On projective plane curve evolution

Olivier Faugeras1 and Renaud Keriven2

1 I.N.R.I.A. Sophia-Antipolis, 06561 Valbonne, France, faugeras@sophia.inria.fr
2 E.N.P.C. CERMICS, 93167 Noisy Le Grand, France, keriven@cermics.enpc.fr

Abstract

In this paper, we investigate the evolution of curves of the projective plane according to a family of projective invariant intrinsic equations. This is motivated by previous work for the Euclidean [11, 12, 14] and the affine cases [21, 22, 3, 2] as well as by applications in the perception of two-dimensional shapes. We establish the evolution laws for the projective arclength and curvature. Among this family of equations, we define a "projective heat equation" [7] and establish the link with the projective evolution of curves in \mathbb{R}^2.

Keywords: multi-scale analysis, partial differential equations, projective geometry

1 Introduction

The use of partial differential equations and curve or surface evolution theory in image analysis became a major research topic in the past years (see [18]) leading to applications in image de-noising and de-blurring [19], in selective smoothing and edge detection [1, 17], in contrast enhancement [20], in shape segmentation [5]. Recently, applications were found in problems usually addressed by the computer vision community: intrinsic flows [14, 21] hold very good geometric smoothing properties and allow the computation of local differential invariants [9]. Motivated by the importance of projective geometry in computer vision, we found it natural to extend the Euclidean [14] and affine [21] cases to the projective one.

2 Geometric flows

Let \mathcal{L} be a Lie group operating on some objects. A quantity q depending on these objects is called an invariant of \mathcal{L} if, whenever a transformation $L \in \mathcal{L}$ changes q into q', we have $q' = \alpha(L)q$, where α is a function of L alone, i.e. does not depend on the object which is transformed. If $\alpha \equiv 1$, then q is called an absolute invariant.

Differential invariants are special invariants based on local transformations (see [13]).

Let $C : \mathbb{R} \rightarrow \mathbb{R}^2$ be a plane curve of parameter p. The first and the second differential invariants for the Euclidean group $\{m \mapsto Rm + T \mid R \text{ rotation, } T \text{ translation}\}$ are
the well known Euclidean arclength v and curvature κ defined by:

\[
\begin{cases}
\frac{\partial v}{\partial s} &= \| \frac{\partial \mathbf{r}}{\partial s} \| \\
\kappa &= \| \frac{\partial^2 \mathbf{r}}{\partial s^2} \|
\end{cases}
\]

(1)

which are preserved by rotations and translations.

The corresponding invariants for the group of proper affine motions \{ $m \mapsto Am + B \mid [A] > 0, B \in \mathbb{R}^2$ \} are the affine arclength s and curvature μ defined by:

\[
\begin{cases}
\frac{\partial s}{\partial p} &= \frac{\alpha C(p, t)}{\alpha C(p, 0)}^{1/3} \\
\mu &= \frac{\alpha C(p, t)}{\alpha C(p, 0)}
\end{cases}
\]

(2)

which are invariants for affine proper motions, and absolute invariants for special affine motions (\{ $m \mapsto Am + B \mid [A] = 1, B \in \mathbb{R}^2$ \}).

Circles (and straight lines) are the only curves with constant Euclidean curvature.

In the affine case, constant affine curvature is obtained for the conics ($\mu = 0$ for a parabola, $\mu > 0$ for an ellipse and $\mu < 0$ for an hyperbola).

Given an initial plane curve $C_0(p) : \mathbb{R} \to \mathbb{R}^2$, the associated geometric flow (see [16]) is the family of curves $C(p, t) : \mathbb{R} \times [0, \tau) \to \mathbb{R}^2$ evolving according to the following law:

\[
\begin{cases}
\frac{\partial C(p, t)}{\partial t} &= \frac{\alpha C(p, t)}{\alpha C(p, 0)} \\
\frac{\partial C(p, 0)}{\partial p} &= C_0(p)
\end{cases}
\]

(3)

where r is the group arclength (v for the Euclidean geometric flow, s for the affine one). Contrary to the classical heat flow $G_t = G_{pp}$, these flows are intrinsic (i.e. don’t depend on the parameterization p of the initial curve). They are invariant for the considered Lie group. Their “smoothing” properties may be summarized as follow ([14, 21]): closed curves evolve toward a convex one and then disappear shrinking toward a circle point (Euclidean case) or an ellipse point (affine case).

For a given group, a plane curve is defined up to a group transformation by its group arclength and curvature. Hence, it is natural to study these flows through the evolution of the arclength and curvature. With $g_a = \frac{\partial g}{\partial p} = \frac{\partial g}{\partial p}$, we have:

\[
\begin{cases}
\frac{\partial g_a}{\partial s} &= -g_s \kappa^2 \\
\frac{\partial g_a}{\partial t} &= -\kappa^3 - \frac{\partial^2 g_a}{\partial s^2} \\
\frac{\partial g_a}{\partial t} &= -2g_s \mu / 3 \\
\frac{\partial g_a}{\partial s} &= \frac{4}{3} \mu^3 + \frac{1}{3} \frac{\partial^3 g_a}{\partial s^3}
\end{cases}
\]

(4)

3 Projective geometry

Like in equations (1) and (2), it is possible to define the projective arclength and curvature of a plane curve in \mathbb{R}^2. However, this leads to too complex expressions. The idea is to embed such a curve in the real projective plane \mathbb{P}^e. One can see \mathbb{P}^e as the set of the lines of \mathbb{R}^3 going through the origin. An element of \mathbb{P}^e is represented by its homogeneous coordinates (x, y, z) where (x, y, z) and $(\lambda x, \lambda y, \lambda z), (\lambda \neq 0)$ are different coordinate vectors of the same projective point.

Let $B(p) : \mathbb{R} \to \mathbb{P}^e$ be a smooth curve of the projective plane. Using standard results of projective differential geometry [4], we change $B(p)$ by a scale factor $\lambda(p)$ and
characterize its projective arclength σ and curvature k introducing the Cartan point $A = \lambda B$, and the Cartan frame $(A, A^{(1)}, A^{(2)})$ which satisfy the projective Frenet equations:

$$\frac{dA}{d\sigma} = A^{(1)}$$
$$\frac{dA^{(1)}}{d\sigma} = -kA + A^{(2)}$$
$$\frac{dA^{(2)}}{d\sigma} = -A - kA^{(1)}$$

and the condition:

$$|AA^{(1)}A^{(2)}| = 1$$

Note that B and A are different coordinate vectors of the same projective point. The point $A^{(1)}$ is on the tangent to the curve in A and the line $\langle A, A^{(2)} \rangle$ is the projective normal. Functions k and σ are invariant under the action of the projective group and characterize the curve up to a projective transformation.

The plane curves with a constant projective curvature are (see [10]):

- If $k = k_0 = -3/32^{1/3}$: the exponential $(y = e^x)$
- If $k < k_0$: the general parabola $(y = x^m, m \notin \{2, \frac{1}{2}, -1\})$
- If $k > k_0$: the logarithmic spiral $(\rho = e^{m\theta}, m \neq 0)$

4 Projective invariant intrinsic flows

The law $A_t = A_{\sigma \sigma}$ investigated in [7] could be thought as a natural extension of the Euclidean and affine cases. Yet, this law raises some contradictions. For instance, according to the expression of k_t in [7], curves with a constant initial curvature should evolve keeping a constant curvature. Actually, it’s not the case (see [10]).

The reason why it is so is that the Cartan point $A(p, t)$ is some particular representant for the projective point $B(p, t)$ and depends on the curve and its spatial derivatives at (p, t). As a result, one can’t expect an arbitrary differential equation $\{A(p, 0) = A_0(p); A_t = f(p, t)\}$ to be such that $A(p, t)$ will still be the Cartan point of the curve at time $t > 0$.

This leads us to consider the evolution law

$$\begin{align*}
A(p, 0) &= A_0(p) \text{ (A_0 Cartan point of the initial curve)} \\
A_t(p, t) &= \alpha A + \beta A^{(1)} + \gamma A^{(2)}
\end{align*}$$

where $f(p, t)$ has been decomposed on the Cartan frame, and to find out which conditions on (α, β, γ) will assure that $A(p, t)$ remains the Cartan point.

Another way to see this is to consider the surface $S = \{A(\sqrt{\cdot} \cup)\}$ of R^3. The reason why this is a well-defined surface is because there is no scale factor on A even though it represents a projective point of P^6. Now, in order for (7) to be a well-defined PDE on S, the vector A_t has to belong to the tangent plane T_S at (p, t). The right hand
side contains the vector \(A^{(1)} \) which belongs to \(T_\mathcal{S} \) but the vector \(\alpha A + \gamma A^{(2)} \) does not in general belong to \(T_\mathcal{S} \) unless \(\alpha \) and \(\gamma \) are dependent. In fact the condition is even stronger since not only \(A_t \) must belong to \(T_\mathcal{S} \) but also, as stated above, \(\mathbf{A} \) must remain a Cartan point.

We get the following result (see [8] for the proof):

Proposition 1 The differential equation (7) has a meaning (i.e. \(\mathbf{A}(p,t) \) is the Cartan point of the curve at time \(t \)) if and only if:

\[
\alpha = \frac{1}{3+k_\sigma} \left[-\frac{1}{3}k_{\sigma^2} - \frac{3}{2}k_\sigma^2 \gamma_\sigma - k_\sigma \left(\frac{7}{3}k_\gamma + \frac{17}{6} \gamma_\sigma^2 + \beta_\sigma \right) - \frac{8}{3} k^2 \gamma_\sigma \\
+ k(\gamma - \frac{5}{3} \gamma_\sigma^2) + \gamma_\sigma^2/2 - \gamma_\sigma^3/6 \right] \tag{8}
\]

In this case, the projective arclength and curvature evolve according to:

\[
\frac{g_t}{g} = \alpha + \beta_\sigma - \frac{1}{3}(k_\gamma - \gamma_\sigma^2) \tag{9}
\]

\[
k_t = -\alpha_\sigma^2 + \frac{3}{2} \gamma_\sigma + \frac{\gamma_\sigma^3}{6} + k(\frac{2}{3} \gamma_\sigma^2 - 2\alpha) \\
+ k_\sigma (\beta + \frac{7}{6} \gamma_\sigma) + \frac{\gamma_\sigma^3}{3}(k_\sigma^2 + 2k^2) \tag{10}
\]

where \(g = \frac{d\sigma}{dt} \).

Note that \(A_t = A_{\sigma \sigma} \) is the case \((\alpha, \beta, \gamma) = (-k, 0, 1)\), thus doesn’t satisfy condition (8), hence the previous contradictions.

Moreover, if \(\beta \) and \(\gamma \) are projective invariant intrinsic quantities, then \(\alpha \) defined by equation (8) is a projective invariant intrinsic quantity too. Therefore, we get:

Corollary 1 Let \(\beta \) and \(\gamma \) be some projective invariant intrinsic quantities, let \(\alpha \) be defined by equation (8). The differential equation (7) defines a projective invariant intrinsic flow. The evolution of the projective arclength and curvature of the curves is given by equations (9, 10).

5 The projective “heat flow”

Among all the possible choices for \((\beta, \gamma)\), it turns out that the simplest one \((0, 1)\) is also the right one for a projective “heat flow” extending the Euclidean and affine cases. Some intuitive justification could be:

- \(\beta A^{(1)} \) is on the tangent in \(\mathbf{A} \). Thus, the choice of \(\beta \) has no importance: changing \(\beta \) doesn’t modify the family of curves obtained but only their parameterization \(p \) (see [21]).

- \((\beta, \gamma) = (0, 1)\) are the components of \(A_{\sigma \sigma} \) on \((A^{(1)}, A^{(2)})\). The induced \(\alpha \) could be considered as a corrected component on \(\mathbf{A} \).

However, the deep reason for this choice is that it gives the same flow as \(\mathcal{C}_t = C_{\sigma \sigma} \) in \(\mathbb{R}^3 \) (see next section). Consequently, we have from proposition 1 the following statement:
Proposition 2 Let α be:

$$\alpha = \frac{1}{9 + 3k_\sigma}(3k - 7kk_\sigma - k_\sigma^2)$$

Let $B_0(p)$ be a curve of P^3 and $A_0(p)$ its Cartan points. We define its projective heat flow as the solution of:

$$\begin{align*}
A(p, 0) &= A_0(p) \\
A_t(p, t) &= \alpha A + A^{(2)}
\end{align*} \quad (11)$$

Let $g = \frac{dg}{dt}$. The projective arclength and curvature evolve according to:

$$\begin{align*}
g_t &= -\frac{1}{9 + 3k_\sigma}(8kk_\sigma + k_\sigma^2) \\
k_t &= \frac{2}{3}k^2 + \frac{1}{3}k_\sigma^2 - 2\alpha k - \alpha_\sigma^2
\end{align*} \quad (12, 13)$$

6 Going back to \mathbb{R}^2

We prove in [8] that:

Proposition 3 Given an initial curve in P^3, let $B_0(p)$ be any coordinate vector of it.

1. The flow defined by

$$\begin{align*}
B(p, 0) &= B_0(p) \\
B_t(p, t) &= B_{\sigma\sigma}
\end{align*} \quad (14)$$

is intrinsic and doesn’t depend on the choice of B_0 (i.e. $B_0(p)$ and $\phi(p)B_0(p)$ give the same family of curves).

2. This flow is the projective heat flow defined by equation (11) up to a parameterization of the curves.

3. Let λ be the Cartan scale factor ($A = \lambda B$). (σ, k, λ) define B up to a projective transformation. Their evolution is given by:

$$\begin{align*}
g_t &= -\frac{1}{9 + 3k_\sigma}(8kk_\sigma + k_\sigma^2 + 18\lambda_\sigma^2) \\
k_t &= \frac{2}{3}k^2 + \frac{1}{3}k_\sigma^2 - 2k_\sigma^2 - 2k_\sigma\lambda_\sigma \\
\lambda_t &= \frac{-1}{9 + 3k_\sigma}[k_\sigma^3 + 3k_\sigma(\lambda_\sigma^2 - 3\lambda_\sigma)] + 4k_\sigma - 3\lambda_\sigma + 9(\lambda_\sigma^2 - \lambda_\sigma^2)]
\end{align*} \quad (15)$$

where $g = \frac{d\sigma}{dp}$, $\lambda = \log|\lambda|$, $P = \lambda_\sigma^2 - \lambda_\sigma^2 - k + \lambda_t$

Let $C_0(p) = (x_0, y_0)$ be a real plane curve, it is then easy to prove that:

Corollary 2 The flow defined by $\{C(p, 0) = C_0 ; C_t = C_{\sigma\sigma}\}$ is a projective invariant flow. It gives the same family of curves through the map $\left(\frac{x}{y}, \frac{y}{x}\right)$ as the projective heat flow (11) with initial curve $(x_0, y_0, 1)$. Let $C(p, t) = (x, y)$ and λ be the Cartan scale of $(x, y, 1)$, the evolution of the projective arclength and curvature of C is given by equations (15).
This was already proved in [15], even though the argument in [16] about the relationship between different coordinate vectors is incorrect (see proposition 3 above)

7 Conclusion

We have established a link between the invariant projective flow defined in \mathbb{R}^2 [16, 15] and the one defined in $\mathcal{P}^\mathbb{E}$ [7]. We have defined the projective heat equation in three equivalent ways: $A_t = \alpha A + A^{(2)}$ (α given by equation (8)) or $B_t = B_{\sigma \sigma}$ in $\mathcal{P}^\mathbb{E}$, and $C_t = C_{\sigma \sigma}$ in \mathbb{R}^2. As expected, the connection is not trivial but simple enough. The advantage of the definition in $\mathcal{P}^\mathbb{E}$ [7] which we have modified here to make it entirely correct is that: a) it does not depend on the particular coordinates used to represent $\mathcal{P}^\mathbb{E}$ and b) it has allowed us to establish the evolution of the projective arclength and curvature. There remains to see if it is possible to define a projective scale-space as in the Euclidean and affine cases. Of particular interest would be to compare our approach with the one developed by Dibos [6].

References

