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Abstract. We introduce a non-linear shape prior for the deformable model frame-
work that we learn from a set of shape samples using recent manifold learn-
ing techniques. We model a category of shapes as a finite dimensional manifold
which we approximate using Diffusion maps. Our method computes a Delaunay
triangulation of the reduced space, considered as Euclidean, and uses the result-
ing space partition to identify the closest neighbors of any given shape based
on its Nyström extension. We derive a non-linear shape prior term designed to
attract a shape towards the shape prior manifold at given constant embedding.
Results on shapes of ventricle nuclei demonstrate the potential of our method for
segmentation tasks.

Fig. 1. Aligned shape samples of the right ventricle nucleus from different subjects correspond-
ing, from left to right, to 2 young, 2 mid-age, and 2 old subjects; the last shape sample originates
from a subject with Alzheimer’s Disease. While shapes appear quite similar, they usually cannot
be considered as small deformations around a mean shape.

1 Introduction
1.1 Motivation
Accurate segmentation of anatomical structures from medical images is a fundamen-
tal but difficult task that often dictates the outcome of the entire clinical or research
analysis (e.g. visualization, neuro-surgical planning, surface-based processing of func-
tional data, inter-subject registration, among others). The challenge is that images are
usually corrupted by several artifacts, such as image noise, missing or occluded parts,
image intensity inhomogeneity or non-uniformity, and partial volume averaging effect.
When dealing with complex images, some prior shape knowledge may be necessary to
disambiguate the segmentation process.

In medical imaging, excluding uncommon pathological cases, the overall shape of
most macroscopic anatomical structures is prescribed by medical knowledge: it is usu-
ally known a priori, does not vary much between individuals, and its observed geometric
variability seems to be governed by a small set of unknown parameters. In this paper,
we assume that the set of shapes of a specific anatomical structure (e.g. left or right
ventricle, hippocampus nucleus) evolves in a low-dimensional, but not necessarily lin-
ear, space that we term the shape prior manifold. This is clearly exemplified in Fig. 1
which displays some shapes corresponding to the right ventricle nucleus for different
subjects at different time points in their life. Even shapes extracted from subjects with
Alzheimer’s Disease, a relatively slowly evolving pathology, exhibits some shape simi-
larity with normal controls.



Knowledge of the underlying structure encoding the geometric variability of anatomy
provides shape constraints for image segmentation. We propose to discover the structure
of the shape prior manifold using recent manifold learning techniques, and to exploit
it to carefully design a non-linear shape prior integrated into the deformable model
framework for the purpose of image segmentation.

1.2 Previous Work

The use of shape prior information in the deformable model framework has long been
limited to a smoothness assumption or to simple parametric families of shapes. But a
recent and important trend in this domain is the development of deformable models
integrating more elaborate shape information.

An important work in this direction is the active shape model of Cootes et al. [1]. A
principal component analysis (PCA) on the position of some landmark points placed in
a coherent way on all the training contours is used to reduce the number of degrees of
freedom to the principal modes of variation. Although successfully applied to various
types of shapes (hands, faces, organs), the reliance on a parameterized representation
and the manual positioning of the landmarks, particularly tedious in 3D images, seri-
ously limits it applicability.

Leventon, Grimson and Faugeras [2] circumvent these limitations by computing
parameterization-independent shape statistics within the level set representation [3]. Ba-
sically, they perform a PCA on the signed distance functions of the training shapes, and
the resulting statistical model is integrated into a geodesic active contour framework.
The evolution equation contains a term which attracts the model towards an optimal
prior shape as a combination of the mean shape and of the principal modes of variation.
Several improvements to this approach have been proposed [4, 5], and in particular an
elegant integration of the statistical shape model into a unique MAP Bayesian opti-
mization. Let us also mention another neat Bayesian prior shape formulation, based on
a B-spline representation, proposed by Cremers, Kohlberger and Schnörr in [6].

Performing PCA on distance functions might be problematic since they do not de-
fine a vector space. To cope with this, Charpiat, Faugeras and Keriven [7] proposed
shape statistics based on differentiable approximations of the Hausdorff distance. How-
ever, their work is limited to a linearized shape space with small deformation modes
around a mean shape. Such an approach is relevant only when the learning set is
composed of very similar shapes. Finally, let’s also mention the elegant M-reps ap-
proach [8], that is restricted to a specific type of deformable models.

1.3 Novelty of our Approach

In this paper, we depart from the small deformation assumption and introduce a new
deformable model framework that integrates more general non-linear shape priors. We
model a category of shapes as a smooth finite-dimensional sub-manifold of the infinite-
dimensional shape space, termed the shape prior manifold. This manifold which cannot
be represented explicitly is approximated from a collection of shape samples using a
recent manifold learning technique called Diffusion maps [9, 10]. Manifold learning,
which is already an established tool in object recognition and image classification, has
been recently applied to shape analysis [11]. Yet, to our knowledge, such techniques
have not been used in the context of image segmentation with shape priors.



Diffusion maps generate a mapping, called an embedding, from the original shape
space into a low-dimensional space, which can advantageously be considered as Eu-
clidean [9]. We design a shape prior term based on the Nyström extension [12] which
provides a sound and efficient framework for extending embedding coordinates to the
full infinite dimensional shape space. Motivated by its Euclidean nature, a Delaunay
partitioning of the reduced space is used to identify the closest neighbors (in the train-
ing set) of any shape in the original infinite dimensional shape space. The neighboring
shapes are then integrated into a variational functional designed to attract any given
shape towards the shape prior manifold.

The remainder of this paper is organized as follows. Section 2 introduces the neces-
sary background in manifold learning: it is dedicated to learning the shape prior man-
ifold from a finite set of shape samples using Diffusion maps. Section 3 presents our
deformable model framework using non-linear shape priors. Section 4 reports some
preliminary numerical experiments which yield promising results with real shapes.

2 Learning the Shape Prior Manifold
In the sequel, we define a shape as a simple compact (i.e. closed and non-intersecting)
surface, and we denote by S the (infinite-dimensional) space of such shapes1. We make
the assumption that a category of shapes, i.e. the set of shapes that can be identified
with a common anatomical structure, e.g. left or right ventricle, hippocampus nucleus,
can be modeled as a finite-dimensional manifold, termed the shape prior manifold.

Dimensionality reduction, i.e. the process of recovering the underlying low dimen-
sional structure of a manifold M embedded into a higher-dimensional space, has en-
joyed renewed interest over the past years. Among the most recent and popular tech-
niques are the Locally Linear Embedding (LLE) [13], Laplacian eigenmaps [14], Dif-
fusion maps [9, 15].

In this work, we learn the shape prior manifold using Diffusion maps. For the sake
of clarity, we present the mathematical formulation for data living in Rn. An extension
to infinite-dimensional shape manifolds is straightforward (We refer the reader to [9,
10, 15] for more detail).

2.1 Manifold Learning and Diffusion Maps
Let M be a manifold of dimension m lying in Rn (m << n). Diffusion maps rely on
discrete approximations of the Laplace-Beltrami operator ∆M defined on the manifold
M to generate a mapping (called an embedding) f : M −→ Rm such that if two
points x and z are close in M, so are f(x) and f(z). The optimal mapping is given by
the eigen-functions of the Laplace-Beltrami operator corresponding to the m smallest
non-zero eigenvalues, where m is the target dimension. Note that the latter dimension
can either be known a priori or be inferred from the profile of the eigen spectrum [9].
In practice, a discrete counterpart to this continuous formulation must be used since
we only have access to a discrete and finite set, denoted Γ , of example shapes in this
category.
2.1.a Distance in the Shape Space
The approximation of the Laplace-Beltrami operator requires the choice of a distance

1 Note that, although this paper only deals with 2-dimensional surfaces embedded in the 3-
dimensional Euclidean space, all ideas and results seamlessly extend to higher dimensions.



between shapes. Many different definitions of the distance between two shapes have
been proposed in the computer vision literature but there is no agreement on the correct
way of measuring shape similarity. The definition used in the experiments presented in
Sect. 4 are based on the representation of a surface S in the Euclidean embedding space
R3 by its signed distance function. In this context, we define the distance between two
shapes to be the Sobolev W 1,2-norm of the difference between their signed distance
functions [7]:

dW 1,2(S1, S2)2 = ||D̄S1 − D̄S2 ||2L2(Ω,R) + ||∇D̄S1 −∇D̄S2 ||2L2(Ω,Rn) ,

where D̄Si denotes the signed distance function of shape Si (i = 1, 2), and ∇D̄Si its
gradient. Note that to define a distance between shapes that is invariant to rigid dis-
placements (rotations and translations), we first align the shapes using their principal
moments before computing distances. Note also that the proposed method is obviously
not limited to a specific choice of distance [7].
2.1.b Approximation to the Laplace-Beltrami Operator
Once a distance has been chosen, classical manifold learning techniques can be ap-
plied by building an adjacency graph of the learning set of shape examples. Let Γ =
{x1 · · ·xp ∈ Rn} be p sample points of the m dimensional manifold M sampled un-
der an unknown density qM. An adjacency matrix (Wi,j)i,j∈1,...,p is then constructed,
the coefficients of which measure the strength of the different edges in the adjacency
graph. Typically, Wi,j , also denoted w(xi, xj), is a decreasing function of the distance
between xi and xj . In this work, w(xi, xj) = exp (−d2(xi, xj)/2σ2), with σ estimated
as the median of all the distances between all shapes.

Classical manifold learning methods provide an embedding that combines the in-
formation of both the density qM and the geometry [10, 15]. In order to construct an
approximation of the Laplace-Beltrami operator that is independent of the unknown
density qM, we renormalize the adjacency matrix (Wi,j). Briefly, we form the new ad-

jacency matrix
(
W̃i,j

)
by w̃(xi, xj) = w(xi,xj)

q(xi)q(xj)
, with q(x) =

∑
y∈Γ w(x, y).We then

define the anisotropic transition kernel (Pi,j)i,j∈1,...,p such that p(xi, xj) = w̃(xi,xj)
q̃(xi)q̃(xj)

with q̃(x) =
∑

y∈Γ w̃(x, y). The kernel (Pi,j) is a density-independent approximation
of the operator 1−∆M [9]. From the definition of the adjacency matrix, we find that:

p(xi, xj) =
w(xi, xj)∑

b Kjbw(xi, xb)
with Kjb =

q(xj)
q(xb)

=

∑
y∈Γ w(xj , y)∑
y∈Γ w(xb, y)

. (1)

2.1.c Generating the Embedding using Diffusion Maps
Let’s denote {λi}i,j∈1,...,p (with |λ0| ≥ |λ1| ≥ ...) and Ψi the associated eigenvalues
and eigenvectors of (Pi,j). Coifman and coworkers have shown in [9] that the eigen-
vectors of (Pi,j) converge to those of the Laplace-Beltrami operator on M and that
a mapping Φt that embeds the data into the Euclidean space Rm isometrically with
respect to a Diffusion distance in the original shape space S can be constructed:

Φt : Γ ⊂M→ Rm, xi 7→
(
λt

1Ψ1(xi), ..., λt
mΨm(xi)

)
. (2)

Diffusion distance reflects the intrinsic geometry of the data set defined via the adja-
cency graph in a diffusion process. It was shown to be more robust to outliers than
geodesic distances [9], thereby motivating its use to estimate the embedding (Fig. 2-c).
In this formulation, t is a time parameter controlling the diffusivity of the adjacency
graph and can be chosen arbitrarily. We used t = 1 for our experiments (Sect. 4).



2.2 Extending the Embedding based on Nyström Extension
The mapping Φt is only defined on the training samples. The Nyström extension method
is a popular technique employed for the extension of empirical functions from the train-
ing set Γ to new samples. Noticing that every training sample verifies:

∀x ∈ Γ ∀k ∈ 1, . . . , p
∑
y∈Γ

p(x, y)Ψk(y) = λkΨk(x),

the embedding of new data points located outside the set Γ can similarly be computed
by extension (Lafon and coworkers define another elegant extension in [15]):

Φ̃t : Rn → Rm, x 7→

λt−1
1

∑
y∈Γ

p(x, y)Ψ1(y), ..., λt−1
m

∑
y∈Γ

p(x, y)Ψm(y)

 (3)

3 Image Segmentation using the Shape Prior Manifold
In this section, we propose to use the embedding to carefully design a shape prior term
integrated into a deformable model framework for the purpose of image segmentation.

3.1 Image Segmentation as a Variational Problem

Without loss of generality, we cast the segmentation problem as a variational one, where
the objective is to find a surface S minimizing a global energy functional Eac. Depend-
ing on the segmentation task and the available information, the energy functional Eac

can take on different, more or less complex, forms, but, generally , Eac can be written
as a combination of image terms, designed to drive the surface towards the searched
contour, and regularization terms, enforcing smoothness constraints. Directly finding
the global minimum of Eac is usually impossible and one often has to resort to a sub-
optimal gradient-descent strategy starting from a guess S0. That is we assume that the
image segmentation problem amounts to solving the following evolution problem: find
the active contour S : τ ∈ R+ 7→ S(τ) ∈ S such that S(0) = S0,

dS
dτ = −∇Eac.

3.2 Designing and Integrating the Shape Prior Term
We define a shape prior functional Esp designed to attract any given shape S towards the
shape prior manifold. Unfortunately, Diffusion maps do not give access to an explicit
projection operator onto the reduced manifold. To alleviate this problem, we exploit the
Euclidean nature of the reduced space by computing a Delaunay triangulation in Rm of
the training data. The space partition is then used to identify the m+1 closest neighbors
(in the training set Γ ) of the shape S in the S by computing its embedding coordinates
Φ̃(S) and finding the corresponding Delaunay triangle formed by m+1-vertices in Rm.
By doing so, we identify the m + 1 closest neighbors N = (S0, ..., Sm) of S in S for
the Diffusion metric [9]. This neighborhood N will then be used to attract S towards
the manifold.

To this end, we compute the barycentric coordinates Θ = (θ0, · · · , θm) of the shape
S in the reduced space Rm and define the shape prior functional in S:

Esp
N ,Θ(S) =

m∑
i=0

θid
2 (Si, S) with Φ̃(S) =

∑
θiΦ̃(Si), θi ≥ 0,

∑
θi = 1

designed to attract the shape S towards a weighted mean shape that interpolates between
the m + 1 samples Si ∈ N .



Minimization of the energy Esp
N ,Θ(S) by gradient descent might change the embed-

ding coordinates Φ̃t(S) of the evolving shape S. Therefore, denoting by Sx = Φ̃−1
t (x)

the x-level set in S of the embedding Φ̃t (note that Sx has codimension m), we define
the shape prior term−→v sp as the projection of the velocity field−→v = −∇Esp

N ,Θ onto the
tangent space TΦ̃t(S) of SΦ̃t(S) at S. Using Eq. 1 and Eq. 3, TΦ̃t(S) can be expressed by
m simple orthogonality conditions in the tangent space TS(S) of S at S:

TΦ̃t(S) =

−→v ∈ TS(S) s.t. ∀k = 1, . . . ,m
∑

Sj∈Γ

〈∇Sp(S, Sj)|−→v 〉L2Ψk(Sj) = 0

 ,

where 〈.|.〉L2 corresponds to the L2-dot product in the tangent shape space TS(S). Pro-
jection of the velocity field −∇Esp

N ,Θ onto TΦ̃t(S) can then be achieved using the or-
thogonalization Gram-Schmidt process.

Finally, the general deformable model framework corresponds to solving the fol-
lowing evolution problem:

S(0) = S0,
dS

dτ
= −∇Eac + α−→v sp,

where α is a weighting parameter. Note that at each step of the evolution, we have to
align the shape with the training samples using the principal moments before computing
its embedding and dering the shape prior term −→v sp.

4 Results and Discussion
We illustrate the potential benefits of our approach on a simple segmentation task, the
segmentation of the ventricle nucleus from Magnetic Resonance Image (MRI). Train-
ing shape samples were obtained from 39 manually segmented images of 10 young, 10
mid-age, and 9 old normal controls and of 11 demented adults (Fig. 1). 39 data points
form an insufficiently small data set and more shape samples are desirable to recover a
satisfactory embedding. Note also that the artificial nature of the proposed segmentation
task is only dedicated to reveal the influence of the shape prior term.
4.1 Estimating the dimension of the shape prior manifold: the dimension m is

usually estimated from the profile of the eigenspectrum (Fig. 2-a). Yet, there is not al-
ways an obvious choice (especially when the number of data points is insufficient). In

Fig. 2. a) Eigenspectrum profile and degree of separability: on this restricted data set with 39
shapes only, m = 2 appears to be the optimal dimension. b) The two-dimensional embedding
partitioned by a Delaunay triangulation. c) A manually corrupted shape and its two closest neigh-
bors in S and in the reduced space: visually, the ones in the reduced space appear more similar.



our case, m = 2, m = 3, or m = 4 appear to be a realistic guess. However, in the case
of labeled data, one can disambiguate this choice by also requiring the embedding Φ̃t to
separate/cluster “well” the different groups. We simply define the degree of separability
di,j between two groups i and j by the distance di,j = ‖µi−µj‖√

σ2
i +σ2

j

, where µi and σ2
i are

the mean and variance in Rm of data points corresponding to group #i. The degree of
separability of the mapping Φ̃t is then

∑
i,j di,j . Note that this method can also be used

to determine an optimal value for the parameter t. Finally, on this unsatisfactory small
data set, we find that the optimal mapping requires m = 2 (Fig. 2-a,b).
4.2 Closest neighbors: Diffusion maps embed advantageously the data set in the
Euclidean space Rm isometrically with respect to a Diffusion distance in S. This dis-
tance was shown to be more robust to outliers than geodesic distances [9]. To illustrate
this point, we show in Fig. 2-c a manually corrupted shape with its two closest neigh-
bors in S and Rm. At least visually, the identified shapes in Rm appear more similar to
the corrupted shape than the ones in S.
4.3 Ventricle nucleus segmentation from MRI with occlusion: we consider a sim-
ple segmentation task which consists of segmenting the ventricle nucleus from an MRI
that was corrupted by white noise and degraded with an artificial occlusion (clearly
visible in Fig. 3-a). Motivated by our choice of representing a shape S by its signed dis-
tance function D̄S , our surface deformation is implemented in the level set framework.
The level set evolution is guided by a simple intensity-based velocity term, a curvature
term, and the non-linear shape prior term:

∂τ D̄S(x, τ) = [β(I(x)− T (x))− κ] |∇xD̄S(x, τ)| − α−→v sp · ∇xD̄S(x, τ)

where I(x) and κ represents the image intensity and mean curvature respectively at
location x, T is a threshold computed locally from image intensities, β and α two
weighting coefficients equal to β = 0.1 and α = 0.1. Figure 3 displays our segmen-
tation results. Despite the artificial occlusion, the shape prior term was able to recover
the correct shape by attracting the shape onto the shape prior manifold. Yet, the final
surface is geometrically-accurate because the active contour can evolve freely inside
the manifold M subject to the image term. The red-cross in Fig. 2 locates the final seg-
mented shape in the embedding. Finally, note that, in practice, the shape prior term is
not used during the first steps of the evolution (a robust alignment being impossible).

Fig. 3. a) Coronal, horizontal, and sagital slices of the MRI volume with the final segmentations
without (top) and with (bottom) the shape prior. b) Some snapshots of the shape evolution - the
shape prior term was not used during the first steps. c) The closest neighbors of the final surface.



5 Conclusion and Future Work
We have proposed a new deformable model framework for image segmentation that
incorporates non-linear shape priors by learning a shape prior manifold using recent
manifold learning techniques. Our approach exploits carefully the properties of Diffu-
sion maps to derive an innovative shape prior term designed to attract an active contour
towards the shape manifold. While preliminary, our segmentation results on shapes of
ventricle nucleus demonstrate the potential of our approach.

The proposed method is quite general and is not necessarily restricted to specific
3-dimensional segmentation tasks. In particular, the only requirement is a differentiable
kernel. We plan to apply our approach to more general data sets, such as diffusion
weighted imaging as well as combined anatomical and functional MRI, in future work.
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6. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford shah based
segmentation. In: European Conference on Computer Vision. (2002) 93–108

7. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to
shape warping and empirical shape statistics. Foundations of Computational Mathematics
5(1) (2005) 1–58

8. Pizer, S.M., et al.: Deformable M-Reps for 3D medical image segmentation. International
Journal of Computer Vision 55(2–3) (2003) 85–106

9. Coifman, R., et al., S.L.: Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps. PNAS 102(21) (2005) 7426–7431

10. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: a unified framework for dimen-
sionality reduction, graph partitioning, and data set parameterization. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 28(9) (2006) 1393–1403

11. Charpiat, G., Faugeras, O., Keriven, R., Maurel, P.: Distance-based shape statistics. In: IEEE
International Conference on Acoustics, Speech and Signal Processing. Volume 5. (2006)
925–928

12. Bengio, Y., Vincent, P., et al.: Spectral clustering and kernel pca are learning eigenfunctions.
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