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ABSTRACT

Interactive image search or relevance feedback is the process
which helps a user refining his query and finding difficult tar-
get categories. This consists in a step-by-step labeling of a
very small fraction of an image database and iteratively re-
fining a decision rule using both the labeled and unlabeled
data. Training of this decision rule is referred to as transduc-
tive learning.

Our work is an original approach for relevance feedback
based on Graph Laplacian. We introduce a new Graph Lapla-
cian which makes it possible to robustly learn the embedding
of the manifold enclosing the dataset via a diffusion map. Our
approach is two-folds: it allows us (i) to integrate all the unla-
beled images in the decision process and (ii) to robustly cap-
ture the topology of the image set. Relevance feedback exper-
iments were conducted on simple databases including Olivetti
and Swedish as well as challenging and large scale databases
including Corel. Comparisons show clear and consistent gain
of our graph Laplacian method with respect to state-of-the art
relevance feedback approaches.

Index Terms— Statistical Learning, Graph Laplacian and
Image retrieval.

1. INTRODUCTION

At least, two interrogation modes are commonly known in
content based image retrieval (CBIR); the query by example
and relevance feedback (RF). In the first mode the user sub-
mits a query image as an example of his “class of interest” and
the system displays the closest image(s) using a feature space
and a suitable metric. A slight variant is category retrieval
which consists in displaying images belonging to the “class
of the query”. In the second mode (see the pioneering works
[1, 2]) the user labels a subset of images as positive and/or
negative according to an unknown metric defined in “his
mind”. Then the CBIR system refines a metric and/or a deci-
sion rule and displays another set of images hopefully closing
the gap between the user’s intention and the response(s) of the
CBIR system [3, 4]. This process is repeated until the system
converges to the user’s class of interest. The performance
of an RF system is usually measured as the expectation of
the number of user’s responses (or iterations) necessary to
focus on the targeted class. This performance depends on
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the capacity of an RF system (i) to generalize well on the set
of unlabeled images using the labeled ones, (ii) to ask the
most informative questions to the user (see for instance [5])
and (iii) the self-consistency (and consistency) of the user(s)’
responses. Points (i)—(ii) are respectively referred to as the
transduction and the display models. Point (iii) assumes that
different users have statistically the same answers according
to an existing but unknown model referred to as the user
model.

The success of relevance feedback is largely dependent
on how much (1) the image description (feature+similarity)
fits (2) the semantic wanted by the user. The gap between (1)
and (2) is referred to as the semantic gap. The reduction of
this gap basically requires adapting the decision rule and the
features to the user’s feedback. Adapting features might be
explicitly achieved or implicitly as a part of the decision rule
training. When the original sub-features are highly corre-
lated, it is difficult to find dimensions, in the original feature
space, which are clearly discriminant according to the user’s
feedback. This follows when the Gaussian assumption (about
the distribution of the data) does not hold or when the classes
are highly not separable, i.e., the data in original feature
space form a non-linear manifold (see Fig. 1, left). Therefore,
further-processing is required in order to extract dimensions
with high intrinsic variances. A didactic example, shown in
Fig. (1), (the application is searching faces by identity), fol-
lows the statement in [6]: the variance due to the intra-class
variability (pose, illumination, etc.) is larger than the inter-
class variability (identity). Fig. (1) illustrates this principle
where clearly the intra-class variance estimated through the
original feature space (resp. the intrinsic dimensions of the
manifold enclosing the data) is larger (resp. smaller) than the
inter-class variance. Clearly, searching those faces through
the intrinsic dimensions of the manifold is easier than in the
original space. Hence, learning the manifold enclosing the
data is crucial in order to capture the actual topology of the
data.

In this paper, we introduce a new relevance feedback
scheme based on graph Laplacian[7]. We first model the
topology of the image database, including the unlabeled im-
ages, using an eigen approximation of the graph Laplacian,
then we propagate the labels by projecting the whole dataset
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Fig. 1. (Left) This figure shows the distribution of two classes corresponding to two
individuals. It is clear that the intra class variance is larger than the inter class one.
(Right) This is the distribution of the same classes inside the manifold trained using
graph Laplacian. It is clear that the converse is now true and the classification task is
easier in the embedding space.

using a linear operator learned on both the labeled and the
unlabeled sets. The main contributions of this work are:

(i) In contrast to existing relevance feedback methods which
only rely on the labeled set of images, our approach integrates
the unlabeled data in the training process through the clus-
ter assumption [8, 9] (As discussed in Section 3.1). These
unlabeled data turn out to be very useful when only few
labeled images are available since it allows us to favor deci-
sion boundaries located in low density regions of the image
database, which are very often encountered in practice.

(i1) In the second main contribution of this work, we derive
a new from of the graph Laplacian which makes it possible
to embed the dataset in a robust way. This graph Laplacian,
based on diffusion map, captures the conditional probabilities
of transition from any sample to another with a path of a given
length. Its particularity is to only consider the intermediate
paths with high transition likelihoods (see Section 3.2).

In the remainder of this paper, we consider the following
notation. X is a random variable standing for a training sam-
ple taken from X" and Y its class label in {+1, -1} (Y = 1if
the sample X belongs to the targeted class and —1 otherwise).
G = (V, E) denotes a graph where V is a set of vertices and
FE are weighted edges. We use also [, ¢ as indices for itera-
tions. Among terminologies a display is a set of images taken
from the database which are shown to the user at iteration ¢.
The paper is organized as follows: Section 2 introduces the
overall architecture of the RF process. Section 3 describes
our RF model based on the weighted robust graph Laplacian
and the display model. Section 4 provides an experimental
study using different databases including specific ones; face
databases and also generic databases. We discuss the method
and we conclude in Section 5.

2. OVERVIEW OF THE SEARCH PROCESS

Let S = {X1,...., X}, {Y1,..., Y.} denote respectively a
training set of images and the underlying unknown ground
truth. Here Y; is equal +1 if the image X; belongs to the
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user’s “class of interest” and Y; = —1 otherwise. Let us con-
sider D; C S as the display shown at iteration ¢ and ); the
labels of D;. Our interaction consists in asking the user ques-
tions such that his/her responses make it possible to reduce
the semantic gap according to the following steps:

e “Page Zero”: Select a display D; which might be a ran-
dom set of images or the prototypes found after applying clus-
tering or Voronoi subdivision.

e Reduce the “semantic gap” iteratively (¢ = 1,..., T'):
(1) Label the set D; using a (possibly stochastic) known-only-
by-the-user function ), «— L (Dy).
(2) Train a decision function f; : X — {—1,+1} on the (so
far) labeled training set 7, = |J;_,(D;,));) and the unla-
beled set of images S — U!_, D; estimating
argming. vy, gy PIf(X) # Y]
(3) Select the next display D;y; € S — [Ji_, Di. Let
fp be a classifier trained on 7; and a display D. The is-
sue of selecting D;y; can be formulated at iteration t+1 as

Dy« argming.p, gt vy =90 PLoX) # Y]

3. GRAPH LAPLACIAN AND RELEVANCE
FEEDBACK

Graph Laplacian methods emerged recently as one of the most
successful in transductive inference [7], (spectral) clustering
and dimensionality reduction. The underlying assumption is:
the probability distribution generating the (input) data admits
a density with respect to the canonical measure on a sub-
manifold of the Euclidean input space. Let M denote this
sub-manifold and p the probability distribution of the input
space with respect to the canonical measure on M (i.e. the
one associated with the natural volume element dV'). Note
that M can be all the Euclidean space (or a subset of it of the
same dimension) so that p can simply be viewed as a density
with respect to the Lebesgue measure on the Euclidean space.

3.1. Transductive Learning using the Graph Laplacian

In transductive inference, one searches for a smooth function
f & — Y from the input feature space into the output
space such that f(X;) is close to the associated output Y;
on the training set and such that the function is allowed to
vary only on low density regions of the input space. Graph
Laplacian is a tranductive method that we hereafter describe.
It is based on a neighborhood graph in which the nodes are
the input data from both the labeled and unlabeled sets. Let
X1,...,X,, denote these data and let K : X x X — R be
a symmetrical non-negative function giving the similarity be-
tween two input points. The typical kernel is the Gaussian
K(z',2") = exp(—|2’ — 2"||?/20?) and its degree func-
tion is defined as d(z) = Y., K(X;,z). The kernel K
induces a weighted undirected graph G in which the nodes



are X1,...,X, and in which any two nodes are linked with
an edge of weight K(X;,X,). Let W be the n x n ma-
trix in which the generic element is K (X;, X;). Let D be
the diagonal n x n matrix for which the ¢-th diagonal ele-
ment is d(X;). The matrix L = D~1W defines the random
walk graph Laplacian where the entry at row ¢ and column j
characterizes the probability of a walk from the node X; to
Xj. Foragiven f : X — Y, let F' be the vector defined as
F; = f(X;). Now, F is obtained by minimizing F'* LF" under
the constraints F; = Y; for labeled points.

3.2. Our Robust k-step Graph Laplacian

When embedding a dataset using the one step random walk
graph Laplacian L, the main drawback is its sensitivity to
noise. This comes from short-cuts, when building the adja-
cency graph (or estimating the scale parameter of the Gaus-
sian kernel). Therefore, the actual topology of the manifold
M will be lost (see Fig. 2, left). In [10], the authors con-
sider instead a graph Laplacian based on the power of L:
Ly = Li_1L. The matrix L; models a Markovian process
where the conditional k-step transition likelihood (between
two data X; and X;) is the sum of the conditional likelihoods
of all the possible (k-1)-steps linking X; and X ;. This re-
sults into low transition probabilities in low density areas.
Nevertheless, when those areas are noisy, the method fails in
capturing the correct topology (see Fig. 2, middle).

The limitation, mentioned above, motivates the introduc-
tion of a new (called robust) graph Laplacian', recursively
defined as Ly = [L,é_1 x L*]* (1/a € [1,+00[). Let
L(i, j)= denote the j™ column of the i'" row of L= . Again,
L is the one step random walk graph Laplacian where each
entry L(i, j) corresponds to the probability of a walk from X;
to X in one step, also denoted P; (j|¢). This quantity charac-
terizes the first order neighborhood structure of the graph G.
In the context of diffusion map[10], the idea is to represent
higher order neighborhood by taking powers of the matrix L,
s0 Ly (i,7) = Pr(j|i) will be the probability of a walk from
X; to X in k steps. Here k acts as a scale factor and makes
it possible to increase the local influence of each node in the
graph GG. The matrix L can be inferred from Lj;_; and L
by summing the conditional probabilities over different paths,

1
e (PG = D [P (D] [PL(ID] .
=1
We refer to a k-path as any path of %k steps in the graph
G. Depending on « the general form of the graph Lapla-
cian L implements different random walks. When o — 1:
Py (ji) is the average transition probability of the k-paths
linking X; to X;. So Lj; implements exactly the one

in [10] whereas when o — O: [Pk(j|i)]% converges to

'Without any confusion and in the remainder of this paper, we denote by
Ly, this new form of the graph Laplacian.

Fig. 2. The left figures show samples taken from the Swiss roll. (left) A short cut
makes the random walk Laplacian embedding very noise sensitive, clearly the variation
of the color map does not follow the intrinsic dimension of the actual manifold. (mid-
dle) When using the diffusion map, noisy paths affect the estimation of the conditional
probabilities. This issue is overcome in (right) when using the robust diffusion map, as
now the color map varies following the intrinsic dimension.

mlax{[P;,c,l(l\i)]é [P(j|1)]*}. so Ly(i,5) corresponds to
the most likely transition probability of k-steps. In case
o €]0,1[: [Px(j]i)]= is dominated by the largest terms in
{[Pe_1(11i)]* [P(j|)]=}. The effect of noisy terms will
then be reduced. Fig. (2, right) shows an example of the ap-
plication of L, in embedding of Swiss roll data (k = 10 and
a = 0.2). Clearly, the topology of the data is now preserved.

3.3. Display Model

The data in S are mapped into a manifold M such that any
two elements X; and X; in & with close conditional prob-
abilities {Py(i|.)} and {Py(j|.)} will also be close in M.
Let A be the diagonal matrix of positive eigenvalues of Ly
and W the underlying matrix of eigenvectors. Considering
L, = W!AW, the embedding of a training sample in S is
b X (VAN (X)L $a(X,)) L d s the in-
trinsic dimension which corresponds to the largest index | €
1,...,n such that A; > d\; for some § — 0 [10]. The diffu-
sion distance can then be expressed in M as D (X;, X;) =
1P:(il.) — Pe(iLIIP = 32 M [u(Xs) — 4hi(X;)]%. This
distance plays a key role in propagating the labels from the
labeled to unlabeled data following the shortest path or the
average path (depending on the setting of «).

We define a probabilistic framework which, given a subset
of displayed images Dj,...,D; until iteration ¢, makes it pos-
sible to explore the manifold M in order to propose a subset
of images D;; 1. When we use the unlabeled data by using
a transductive algorithm, the heuristics still rely on the fol-
lowing basic assumption: at each iteration, one can select the
display in order to refine the current estimate of the decision
boundary or one can select the display in order to find un-
charted territories in which the actual decision boundary is
present. The first display strategy exploits our knowledge of
the likely position of the decision boundary while the second
one explores new regions.



Exploitation: let D C Sand D' = {X € D, f(X) > 0},
the next display is Dy <« arg max P(D' | Dy,...,Dy).

Assuming the data in D, are chosen independently:

e S 1D (X X))
em 2/ Dy(Xi X

P(XJ ‘th-le) XX

Exploration: equivalently we replace the max with min.
We consider in this work a mixture between the two above
strategies where at each iteration ¢ of the interaction process,
half of the display (of size 8 in practice) is taken from ex-
ploitation and the other set taken from exploration.

4. PERFORMANCE

Experiments were conducted on simple databases : Olivetti
(0.4k images) and Swedish (1, 1k) as well as difficult ones:
Corel (10k). Each face in Olivetti is encoded using 20 coef-
ficients of KPCA while each contour C in the Swedish set is
encoded using 14 eigenvalues of KPCA on C [11]. Images in
the Corel database are encoded simply using 3D RGB color
histograms of 125 dimensions so the classes are very spread
and the RF task is more challenging.

We evaluate the performance of our RF scheme using
the standard recall measure’. We compared our method to
standard representative RF tools including inductive meth-
ods: support vector machines (SVMs), Bayesian inference
(based on Parzen windows) and closely related transductive
ones: graph-cuts. In all these methods, we use the same
display strategy (i.e., combined exploration exploitation). We
train the SVMs and Parzen classifiers using the triangular
kernel as extensive study in [12] showed that SVM based
relevance feedback using the triangular kernel achieved far
better results than other kernels, so we limit our comparison
to SVM and Parzen using this kernel only. Again, for graph
Laplacian, the scale parameter of the Gaussian kernel is set
as 0 = Ex xen,, (x){| X — X'[|}, here N5, (X) denotes the
set of m nearest neighbors of X (in practice m = 10). The
results reported in Fig. (3), show that in almost all the cases,
the recall performances of RF (using graph-Laplacian) are
better than SVMs, Parzen and graph-cuts based RF. Clearly,
the use of unlabeled data as a part of transductive learning (in
graph Laplacian and graph cuts), makes it possible to improve
the performance substantially. Furthermore, the embedding
of the data through graph Laplacian makes it possible to cap-
ture the topology of the data, so learning the decision rule
becomes easier.

5. CONCLUSION

This work introduces an original approach for RF based on
transductive learning using graph Laplacian. It demonstrates

2This is the fraction of relevant images displayed.
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Fig. 3. Comparison, of the recall performance, of Graph Laplacian with respect to
SVM and Parzen.

clearly that the proposed semi-supervised learning method is
three-edged sword: it is effective in order (1) to handle trans-
ductive learning (in contrast to inductive learning), via the
robust graph Laplacian which implements the clustering as-
sumption and uses the unlabeled data as a part of the training
process (2) to capture the topology of the data so the simi-
larity measure and the propagation of the labels to unlabeled
data is done through the manifold enclosing the data (3) to
achieve a clear and consistent improvement with respect to
the most powerful and used techniques in relevance feedback
including SVMs and Parzen windows.
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