holds. Let ¢, > 0 such that for any 0 < u <1,

Zk/:o 3e—caha(ur) < 1. In the previous proof, we used a uniform union bound over
the 3L’ + 1 inequalities coming from (2.3). If we are just interested in the order
of the bounds, we can weight the inequalities associated with O(f1 x—1, f1,x) and
I(f2,k, f2,k—1) With e~ Caha(us-1) and those corresponding to O(f2,k, fo,k—1) with at
least weight e~ C¢ahalur),

Then, in Inequalities (6.10), we may replace 2H (ug )+ and H (ug—1)+ H (ug)+1
with respectively 2H (ug )+cghg(ur)+log(e 1) and H (ug—1)+H (ug)+cqhg(ug—1)—+
log(e™1), so that we obtain
(6.11)

A fo) < CNC! (sl g bl )

< é /Plog]E[67l) _f_élog(eu*lj\)jlog(e*l) + éf£2 < h (v) + hg (v))dv

Corollary 6.6. Let N denote a minimal u—net, where u is a positive real. Define

U2 sup {R(f) } Introduce a function far € N such that Py 7<wu. Let
:IPf’fgu

Yu HJu; 1] = R and Ty, :Ju; 1] — R be non decreasing concave functions respectively

upper bounding the functions [. 1/ @dv and [, @dv..
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For any € > 0, with PN -probability at least 1 — €, for any function f € N, we
have

RN =R < r(f)=r(in)+ L{mu®rp+w)+ /(P f+ulog(e ) }
+%{Fu <IPf,f +u) + log(eufl)log(efl)} +U

Consequently, for any p € Mi(N), we have

pR—R(f) < pr=r(fn)+ {ruloP s +u)+ /(6P ;+u)log(c )}
+%{I‘u (pIP”; +u) + log(eu_l)log(e_l)} +U

Proof. The first inequality comes mainly from inequalities (6.11) and the decom-

position: R(f) — R(f) = R(f) — R(fx) + R(fx) — R(f). The second inequality is
then deduced from Jensen’s inequality. 0

6.7.2. Second step: determining the radius of the nets. Corollary 6.6 implies that
for any € > 0, for any classifier f minimizing the empirical risk over the net N,
with (P®Y) -probability at least 1 — €, we have

R(f) < U+ G{mu(®sztu)+/(P;;+u)log(e )}
+N{F (Pf7f+u)+log(eu Dlog(e 1)}

(6.12)

Now we have

Y < Cu* under Assumption (MAS3 )
| 2u in any case

and we can take

C \/log (e2z=Y)x under Assumption (CA1) for ¢ =0

(z) 2 Co 2" under Assumption (CA1) for 0 < ¢ <1
RE N W log (%) under Assumption (CA1) for ¢ =1
Cu=* under Assumption (CA1) for ¢ > 1

and
I, (z) 2 Cllog(eu=1)]2 under Assumption (CA1) for ¢ =0
T Cue under Assumption (CA1) for ¢ >0

Then we have eight cases corresponding to the different complexity and margin
assumptions. When we have ¢ > 0, inequality (6.12) implies

AR(f) SU+CPBE Dy (P 5 ) + CRBG D yma,

Under Assumptions (MA2) and (CAl) forq=0

Let A 2 AR(f) to shorten. Inequality (6.12) becomes

A< Cu’[log(eefl)]\f*% <x/log(62A_%)Aﬁ + log(eQU_l)u> +u+ [10g(6]1\b[’1)]2 ‘

We obtain A < C'log(ee!)(log[eN'/#])2==T N~ %=1 when'?

/log(ej\lfbfl)u +u+ [log(e]i\tfil)]Q < é(log[eNl/n])TK_lN*TK_l,

19We use log[eNl/“] since the logarithmic factor disappears for kK = +00. For kK < 400, the
factor log[eN1/#] can be simplified into log N for N > 2.
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hence when there exists C’l, C5 > 0 such that

exp{ — C’l(log[eNl/’*])Tszn—:g} < u < Cy(log[eN/"])zm=T N~ 21,

Under Assumptions (MA3) and (CAl) for ¢ =0 and k < +00

Inequality (6.12) gives

A< é[log(eefl)Nfé <\/ log(e2 A~ ) A + \/log(e%rl)u) +u” + 7[1%(6;\’}_1)]2].

We obtain A < C'log(ee1)(log N)##=1 N~ %1 when

/10g(82]\7]1671)u + UH + [IOg(ejfl\l}il)]Q S é(log N)ﬁNiTn—l,

so when there exists Ol, C5 > 0 such that

exp{ —C’l(logN)Tben—:g} <u< C’g(logN)Tl—lN*Til.

Under Assumptions (MA2) and (CAl) for0<g<1

Inequality (6.12) becomes

v 1 1—gqg 1—gq ul -1
A< C’[u+ log(ee )N~z (AW +uT> C%u‘q :

This leads to A < C'log(ee”!)N~ 2157 when the inequality
N=3u'3* 4yt Gl D)y~ < ON T

~ ~ ~ _ K—1+4 ~ _ K
holds, hence when there exist (', Cs such that C; N 11D <u< (CyN zr—1tq,
Similarly, we deal with the five other cases. To finish the proof, we just have to

notice that, when for any € > 0 and some real function ¢, with P®"-probability at
least 1 — ¢, we have A < log(ee1)¢(N), then we have PENA < 2¢(N).

Remark 6.4. Once more, for sake of simplicity, we have done the proof for minimal
nets without explicit values of the constants. It is easy to adapt the proof to almost
minimal nets and to get an explicit constant C in terms of the other constants of
the problem.

6.8. Proof of Theorem 3.15. Let uny = Cowpn. Let N7 be a uy-minimal brack-
eting net of the model F. Let A 2 {f € F: Ivaf < un}. There exists a posterior

distribution ppr : Z¥ — ML (V) (for instance, pav = m_xy,ony ') such that we
have parr < m_yyrr + un and

(6.13) ToanrR < AR+ up.

We have

(6.14) PNIT S T_AyrT F UN S?T‘AT—F%;"W)—FUN
and

(6.15) K(m|a,7) = log[r(A)™Y < Chy(un) < CAnun.
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From inequality (2.1) for (p2,7T2,,01,7T1> = ((5f, 5];,7T\A,7T\A) and A\ = N, with P®N-

-1
probability at least 1 —¢, we have 7|ar —r(f) < w|aR—R(f)+un+ %, hence

; log(e™")
N

(6.16) mlar —r(f) < 2un + < Clog(ee™ Hwn.

Combining Inequalities (6.14), (6.15) and (6.16), with P®N-probability at least
1 — ¢, we obtain parr < 7(f) + Clog(ee 1)wy. The result follows from Theorem
3.12 and inequality (6.13).

6.9. Proof of Theorem 3.16. Let C; > 0, v > (18, and N be a (u, F,P)-
minimal bracketing net. Let 7 be the uniform distribution on this net. From
inequality (8.2) in [1] for W((f1, f2), X) = 14, (x)f.(x) and v = 7 @ 7, we obtain
that with P®Y-probability at least 1 — ¢, for any function f{, f5 in the net A" and
any A > 0, we have

D A (A

Pripy < 1+ 59(8)IPrp +
Recall that C is a constant (possibly depending on the other constants of the
problem) which value may differ from line to line. Taking € = ()¢ and A = N,
we obtain that with probability at least 1 — ()¢, for any functions f1, fo in the
set F, we have

2log |N|+log(e™ 1)
A

Ane(f) F Prg(pme (£2) + Prp(f2). £

nr(f1)mo (f1) + ]PnL(fl)7nL(f2()u+ I)P”L(f2)7(nU(f)2)
6C"hq(C134)+3C log(a,*

e =P, (f)mu(f2) T N N :

€e— 1)]PnL(f1),nLv(f2) + Cﬁq +2u

(e - 1)]Pf17f2 + Ou'

]_Pf17f2

=S 1las]

+ 2u

—

VANNVAN VAR VANRVAN

By applying inequality (8.2) in [1] to W((fl, f2), X) = 14 (x)£f2(x), We can
similarly proved that with probability at least 1 — ()¢, for any functions f1, fo in
the set F, we have (3 —e)Py, s, < Py, s, + Cu. (The constants e — 1 and 3 — e have
nothing fundamental and we can make them as close as 1 as we want provided that
we change the other constants.) These two inequalities allows to prove respectively
the first two items of the theorem for one radius u > é’l Bq- To get a result uniform
wrt the radius, it suffices to make a union bound for radius in a geometric grid of
[C18g; 1]

For the last item, when we have u > 4 B, for a sufficiently large C’l, there exists
a small constant C’ satisfying

H(u, F,P) < Hy(u, F,P) < Hy(C'u, F,P) < H(C'u/2, F,P) < Chy(u).

6.10. Proof of Theorem 4.1. The proof is adapted from the proof of the con-

centration of N(X{V) [10, p.42]. First, we prove that for any k € IN, the quantity
b

H(WIT}-;?") is a self-bounded quantity in the sense given in [10, p.23]. Let N} be a

(%, F, IP)—minimal net. Define the probability distribution

)é 5Z1+“‘+5Zi_1+5Z7_-+1+"'+5ZN

P(Z N—-1

Let H® be the logarithm of the cardinal of the smallest (ﬁ, F, ]T)(i))—net using
only functions in the net N,. We have

0<H(E,F P )-HY <H(E F P )-H(GS, F,PY) <log2.
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Let V = (f(X1),..., f(Xn)) be the random vector induced by the uniform distrib-
ution on the net AV;. The Shannon entropy of this vector is log |Nx| = H(%, F,P.).
Define V) £ (f(Xl), cony f(Xiz1), f(Xig1)s - f(XN)) Since the uniform distri-
bution maximizes the entropy, we have H® > H(V®). Then, using Han’s in-

H(E,F7P..)

g2 is a self-bounded

equality (see for instance [10, p.31]), we obtain that
quantity.

Therefore, we can apply Corollary 5 in [10, p.43]. To shorten, we write until the

end of the proof H(k) for H(%,F,P..). For any n > 0, we have
,,]2
~ ONHG) 2
(6.17) pEN [H(k:) > POV H (k) + (log 2)77} <o Emalim
and
,,]2
(6.18) pEN [H(k:) < POV H (k) — (log 2)7]} < o T Ew

2
. T 2PONH(K) | 27 .
Introducing e = e log 2 3, equivalently

PENF (k) 2
2 (/4 T og(e7 ) =0

1 -1 18PN H
gl ([ 1sPeVH®E) |
3 (log 2)log(e~1)
we obtain that for any € > 0,

(log2)log(e™1) 18PN H (k)
]P®N{H (k) 2 PEVH(E) + == (1 * \/ ' Tiog 2)10g<e—1)> } =

which is the first assertion of the lemma. The second inequality of the lemma is
a direct consequence of inequality (6.18). The following two inequalities in the
lemma comes similarly from inequality (6.17). Finally, inequality (4.3) comes from
combining Inequalities (4.1) and (4.2).

6.11. Proof of Theorem 4.3. For any k € {0,...,U}, let Ny be a 2~ *_minimal
covering net of F for the pseudo-distance P. For any (i, k) € {1,2} x {0,...,U},
let fir be a nearest neighbour of f; in the set Ni. Let 0 < K < U be the integer

satisfying w < 27K <Py, 4 Vu

Since we have
I(f1; f2) = 0(f1,Kx; fo.x) + ZLLKH {8(f1,k§ fie—1) +0(fo,k—1; f2,k:)},

we need to apply Lemma 4.2 to (S1,S2) € Ur<p<u{(Ni—1,Ni) U (Wi, Ni—1) U
(Nk,/\/k)} and to do a union bound on the associated 3U inequalities. Let wy,
k € IN* be positive integers such that ), ., wy = 1. With probability at least 1 —e¢,
for any k € IN*, for any (f{, f4) € (NM—1 X Ni) U (Ne X Ni—1) U (N x Ny), we have

sﬁf{,fé log(3|Ng 2w, Te=1)

ot </ -
For any (i, k) € {1,2} x {1,...,U}, we have Py, ,_, 7., <3 x 2%, Denote

A 24%2-F log(3| Ny |2w; te—1)
o T
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We have Py, . ¢, <4X 27K and f1,0 = f2,0. Chaining the inequalities, we obtain
that, with P®2N_probability at least 1 — €,

O(f1; f2) < 2Bglgso +2 Z/g:KJrl By <2 Z/gsz By,

hence

6x2-k[2H,+log(3w. 1) +log(e—1
6(f1;f2)§4ZkU:Kv1\/ X2 gj(v e Jrlogle )]

We want that the union bound term log(3w,§1) remains negligible wrt the
complexity term 2Hj. This leads to choose, for instance, w; = m since

> k1 m = 1 and for small classes of functions (i.e. VC-classes), the entropy
Hj, has the order of k, hence log(Sw,zl) < Hj,. We obtain

(f15 f2) < > 4 6><2"“{QHk+log[3]\l]f(k+1)]+log(e—1)}.

kEN*:u<2=k<Py 1 Vu

Remark 6.5. The previous resglt can also be written in terms of integral.:Introduce
the set E £ {keIN:27% < (Py, s, Vu) A3} and take H, = H(27*, F,P) V1. We
get

O(f15f2) < 16\/72\/17 —2k1) 44 610g(36 )3 (va)h
+4 /5 2 (V2)7F/loglk(k + 1))

16\/7f(IPfl f2\/u)/\ /H(:E]:]P)V]. d
\/61og(36 1) \/IPf1 pVuU+4y/2 5 (V2 2log(k +1).

keE

IN

Let ¢(x) £ % log (elolgg2 ) for any 0 < z < 2. The function ¢ is decreasing on

[O; %} The last term can be written as

Q_k 2_k 1) 3 (I?)f f \/’I.L)/\l
8y/ 2 Z Viog(k+1) <164/% [o 7 2 p(z)dx.
kEE 2
6.12. Proof of Theorem 4.4. Let us take U € IN such that 27Y < ﬁ From
Theorem 4.3, for any € > 0, with P®2N_probability at least 1 — €, for any functions
f1 and fs5 in the set F,
(6.19)
r'(f2) = r'(f1) +r(f1) —r(f2)
< ¥ 4\/6x2—k{2Hk+1og[?;\1]g(k+1)]+1og(e—l)}_

kG]N:LNSQ_kSI?)foQ/\%

Let N be a (5%, F, P...)-minimal covering net. From Theorem 8.4 in [1] apply to
W((fl, f2), ) = ]lfl(X)?ng(X), we obtain that with P®V-probability at least 1 —e,
for any function fi, fo in the net F, we have

= = P o log[N2(X2N)e—1]
IP/fl,fz < IPfhf? + 2\/ hot2 N -

hence

= — P o log[N2(X2N)e—1]
]Pf17f2 S]Pf17f2_|_\/ S N ! .
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- 2N —1
Let K & 2loe N(X, N)Hog(e ). By solving the previous inequation, we obtain

(620) I:Pfl,fQ < I7Pf17f2 + \V/ ICIPfth + % + %

From inequality (4.3), we have

H(u,F,P') < H(u,F,P)+ (log2)log(e ) <% F14 %)
= 3H(u,.7:, I_P) + WIOg(Gfl),
hence
H(u,F,P) <4H(u,F,P) + %log(e_l).

Taking a union bound with weight m, we obtain that with P®2¥ _probability
at least 1 — ¢, for any k£ > 1, we have

(6.21) H@2 ™k FP)<4H (2% F,P..) + 2.4log[k(k + 1)e 1]

Let H;, £ 4H(27% F,P. )+ 2.4log[k(k+ 1)e~!]. Rigorously, we cannot apply The-
orem 4.3 for Hy, = Hj, since Hj, is not always an upper bound of H(27% F,P) Vv 1.
However we can modify the proof of Theorem 4.3 to take into a “probably approx-
imatively correct” inequality. Therefore, combining Inequalities (6.19), (6.20) and

(6.21), letting K £ 2Hutlosle) op g

n * — w S c2 c
Eé{kem Doy <2 kSIPfl,f2+\/’CIPfl,f2+%+%},

we obtain that with P®2N _probability at least 1 — 3¢, for any functions fi, fp in F,
we have

T,(fg) _ T,(fl) + T(fl) . T‘(fg) < 274\/6><Q_k{2H1/€+10g[3]\];(k+1)]+10g(6_1)}.
keE

To obtain the announced result, we simplify this formula by using
(6.22)

]Pflva + \/ ]szfth + ’CTQ + % < IPfth + v ]szfth + K < éIﬁPfl:fz + 2167

log[U(U 4 1)] <log (2 + lﬁ)gg];)(?; - lﬁjgg];])] <log6 + 2log (2l§g2 log V)

and

2H;, +log[3k(k + 1)e ] < 8H(27%, F,P..) + 6log[k(k + 1)e '] + 1.

6.13. Proof of Corollary 4.5. Let f € F. If I:PfERM ;= 0, then we trivially

lr}ave ' (ferm) < 7 (f). Otherwise, we have PfERM,f > 5. Let K € IN such that

Py f -K D : ®2N oF
BEM:Z < 2 <P Foro.f- From Theorem 4.3, with IP -probability at least 1—e,
we have

T,(fERM) —r'(f) < > 4\/6><2*k{2v1og(egk+z)+log[3k(k+1)]HOg((1)}
TSk N

< 4\/6><2*k{(2V+1)log(62k+2)+log(e*1)}
S v

< 4 /6(2\]/v+1) D \/2—k log(e2F+2) 4 4 6logj(ve*1) S (V2)k

E>K E>K
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Now, for any k > K > 0 and V > 1, we have llggg((;;;j 1)) < ““;j?lﬁjggz 2)

we get

A~ K og(e K42 o
' (farn) — ' (f) < 4\/6(2V+1)2 log(e2 )kgo\/g JEEEY

44, /M(\/ﬁ)fl(%

6(2V41)2— Kl 2K+2 klog2
4\/ ( ) el )kgo\/Q k 1+201%)g2 + 1)

+44/M(\/§)—K \/El
log(e—1
< 47\/ V+1\/ ferM, f Og )"’34\/ fERM;tV s

For the second assertion of the corollary, we use Jensen’s inequality and the
concavity of z +— /xlog(8ex~1!) in order to obtain that for any function f € F,

+1. Therefore

IN

Sl

fERM f

~ (V+1)IP®2NI=P .
PN R(ferm) < R(f)+ 47\/ el Jog (Wf)
ERM>

PR2NP
+34 JERM S

N
6.14. Proof of Corollary 4.6. For k = 400 (i.e. no margin assumption), the
result comes from inequality (4.5) since the function x — xlog(8e/x) is an increa-
sing function on [0; 1], hence upper bounded by its value for = 1. Specifically, we
obtain
(6.23) PPN R(frrm) — R(f) < 831/ YL + \/—

Note that it is thanks to the chaining that we get rid of the log N factor.
For k < 400, chained and unchained results lead to the same convergence rate:
(% log N ) 2e-1

To obtain this rate from the previous bounds, we just need to link the variance
term ]P®2N]P . f With peN P .. inorder to use the margin assumption.

Comblmng Inequalities (6.20) and (6.22), we obtain

D> : 55 . | Alog N(X7N)+2log(e™ 1)
]PfERMyf S 4]P Rva + (2 j\]])v ( 1)
515 } 4V log( =5~ ) +2log(e™
< ZIPfERMJ N ?
hence
Q2N T _~ 5PON 4V log (2N ) +2
(6.24) PENP, < EPONP, o4 ST

Now, by the margin assumptlon and Jensen’s inequality, we have
1
C”]P®N (A ) C// ( ®NA) K
The convergence rate then follows from (6.24), (6.25) and either (4.4) or (4.5).

(6.25) PENP

ferM, f

6.15. Proof of Lemma 5.1. Let &;, = (01,...,0/-1,7,0j41,...,0m,) for any
r € {—1,0,41}. The distribution Pz, , is such that Pz, ,(dX) = p(dX) and

L for any X € X
— g = 2
IPUj,o(Y 11X) { Pz(Y =1|X) otherwise
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QN

P&
Introduce the quantities m, ; £ P L(ZN) =TIV, [1+ rlx,ex, (2Vi — 1)E(X5)] for
95,0
any r € {—1;+1}. Let v denote the distribution of a Rademacher variable:
1
vioc=+4+1)=v(ec=-1) = 3"

The variational distance between two probability distributions IP; and P is defined
as V(Py,Py) = sup {P{(A) — P5(A)}. When the distributions P; and

A measurable set
P, are absolutely continuous wrt a probability distribution Py, we have

V(1 P2) = § [ |B2 — p2ldPo =1 [ (§} A 52)dPo.

We have successively

sup {PEVR[F(X) £ Y]~ PIfE(X) £ )}

PeP

> s {(PEV)PHIF(X) £ Y] - Palf, £V}
ge{—1;+1}m

B 56{8111;21}7"{ (]P?N)IPE <£(X)]lf(x)#§6 (X)) }

_ N

- 56{8111;21}’"{]1)? (Z] 1O ey v Xex]>}

m N
> Eyom) i, Pg [M[g(X)]lf(X);él+% i XEX; }]

o m ®N Ps
(6.26) Fron 2 Fos <]P®N u[g(X)]lf(X);«f£1+ij X eEX; }
= ]EV®(m 1)(d0'1, ,dO'J 1,d0'3+1, ,dcrm) Z] 1 ®N]EI/(CZU])
IPﬂ
e SO0 702 o e, }>

RN
Eu@(m—l)(dcrl,...,da'j_l,da'j+1,...,dcrm) Z]:]_ ]P&'j!o

v

(715 A1) B ECOT ;e e }]

= Eyom—1)(do,....dos_1,dojsr,dom) 2oiel
Lule(X)Ixex,] [71 ~v(PgY PEN )|
= %u[&(){) ‘X = Xj} [1 - V<IP®{V1 ..... 171P?11\{...,1>]
Now let us prove

(6.27) V<]P@—©le1 ..... 17IP?]1\{..., ) <bvNw.

First, we have

N
(6.28) V(IP?{YL. PRV ) Z( ) —w)Ny,

=1

where V), £ V(IP‘%Q,IP%&) and P, 2 P, 1(|X € X)) for any o € {~1,+1}. By
simple computations, we get Vi = plé(X)|X € &j;]. From Jensen’s inequality, by
the concavity of x — /1 — z2, we have

VI=02=pu[/1-E(X)|X € &) < /1-{uld(X)]X € X]}2,
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hence V; < b.
For [ > 2, we upper bound the variational distance by the Hellinger distance.

2
By definition, the Hellinger distance H(IP, Q) satisfies 1 — w = [VdP/dQ.

2 ®1 ®1 2
Hence the tensorization equality is 1 — w = (1 - W)l. We have

l
Vi < H<]P‘§l1,IP§l1> = \/2<1 — [1 _ W} )
and 1-— M [\/TW € Xi| = V1 — b2, by definition of b. Now,

for any [ > 2 and x > 0, 2(1 — [1 —x } ) < lz?. Finally, for any [ > 1, we have
V, < bV/I1. Putting this result in equality (6.28), we get

V(IP?{YLMJ,IP%JJ ) < bZIP(Z )ﬁ,

=1

where the ¢; are i.i.d. random variables such that P(¢; = 1) =w =1 — (eZ =0).

So we have v<1P_{Yl _____ LPEN ) <PV e <by /PN 6 =bVN

Remark 6.6. The last inequality in (6.26) is an equality when for any j € {1,..., m},
f = argmax P®V; on X;, i.e. when f is the maximum likelyhood estimator on

T

re{—1;+1}
the set X — Aj.
APPENDIX A. PROOF OF INEQUALITY (6.2)
For any r > 0, define I'(r fo u" 1l exp(—u)du. Integrating by parts, we
obtain the well-known property L(r+1)=rT(r).
e We have
WGXp(—)\AR) = +Oo7r{ exp —)\AR) > u}du
(A.1) = exp(—A)+ fexp( N 7T{ exp ( — )\AR) > u}du
= exp(—A)+ fo )\exp( )\:U) (AR < w)dx
Let us introduce A’ £ exp(—C""). Since we have (AR < z) = 2% [A’ +n(z)] with
n(x) = oo(ws) and n(z) < 2~¢ and f0+oo Aexp (— A\z)z Cldm = F(fcirl) we get

e (238) AP
= fo Xexp (— )\x)arcln( ydx + A" [T Nexp (— )\a:)arcldx
Since we have
fol Aexp ( — )\x)xcln(w)daz
= fOﬁ Aexp (— A\z)x C/Jrsgcgo( )dx + f Aexp (— )\a:)xcln(a:)da:

(C'+s)
gkﬂcioo()\ )+f )\exp( )\a:)dx

- (C'+s)
A—»c—)l—oo()\ )
and f1+oo Aexp ( - Aﬁ)ﬂccldﬂﬁ = qr ()\_(C/Jrs)), we obtain
rC'+1)+ o (A79)
(A.2) mexp (— AAR) = A’ /\ACTJ’“’
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e From equalities (A.1), we have
(A.3)
T[ARexp (— AAR)] = exp(—A) + fol()\x —1)exp (— Az)7 (AR < z)da.
. ) TC'+1)+ o (A%
We have just seen that [ exp ( — Az)m (AR < z)dx = A’ o . Be-
sides, from the same argument as above, we have

1 F(C/+2)+>\~>O+ (A7%)
Jo Aexp (— Az)m (AR < z)dx = A’ e :

Since I'(C" +2) = (C' + 1)I'(C" + 1), we obtain

’ ’ —s
C'T(C'+1)+, o (A7)

m[ARexp (— AAR)] = A’ e
C'+ o (AT
e Combining the previous results, we obtain m_ygrAR = H*+

APPENDIX B. PROOF OF INEQUALITY (6.4)

Let o > 0 depend on A such that Aa#s 1 \ —;_ 0. Then there exists 0 < ¢ < 1

=

depending on A such that ¢ \ —;_ 1 and )\(%C)ﬁ — 0. Let ho(z) 2 v—azx

A——+o00
and zo = (%)ﬁ The function h decreases on [0; xo] and increases on [zg; +00].
We have
mexp [ = Ma(AR)] = 7{ exp [ = Mo (AR)] 1y, am<can |
+7T{ exp [ — Mo (AR)] ]lha(AR)>(AR}
< exp [~ Mia(20)]T{AR < (%) F7 | + mexp [~ ACAR]

C

<exp [(k = DA(2) 7] (:20) 7 |1+ o (1))
41 exp [ — )\CAR}

From equality (A.2), we get
T_\R €XP ()\aAR)

’

oIV (o \EET 1 5.0
= exp [(n = DA(2) T A (12) 7 by .0 ]+ =
— C'[_a_ e —s _

(r=1)C’

Taking ( =1 — (Aaﬁ) nC'tr—1 we obtain

logm_ R exp ()\aAR) = )\_9%0<[)\aﬁ} *“(g’iz“a) + )\_}C:Loo()\*s).

ApPENDIX C. PROOF OF INEQUALITY (6.6)
We start with the following lemma.

Lemma C.1. Let h: R* — R be a C3 conver function such that there exists ug > 0
satisfying h'(ug) = 0 and b’ (ug) > 0. Let ¢ : R* — R be a continuous non negative
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function such that ¢(ug > 0) and u — ¢(u)exp(—tou) integrable for some ty > 0.
Then for any A > ug, we have

I otwyexp [~ th@wld, . ou)esp [ = thtuo)] iy

Proof. e Since the function A” is non negative, continuous, k" (ug) > 0 and h'(ug) =
0, there exists ¢ > 0 such that for any u € [0; A], h(u) — h(ug) > c(u — ug)?. Let
ap = t7P with % <p< % We have

f[O;uOfat]U[umLat;A] ¢(u) exp [ B th(u)] du
< exp [ = 1(00)] gty sy 2L0) X0 [~ tela = 0]
= exp [ — th(uo)] Ooo(exp [ — ctey?]).

t—+

e From Taylor’s theorem, for any u € [ug — ay;up + ¢, there exists u* €
[ug — au; ug + ay) such that

h(u) = h(up) + h”(uo) (2u0) (u —ug)? + h (w?) éu*) (u —up)?

R (w) } and I, A f[uo_at;uo_’_at] ¢(U) exp [ B thu(;w) (u . U0)2} du

Let A” é Sup[“TO;A] G

We get
Juo—asuota () exp [ = th(uw)]du < exp [A"ta}] exp [ — th(uo)|1:
and
oo —avpsug o) @(w) €xD [ = th(u)]du > exp [ — A"ta}] exp [ — th(uo)| ;.

We have
I — fj;o P(up) exp | — tw(u _ uo)Q]du’

= f[uOfat;qurat] |p(u) — ¢(uo)|exp [ — t@(u — ug)?]du

+ ) ocsuo—arlUfuo+ari4oo| X(10) €XP [ = £27010) (4 — 40)2] du
< 0 <f+;0 exp [ — tw(u _ Uo)2]du)

T t—+4oo -

+ O <exp [— %tatﬂdu)

t—-+o0

Since we have fj;j exp [— tw(u — uo)ﬂdu =, /th,?%, we obtain

Iy = [#(uo) + tfjroo(l)} \ Ty

e Combining the previous results, we obtain

i oty exp [~ th(w)du = [o(uo) + o (V)] exp [~ th(uo)] /iy

= [

]

By assumption, we may write 7(AR < z) = exp ( — Cloe—% — C"1+ n(z
with n(z) = 00(1). Let A" £ exp(—C""), ug £ argming,.o(z + C’a:*%), H
up + Clug~ % and 0 £ 2H\ #+a.

From inequality (A.1), we have
mexp (—AAR) = exp(—A) + fol Aexp (— Az)7 (AR < z)da

< exp(—Mf) + foe A exp ( — Ax)W(AR < a:) dx

(1>

(C.1)
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Besides, we have

JE exp (= Az)7(AR < z)da
= A’ foe exp ( —\r — C":v_%)[l + n(z)]dx
— A fOQH exp ( — \Fta [g: + C”g:’%D [1 4 n()fﬁrqx”dx
For any 8 > 0, there exists Ao such that for any A > \g and any = < 0, we have
In(A\~ 7 z)| < 5. We obtain

& exp(—Az)w(AR<z)da

) 1| <8

A’ fOQH exp (f/\"_ﬂ [:CJrC’x_E])dx ﬁ
Using Lemma C.1, we get
(C.2)

foe exp ( — )\I)?T(AR < w)d:v N A’ fOQH equ( — \FFe [w + C”x_%})d:v
/\Hf\jroo Xp ( B )\"“_"“JH)

So inequality (C.1) implies
(C.3) Wexp(—)\AR) /\Hrioo)\exp(—)\%ﬂﬂ).

From equality (A.3), we have
T[ARexp (— MAR)| = exp(—\) — fol exp (— A\z)m (AR < z)dz
+A fol T exp ( — )\x)W(AR < x)dw.
Using similar computations to the one used to prove (C.2) and from the equality
foe zexp (— Az — C'a7%)[1 + ()]
= fO2H A"z exp (- A7t [z + C":v_%D [1+ n()\fﬁrqx)}dx,
we obtain

T[ARexp (— AAR)] N A7 ug exp (- )\HLWH)_

Consequently, we have proved m_ rAR N U\~ 7 By definition of ug, we
——+00

C/ K
et T_\rAR ~ =) ~ta,
g AR /\HJFOO(.‘@)\)

APPENDIX D. PROOF OF INEQUALITY (6.7)

r—1
Let 0 < a < ¢\™ *F¢ for some constant ¢ > 0 to be determined, and % < (<1l
g) =1

. A 1 . . . . A
We use once more the function h,(z) = z—ax* which is minimum at zo = (H

Let v 2 n{(12;) " }. We have

Texp [ — Mo (AR)] = 7T{ exp [ — Mo (AR)] ]lha(AR)SCAR}
—|—7T{ exp [ — )\ha(AR)}]lha(AR)xAR}
<exp|-— )\ha(xo)}ﬁ{AR < (%C)ﬁ} + mexp [ — A\(AR]
<o (M= 1)(2) 77 —C(F) T -0+ )
+m exp [— )\CAR}
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Using (C.3), we obtain
T_\R XD ()\aAR)
<A texp (HAF + (k= 1)(2)TT =/ (559)FT)[C+ o (1)

Ao
+¢exp (AFFH[1 - ¢ ])[1+ o (1)

r=1 K— L q
Let (=1-— ( ) T a\"Fi so that C’(%) =t = 2H\%+a and let ¢ > 0 such
that (k — 1)(£)* " < H. Then we have

T_\R €XP ()\aA

R)
[C‘ Hom(l)} + exp {/\T S HO(1 - g)} [1 + 0 (O

= O <exp {é’)x ~ta QAR

“})
A— 400 ’

log m_\r exp ()\aAR) = QL (A%ﬂa)\z—:ﬂlz)

hence

APPENDIX E. ANOTHER WAY OF GETTING THE RIGHT ORDER

This section proves that by using well-known results, we can obtain a lower
bound having the same spirit as Lemma 5.1 but without proper constants.
Applying Lemma 6.4 to the set of probability distributions

D £ (PN P eD}
where D' £ {Pom : 0" € S C {—1;+1}™} and S satisfies (%, %) > 2 for any
Y#£¥ eSS and |S| = |e% ]. From Lemma 6.3, such a set S exists. With any

estimator f : ZNV — F (X,)), we can associate an estimator T : ZN — D defined
as T(ZN) = P®N | where P € D’ minimizes M[S(X)]lf*(X);éf(Z{V)(X)]'

By Birgé’s lemma, we have sup IP®N[ () # P] > 0.36 A (1 - |D|ﬁ§|D|)'
PeD

Now, when T(va) =% P, we have R]p(f) — Rp(fp) > gwb'. Therefore, we get
. Kp

E.l sup {PEN Rp(f) — Rp(f5)} > —wb’ [0.36/\ (1 —~ 7)]

(E.1) PG%{ p(f) — Re(fp)} > 3 Dllog D]

For any P # Q € D’, we have

K(P,0) = N6 tog (155 ) e | < amut/tog (157,

where B2  sup &(x). If we assume that B < Cb < 1, we get
ZCGX*XO

K(P,Q) < CNmuwb?
for some constant C' > 0. Since we have |D| = e |, we obtain

Nmuwb? < C' Nwb?

Kp < C
[Dllog D] — logle8 |

for m large enough and some constant C' > 0. So we obtain the right order to
the extent that when the quantity Nwb? is small enough, the order of the bound
is given by the product mwb.
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APPENDIX F. PROOF OF THEOREM 5.2

e When L = 0: let xg,x1,...,zy_1 denote the V points shattered by the model.
Let us take

(m=V -1
XOZX—{xl,...,.CIZV_l}
Xj = {5}

Y

pu(X;) =w for any j € {1,...,m}
p({zo}) =1 —muw

[ b=1  (£=1)

where w is a free positive parameter which satisfies mw < 1 (since p is a probability
distribution). By noticing that

glyeeny

1- V(]P?{YLMJ,IP;@{V 1) = u®N(forany i € {1,...,N},X; ¢ X;) = (1 — w)™

and using inequality (6.26), we obtain

Sup{IP(X)NRIP(f)_RIP(fI;)} > % Sup {w<1_w)N}

PcP w< 7

This supremum is attained for w = ﬁ when N > (V —2) V1 and for w = -+

V—1
otherwise.
e When 0 < L < %: once more, g, x1,...,Ty_1 denote the V points shattered by
the model. This time, we take
(m=V -1
XO =X — {wl,...,mv,l}
X; = {z;}

8 WXy =w for any j € {1,...,m} |
p({zo}) =1 —muw
. bo when x € X
§(@) = { b otherwise

\

where w is a free positive parameter which satisfies mw < 1 (since p is a probability
distribution) and b and by belong to [0; 1]. Since we have

1 1
L= imw(l —b) + 5(1 —mw) (1 — bo)

and by € [0; 1], the parameters m,w and b should satisfy
mw(l —b) < 2L <1 — mwb.

Since this condition implies that mw < 1, we have the following lower bound

sup{IP®NR]p(f) —Rp(f*)} > sup Tmwb[1 — bV Nw.
PP w>0
0<b<1

mw(1—b)<2L<1—mwp

From this lower bound, one can recover the first assertion of Theorem 5.2 with a
constant slightly worsened (due to the upper bound (6.27)). We will now slightly
weaken this result in order to get a simple lower bound. Introduce z = b>wN. The



168

J.-Y. AUDIBERT

previous supremum can be written as

V-1
Sup %( bN)m [1 - \/E]
x>0
0<b<1

(V—1)x 1—b
EARY 5 <2L
o~ =120

el va

D[

> sup
x>0
0<b<1

(V—1)x 1—b
—bN ——=2L

2L 2 <1 2L

= Sup %(Vle)x [1— V]
x>0

1+\/1+(‘§L11\’)T
b<1-2L

= sup (VZJ\})QJ (1 +4/1+ (51.:]1\[):6) [1 — \/ﬂ

(1—2L)2N
O<$S V-1

> sup R V] (A)

(1-2L)2N

VIR when U2 5 )
\/ L(%W otherwise.

Note that the step (A) prevents us to have a good lower bound when L= 0<VN1 )
In this last case, the lower bound (A) can be replaced with Y12 (1 — y/z) which,

by taking x = %, leads to the desired bound ¥ 16—N

10.

11.

12.

13.
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Abstract

There exist many different generalization error boundsfassification.
Each of these bounds contains an improvement over the direcer-
tain situations. Our goal is to combine these different imvpments into
a single bound. In particular we combine the PAC-Bayes apgrintro-
duced by McAllester [1], which is interesting for averagiclgssifiers,
with the optimal union bound provided by the generic charéthnique
developed by Fernique and Talagrand [2]. This combinaBauite nat-
ural since the generic chaining is based on the notion of mz&jg mea-
sures, which can be considered as priors on the set of ckassdind such
priors also arise in the PAC-bayesian setting.

1 Introduction

Since the first results of Vapnik and Chervonenkis on uniftaws of large numbers for
classes of{0, 1}-valued functions, there has been a considerable amounoiif aming
at obtaining generalizations and refinements of these tsuhds work has been carried
out by different communities. On the one hand, people dgietpempirical processes the-
ory like Dudley and Talagrand (among others) obtained va@gresting results concerning
the behaviour of the suprema of empirical processes. Onttiexr band, people explor-
ing learning theory tried to obtain refinements for specifjodthms with an emphasis on
data-dependent bounds.

One crucial aspect of all the generalization error boundisasthey aim at controlling the
behaviour of the function that is returned by the algoritfis function is data-dependent
and thus unknown before seeing the data. As a consequemnce Wants to make state-
ments about its behaviour (e.g. the difference betweermtsrécal error and true error),
one has to be able foredictwhich function is likely to be chosen by the algorithm. But

*Secondary affiliation: CREST, Laboratoire de Finance etifamsce, Malakoff, France



since this cannot be done exactly, there is a need to provideagtees that hold simulta-
neously for several candidate functions. This is known asutfion bound. The way to
perform this union bound optimally is now well mastered ia #mpirical processes com-
munity.

In the learning theory setting, one is interested in bouhds &re as algorithm and data
dependent as possible. This particular focus has made mvatien inequalities (see e.g.
[3]) popular as they allow to obtain data-dependent resalen effortless way. Another
aspect that is of interest for learning is the case where ltssifiers are randomized or
averaged. McAllester [1, 4] has proposed a new type of bouaitakes the randomization
into account in a clever way.

Our goal is to combine several of these improvements, rqgpgether the power of
the majorizing measures as an optimal union bound techrigdehe power of the PAC-
Bayesian bounds that handle randomized predictions efflgi@nd obtain a generalization
of both that is suited for learning applications.

The paper is structured as follows. Next section introdulbesnotation and reviews the
previous improved bounds that have been proposed. Thenweeogr main result and
discuss its applications, showing in particular how to ec@reviously known results.
Finally we give the proof of the presented results.

2 Previousresults

We first introduce the notation and then give an overview afteng generalization error
bounds. We consider an input spate an output spacg’ and a probability distribution
P on the product spacg 2 X x ). Let Z £ (X,Y) denote a pair of random variables
distributed according t& and for a given integet, let 74, ..., Z,, andZy, ..., Z!, be two
independent samples afindependent copies of. We denote byP,, P! and P, the
empirical measures associated respectively to the firsts¢icond and the union of both
samples.

To each functiory : X — ) we associate the corresponding loss functfon 2 —

R defined byf(z) = L[g(z),y] whereL is a loss function. In classification, the loss
function is L = I+, Wherel denotes the indicator functionF will denote a set of
such functions. For such functions, we denote their expiectanderP by P f and their
empirical expectation by, f (i.e. P,f = n~'>"" | f(Z;)). E,, E, andE,,, denote the
expectation with respect to the first, second and union df tratning samples.

We consider the pseudo-distand@sfi, f2) = P(f1 — f»)? and similarlyd,,, d’, andda,,.
We define the covering numbé¥(F, ¢, d) as the minimum number of balls of radias
needed to coveF in the pseudo-distancé

We denote by and~w two probability measures on the spa€eso thatp P f will actually
mean the expectation d?f when f is sampled according to the probability measpre
For two such measurek;(p, 7) will denote their Kullback-Leibler divergenc&((p, 7) =
plog g—fr whenp is absolutely continuous with respectt@nd K (p, 7) = +oo otherwise).
Also, § denotes some positive real number wiiilés some positive constant (whose value
may differ from line to line) and\’ (F) is the set of probability measures oh We
assume that the functions jf have range ifja, b].

Generalization error bounds give an upper bound on therdiffee between the true and
empirical error of functions in a given class, which holdghwiigh probability with respect
to the sampling of the training set.

Single function. By Hoeffding’s inequality one easily gets that for each fixed F, with

probability at least — 3,
Pf—Pnfgcw/w. 1)

Finite union bound. It is easy to convert the above statement into one which il val



simultaneously for a finite set of functiot/s The simplest form of the union bound gives
that with probability at least — (3,

v e 5 Pf P < oy eZl e /B @
Symmetrization. When F is infinite, the trick is to introduce the second sample
Zi,...,Z! and to consider the set of vectors formed by the values of &awuttion in

F on the double sample. When the functions have valug$.im}, this is a finite set and
the above union bound applies. This idea was first used byikapid Chervonenkis [5] to
obtain that with probability at least— g,

IOg EQnN("Ta 1/”7 d2n) + 10g 1/ﬁ
" .

Weighted union bound and localization. The finite union bound can be directly extended
to the countable case by introducing a probability distidour over F which weights each
function and gives that with probability at ledst- 3,

log1/m(f) +1log1/p
n

erf,Pf—Pnf<c\/ 4)

It is interesting to notice that now the bound depends on theshfunctionf being con-
sidered and not just on the sgt This can thus be calledlacalizedbound.

Variance. Since the deviations betwednf and P, f for a given functionf actually de-
pend on its variance (which is upper boundedmy? /n or Pf/n when the functions are
in [0,1]), one can refine (1) into

pf—RJ<170/Pﬂff”5+kﬁyﬂ>, 5)

and combine this improvement with the above union bounds vas done by Vapnik and
Chervonenkis [5] (for functions ifi0, 1}).

Averaging. Consider a probability distributiomdefined on a countablg, take the expec-
tation of (4) with respect tp and use Jensen’s inequality. This gives with probability at
leastl — 3,

K(p,m)+ H(p) +1logl/p3
Vo, plPf — Pof) < 0y KT L Hle) Tlog 1[5
whereH (p) is the Shannon entropy. The |.h.s. is the difference betwreerand empirical
error of a randomized classifier which ugeas weights for choosing the decision function
(independently of the data). The PAC-Bayes bound [1] is aeefiversion of the above
bound since it has the form (for possibly uncountab)e

+logn+logl/B
" .

Vo, p(Pf — Puf) < cv Klp.m) (6)

To some extent, one can consider that the PAC-Bayes boundfinad union bound where
the gain happens whenis not concentrated on a single function (or more precigdigs
entropy larger thatog n).

Rademacher averages. The quantityl, E, sup ;¢ » % > 0:f(Z;), where thes; are inde-
pendent random signs-(, —1 with probability 1/2), called the Rademacher average for
F.is, up to a constant equall®), sup ;c » P f — P, f which means that it best captures the
complexity of 7. One has with probability — g,

Vfé./f, Pf_Pnf<C<lEnEasupZO—if(Zi)+\l M) . (7)
n feF n



Chaining. Another direction in which the union bound can be refined icbgsidering
finite covers of the set of function at different scales. T$isalled thechainingtechnique,
pioneered by Dudley (see e.g. [6]) since one constructs iaa dfidunctions that approxi-
mate a given function more and more closely. The resultdwevbhie Koltchinskii-Pollard
entropy integral as, for example in [7], with probability- 3,

1 0 log 1
Vf e F, Pf—Pnf<C<%En/0 \/logN(]:,e,dn)de—k\/%/ﬁ). @)

Generic chaining. It has been noticed by Fernique and Talagrand that it is plestd
capture the complexity in a better way than using minimakeswy considering majorizing
measures (essentially optimal for Gaussian processets).k® and(A;),>1 be partitions
of F of diameterr—7 w.r.t. the distancel,, such that4,;, refinesA;. Using (7) and
techniques from [2] we obtain that with probability- 3, Vf e F

1 : ‘ logl/p
Pf-P,f<C (%Enﬂeﬁlﬂf);g[}z:r J logl/wAJ(f)-i-\/in ) .

If one takes partitions induced by minimal covers/ft radiir—7, one recovers (8) up to
a constant.

Concentration. Using concentration inequalities as in [3] for example, oae get rid of
the expectation appearing in the r.h.s. of (3), (8), (7) 9raf®d thus obtain a bound that
can be computed from the data.

Refining the bound (7) is possible as one can localize it (sge[8]) by computing the
Rademacher average only on a small ball around the funcfiamerest. So this comes
close to combining all improvements. However it has not bammbined with the PAC-
Bayes improvement. Our goal is to try and combine all the alimprovements.

3 Mainresults

Let F be as defined in section 2 with= 0,b = 1 andr € M (F). Instead of using
partitions as in (9) we use approximating sets (which alslige partitions but are easier
to handle here). Consider a sequelgeof embedded finite subsets & { fo} 25 cC
"CSj_l CSjC"-.
Letp; : F — S; be maps (which can be thought of as projections) satisfyitig) = f
for f € S;andp;_1 op; = pj_1.
The quantitiesr, S; andp; are allowed to depend o {" in an exchangeable way (i.e.
exchangingX; and X/ does not affect their value). For a probability distribatie on
F, define itsj-th projection ag; = Zfesj p{f : pj(f') = f}ds, whered; denotes
the Dirac measure ofi. To shorten notations, we denote the average distance &etwe
two successive “projections” byd? £ pd3,[p;(f),p;—1(f)]. Finally, let A, ;(f) =
P[f = pi(H] = Palf = pi(H))-

Theorem 1 If the following condition holds

lim bup A, i (f)=0, a.s. (20)
j—+oo feF

then for any0 < 8 < 1/2, with probability at leastl — 3, for any distributionp, we have
pd K(pj7 Tr]

pP,f — P fo < pPuf — Pfo+5z
j=1

f ng (pd3),



wherey; (z) = 4\/33 log (4j26—1 log(eQ/x)).

Remark 1 Assumptior(10)is not very restrictive. For instance, it is satisfied whgris
finite, or whenim;_, 1 o supsc # [ f—p;(f)| = 0, almost surely or also when the empirical

process[f — Pf— Pnf} is uniformly continuous (which happens for classes withdini
V C dimension in particular) andim;—, 1 o sup ez don(f,p;(f)) = 0.

Remark 2 Let G be a model (i.e. a set of prediction functions). lgebe a reference
function (not necessarily i§). Consider the class of functiofs = {z — Llg(x),y] :

gegu {g}}. Let fo = L[g(z),y]. The previous theorem compares the risk on the second
sample of any (randomized) estimator with the risk on thesgésample of the reference
functiong.

Now let us give a version of the previous theorem in which theosad sample does not
appear.

Theorem 2 If the following condition holds

Jlim sup E,[A,;(f)] =0, a.s. (11)
j—Foo feF

then for any0 < 8 < 1/2, with probability at leastl — 3, for any distributionp, we have

2 [ pd2IE, (K (o), 7y
pr_PfOSanf_Pnf0+5Z [ j] [ (J J

j=1

)] 1 = / 2
+ % Z:Xj (En[de])-

4 Discussion

We now discuss in which sense the result presented aboveimesmeveral previous im-
provements in a single bound.

Notice that our bound is localized in the sense that it dependhe function of interest (or
rather on the averaging distributigh and does not involve a supremum over the class.
Also, the union bound is performed in an optimal way sinceni plugs in a distributiop
concentrated on a single function, takes a supremumveithe r.h.s., and upper bounds
the squared distance by the diameter of the partition, oo@vezs a result similar to (9)
up to logarithmic factors but which is localized. Also, whigvo successive projections
are identical, they do not enter in the bound (which comesfitee fact that the variance
weights the complexity terms). Moreover Theorem 1 alsoudet the PAC-Bayesian im-
provement for averaging classifiers since if one considessetS; = F one recovers
a result similar to McAllester’s (6) which in addition coirta the variance improvement
such asin [9].

Finally due to the power of the generic chaining, it is polesib upper bound our result by
Rademacher averages, up to logarithmic factors (usingethéts of [10] and [11]).

As a remark, the choice of the sequence of sgtsan generally be done by taking succes-
sive covers of the hypothesis space with geometricallyabesing radii.

However, the obtained bound is not completely empiricatesiihinvolves the expectation
with respect to an extra sample. In the transduction settinig is not an issue, it is even
an advantage as one can use the unlabeled data in the coimpofahe bound. However,
in the induction setting, this is a drawback. Future worl feitus on using concentration
inequalities to give a fully empirical bound.



5 Proofs

Proof of Theorem 1. The proof is inspired by previous works on PAC-bayesian logun
[12, 13] and on the generic chaining [2]. We first prove théofeing lemma.

Lemmal Forany3 > 0, A > 0, j € N* and any exchangeable functian: X" —
ML (F), with probability at least — (3, for any probability distributiorp € M2 (F), we
have

o Pilpi(F) = pi1 (D] = Palps (1) = i1 ()]}
< 23 [p; (), pjoa (f)] + KlomHesB ).

Proof LetA > 0and letr : X** — M (F) be an exchangeable function. Introduce the
quantityA; £ p;(f)(Zn+i) = pj—1(F)(Znti) +pj-1(F)(Z:) — p;(£)(Z:) and

2
W2 AR i) = 211 (D] = AP lp () — i1 ()] — Zodanps (7). 2 ()] (12)

By using the exchangeability af, for anyo € {—1;+1}", we have

E,, el = Egnﬂ'e_¥d2"[pj(f)’pj_l(f)]+% it A
— EQHT‘-@—#dzn[:"j(f)mj—l(f)]-ﬁ-% fe1 0
Now take the expectation wet, whereo is an-dimensional vector of Rademacher vari-
ables. We obtain

2
]EQn,n.eh — EQTLW@*%dzn[pj(f):pjfl(f)] H?:l Cozsh (%Al)
< Eypme— 2 donlpi(H)pi-1 (D)X i 57 A7

§2 .
where at the last step we use thath s < ez . Since

2 2
A? <2[pi(£)(Znsi) = pj—1(F)(Znss)]” +2[pj(F)(Zs) — pj—1(F)(Z)]",
we obtain that for any > 0, Eo,, e < 1. Therefore, for anyd > 0, we have
EQTL]IlOg ren+iog 550 = Bonlrentiosssy < E2n7reh+logﬁ <p, (13)

On the even{ log me"t1°8# < 0}, by the Legendre’s transform, for any probability distri-
butionp € M (F), we have

ph+log B < logme" ™87 + K (p, 7) < K(p, ), (14)
which proves the lemma. ]
Now let us apply this result to the projected measuteandp;. Since, by definitiong, S;

andp; are exchangeable, is also exchangeable. Singg(f) = f forany f € S;, with
probability at least — /3, uniformly in p, we have

K’
pi{ PLLT = 2 (D] = Palps(5) = 21 (D]} < 2 s, [fps 1 (D] + 5L

whereK; £ K(pj,m;) + log(8~1). By definition of p;, it implies that

2 K

P{Pé,[pj(f)—pj—l(f)]—Pn[pj(f)—pj—l(f)]} < ;Pdgn[pj(f),pj—l(f)HTj- (15)



To shorten notations, definel> = pd3,[p;(f),p;—1(f)] and pA; = p{P}[p;(f) —

pi—1()] = Palp;i(f) — pj—1(f)]}. The parameteA minimizing the RHS of the previ-
ous equation depends @n Therefore, we need to get a version of this inequality which
holds uniformly inA.

First let us note that whepdf = 0, we havepA; = 0. When;;d? > 0, letm 1%2 and

M\ = me*/? and leth be a function fronR* to (0, 1] such thad ", -, b(\x) < 1. From the

previous lemma and a union bound, we obtain that for@ny 0 and any integey with

probability at least — 3, for anyk € N* and any distributiom, we have

K(pj,m;) +log (b(Ar)] ' 671)
Ak

2k
pA; < 7/’6@ +

o -1 . . .
Let us take the functioh such that{)\ — %} is continuous and decreasing.

* 5,75 )+log DI
Then there exists a parameter > 0 such that22- pd? = Klpyms)+1 ggbu V57 For

any 3 < 1/2, we have(\*)*pd; > 1°§2n, hence)\* > m. So there exists an integer

k € N* such that\,e=1/2 < \* < \;. Then we have

* K(pj,m;)+log([b(\)] BT
pAj < BoVepd] + — s(l )

= (VA 2[R o) + o (b0 1671 |

To have an explicit bound, it remains to find an upperbounéb©f*)]=!. Whenb is

decreasing, this comes down to upperboudihglLet us choosé(\) = m when

A > mandb(\) = 1/4 otherwise. Sincé(\r) = grpz, we have)s, -, b(Ax) < 1.

(16)

Tedious computations give* < 7m ‘/{? which combined with (16), yield

pd;K (pj, ;) pd3 e?
< py L 375, [ ~1log | — ).
pA; <5 - +3.75 - log (Qﬂ log {pdf])

By simply using a union bound with weights taken proportidoa /;2, we have that the
previous inequation holds uniformly jnc N* provided tha3—! is replaced with’g—zj%*1
(since}" - 1/5% = 7%/6 ~ 1.64). Notice that

J
p[Prf = Prfo+ Pufo—Puf] = pAug(f) + D i [(Pr = Pu)f = (P = Pa)pj—1(f)]
j=1

because;_1 = pj_1 o p;. So, with probability at least — 3, for any distributionp, we
have

p[PLf — Pl fo+ Pofo— Puf] <suprAn s +557
J I’d? 21 i
+3.75 ijl —ZL log (3.3j B~ 1log [pdf])

Making J — +o0, we obtain theorem 1. O
Proof of Theorem 2: It suffices to modify slightly the proof of theorem 1. Intraghi/ £
sup, { ph+1log 6 — K (p, )}, whereh is still defined as in equation (12). Inequations (14)

implies thatE,,,e! < 3. By Jensen’s inequality, we ggt,eE-U < 3, hencelEn{IE’nU >

pd3 K (pj,m;)

n

0} < 3. So with probability at least — 3, we havesup,, E;, {ph + log f — K (p,7)} <
E' U < 0. O



6 Conclusion

We have obtained a generalization error bound for randaihilessifiers which combines
several previous improvements. It contains an optimal miiound, both in the sense of
optimally taking into account the metric structure of theafdunctions (via the majorizing
measure approach) and in the sense of taking into accouatéraging distribution. We
believe that this is a very natural way of combining these aspects as the result relies
on the comparison of a majorizing measure which can be thtafgis a prior probability
distribution and a randomization distribution which carcbasidered as a posterior distri-
bution.

Future work will focus on giving a totally empirical bounah (ihe induction setting) and
investigating possible constructions for the approxinmgetss;.
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