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Abstract

Algorithms based on upper-confidence bounds for balancing exploration and ex-
ploitation are gaining popularity since they are easy to implement, efficient and
effective. In this paper we consider a variant of the basic algorithm for the stochas-
tic, multi-armed bandit problem that takes into account the empirical variance of
the different arms. In earlier experimental works, such algorithms were found to
outperform the competing algorithms. The purpose of this paper is to provide a
theoretical explanation of these findings and provide theoretical guidelines for the
tuning of the parameters of these algorithms. For this we analyze the expected re-
gret and for the first time the concentration of the regret. The analysis of the expec-
ted regret shows that variance estimates can be especially advantageous when the
payoffs of suboptimal arms have low variance. The risk analysis, rather unexpec-
tedly, reveals that except some very special bandit problems, for upper confidence
bound based algorithms with standard bias sequences, the regret concentrates only
at a polynomial rate. Hence, although these algorithms achieve logarithmic expec-
ted regret rates, they seem less attractive when the risk of achieving much worse
than logarithmic cumulative regret is also taken into account.





Résumé

Les algorithmes réalisant le compromis exploration-exploitation à base de bornes
supérieures des récompenses deviennent de plus en plus populaire en raison de
leur succès pratiques récents Dans ce travail, nous considérons une variante de
l’algorithme de base pour le problème du bandit à plusieurs bras. Cette variante,
qui prend en compte les variances empiriques des récompenses obtenues sur les
différents bras, a amélioré nettement les résultats obtenus précédemment. Le but
de ce rapport est de fournir une explication rigoureuse de ces découvertes. Par
ailleurs, nous clarifions les choix des paramètres de l’algorithme, et analysons la
concentration du regret. Nous prouvons que de dernier est concentré seulement si
la distribution des récompenses du bras optimal suit une hypothèse non triviale,
ou quand l’algorithme est modifié de manière à explorer plus.
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1 Introduction and notations

In this paper we consider stochastic multi-armed bandit problems. The original
motivation of bandit problems comes from the desire to optimize efficiency in
clinical trials when the decision maker can choose between treatments but ini-
tially he does not know which of the treatments is the most effective one [11].
Multi-armed bandit problems became popular with the seminal paper of Robbins
[10], after which they have found applications in diverse fields, such as control,
economics, statistics, or learning theory.

Formally, a K-armed bandit problem (K ≥ 2) is defined by K distributions,
ν1, . . . , νK , one for each “arm” of the bandit. Imagine a gambler playing with
these K slot machines. The gambler can pull the arm of any of the machines. Suc-
cessive plays of arm k yield a sequence of independent and identically distributed
(i.i.d.) real-valued random variables Xk,1, Xk,2, . . . , coming from the distribution
νk. The random variable Xk,t is the payoff (or reward) of the k-th arm when this
arm is pulled the t-th time. Independence also holds for rewards across the differ-
ent arms. The gambler facing the bandit problem wants to pull the arms so as to
maximize his cumulative payoff.

The problem is made challenging by assuming that the payoff distributions are
initially unknown. Thus the gambler must use exploratory actions in order to learn
the utility of the individual arms, making his decisions based on the available past
information. However, exploration has to be carefully controlled since excessive
exploration may lead to unnecessary losses. Hence, efficient on-line algorithms
must find the right balance between exploration and exploitation.

Since the gambler cannot use the distributions of the arms (which are not avail-
able to him) he must follow a policy, which is a mapping from the space of possi-
ble histories, ∪t∈N+{1, . . . , K}t × Rt, into the set {1, . . . , K}, which indexes the
arms. Let µk = E[Xk,1] denote the expected reward of arm k.1 By definition, opti-
mal arm is an arm having the largest expected reward. We will use k∗ to denote the
index of such an arm. Let the optimal expected reward be µ∗ = max1≤k≤K µk.

Further, let Tk(t) denote the number of times arm k is chosen by the policy
during the first t plays and let It denote the arm played at time t. The (cumulative)
regret at time n is defined by

R̂n ,
∑n

t=1 Xk∗,t −
∑n

t=1 XIt,TIt (t)
.

Oftentimes, the goal is to minimize the expected (cumulative) regret of the
policy, E[R̂n]. Clearly, this is equivalent to maximizing the total expected reward

1N denotes the set of natural numbers, including zero and N+ denotes the set of positive inte-
gers.
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achieved up to time n. It turns out that the expected regret satisfies

E[R̂n] ,
∑K

k=1 E[Tk(n)]∆k,

where ∆k = µ∗ − µk is the expected loss of playing arm k. Hence, an algo-
rithm that aims at minimizing the expected regret should minimize the expected
sampling times of suboptimal arms.

Early papers studied stochastic bandit problems under Bayesian assumptions
(e.g., [6]). Lai and Robbins [8] studied bandit problems with parametric uncertain-
ties. They introduced an algorithm that follows what is now called the “optimism
in the face of uncertainty principle”. Their algorithm computes upper confidence
bounds for all the arms by maximizing the expected payoff when the parameters
are varied within appropriate confidence sets derived for the parameters. Then
the algorithm chooses the arm with the highest such bound. They show that the
expected regret increases logarithmically only with the number of trials and prove
that the regret is asymptotically the smallest possible up to a sublogarithmic factor
for the considered family of distributions. Agrawal has shown how to construct
such optimal policies starting from the sample-means of the arms [1]. More re-
cently, Auer et. al considered the case when the rewards come from a bounded
support, say [0, b], but otherwise the reward distributions are unconstrained [3].
They have studied several policies, most notably UCB1 which constructs the Up-
per Confidence Bounds (UCB) for arm k at time t by adding the bias factor

√
2b2 log t

Tk(t− 1)

to its sample-mean. They have proven that the expected regret of this algorithm
satisfies

E[R̂n] ≤ 8
(∑

k:µk<µ∗
b2

∆k

)
log(n) + O(1). (1)

In the same paper they propose UCB1-NORMAL, that is designed to work with
normally distributed rewards only. This algorithm estimates the variance of the
arms and uses these estimates to refine the bias factor. They show that for this
algorithm when the rewards are indeed normally distributed with means µk and
variances σ2

k,

E[R̂n] ≤ 8
∑

k:µk<µ∗

(
32σ2

k

∆k
+ ∆k

)
log(n) + O(1). (2)

Note that one major difference of this result and the previous one is that the regret-
bound for UCB1 scales with b2, while the regret bound for UCB1-NORMAL
scales with the variances of the arms. First, let us note that it can be proven that
the scaling behavior of the regret-bound with b is not a proof artifact: The expected
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regret indeed scales with Ω(b2). Since b is typically just an a priori guess on the
size of the interval containing the rewards, which might be overly conservative, it
is more desirable the lessen the dependence on it.

Auer et al. introduced another algorithm, UCB1-Tuned, in the experimental
section of their paper. This algorithm, similarly to UCB1-NORMAL uses the
empirical estimates of the variance in the bias sequence. Although no theoret-
ical guarantees were derived for UCB1-Tuned, this algorithm has been shown
to outperform the other algorithms considered in the paper in essentially all the
experiments. The superiority of this algorithm has been reconfirmed recently in
the latest Pascal Challenge [4]. Intuitively, algorithms using variance estimates
should work better than UCB1 when the variance of some suboptimal arms is
much smaller than b2, since these arms will be less often drawn: suboptimal arms
are more easily spotted by algorithms using variance estimates.

In this paper we study the regret of UCB-V, which is a generic UCB algorithm
that use variance estimates in the bias sequence. In particular, the bias sequences
of UCB-V take the form

√
2Vk,Tk(t−1)ETk(t−1),t

Tk(t− 1)
+ c

3bETk(t−1),t

Tk(t− 1)
,

where Vk,s is the empirical variance estimate for arm k based on s samples, E
(viewed as a function of (s, t)) is a so-called exploration function for which a
typical choice is Es,t = ζ log(t). Here ζ, c > 0 are tuning parameters that can be
used to control the behavior of the algorithm.

One major result of the paper (Corollary 1) is a bound on the expected re-
gret that scales in an improved fashion with b. In particular, we show that for a
particular settings of the parameters of the algorithm,

E[R̂n] ≤ 10
∑

k:µk<µ∗

(
σ2

k

∆k

+ 2b

)
log(n).

The main difference to the bound (1) is that b2 is replaced by σ2
k, though b still

appears in the bound. This is indeed the major difference to the bound (2).2 In
order to prove this result we will prove a novel tail bound on the sample aver-
age of i.i.d. random variables with bounded support that, unlike previous similar
bounds, involves the empirical variance and which may be of independent inter-
est (Theorem 1). Otherwise, the proof of the regret bound involves the analysis
of the sampling times of suboptimal arms (Theorem 2), which contains signifi-
cant advances compared with the one in [3]. This way we obtain results on the
expected regret for a wide class of exploration functions (Theorem 3). For the

2Although, this is unfortunate, it is possible to show that the dependence on b is unavoidable.
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“standard” logarithmic sequence we will give lower limits on the tuning parame-
ters: If the tuning parameters are below these limits the loss goes up considerably
(Theorems 4,5).

The second major contribution of the paper is the analysis of the risk that
the studied upper confidence based policies have a regret much higher than its
expected value. To our best knowledge no such analysis existed for this class of
algorithms so far. In order to analyze this risk, we define the (cumulative) pseudo-
regret at time n via

Rn =
∑K

k=1 Tk(n)∆k.

Note that the expectation of the pseudo-regret and the regret are the same: E[Rn] =
E[R̂n]. The difference of the regret and the pseudo-regret comes from the ran-
domness of the rewards. Sections 4 and 5 develop high probability bounds for the
pseudo-regret . The same kind of formulae can be obtained for the cumulative
regret (see Remark 2 p.16).

Interestingly, our analysis revealed some tradeoffs that we did not expect: As
it turns out, if one aims for logarithmic expected regret (or, more generally, for
subpolynomial regret) then the regret does not necessarily concentrate exponen-
tially fast around its mean (Theorem 7). In fact, this is the case when with positive
probability the optimal arm yields a reward smaller than the expected reward of
some suboptimal arm. Take for example two arms satisfying this condition and
with µ1 > µ2: the first arm is the optimal arm and ∆2 = µ1 − µ2 > 0. Then the
distribution of the pseudo-regret at time n will have two modes, one at Ω(log n)
and the other at Ω(∆2n). The probability mass associated with this second mass
will decay polynomially with n where the rate of decay depends on ∆2. Above the
second mode the distribution decays exponentially. By increasing the exploration
rate the situation can be improved. Our risk tail bound (Theorem 6) makes this de-
pendence explicit. Of course, increasing exploration rate increases the expected
regret, hence the tradeoff between the expected regret and the risk of achieving
much worse than the expected regret. One lesson is thus that if in an application
risk is important then it might be better to increase the exploration rate.

In Section 5, we study a variant of the algorithm obtained by Es,t = Es.
In particular, we show that with an appropriate choice of Es = Es(β), for any
0 < β < 1, the algorithm achieves finite cumulative regret with probability 1− β
(Theorem 8). Hence, we name this variant PAC-UCB (“Probably approximately
correct UCB”). Given a finite time-horizon, n, choosing β = 1/n then yields
a logarithmic bound on the regret that fails with probability O(1/n) only. This
should be compared with the bound O(1/ log(n)a), a > 0 obtained for the stan-
dard choice Es,t = ζ log t in Corollary 2. Hence, we conjecture that knowing the
time horizon might represent a significant advantage.

Such high probability bounds show how risk behaves and thus have important
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practical implications. Further, concentration of the regret also plays an important
role in algorithms like UCT which treat sequential stochastic search problems as
a sequences of nested bandit problems [7].

2 The UCB-V algorithm
For any k ∈ {1, . . . , K} and t ∈ N, let Xk,t and Vk,t be the empirical estimates of
the mean payoff and variance of arm k:

Xk,t , 1
t

∑t
i=1 Xk,i and Vk,t , 1

t

∑t
i=1(Xk,i −Xk,t)

2,

where by convention Xk,0 , 0 and Vk,0 , 0. We recall that an optimal arm is an
arm having the best expected reward

k∗ ∈ argmax
k∈{1,...,K}

µk.

We denote quantities related to the optimal arm by putting ∗ in the upper index.
In the following, we assume that the rewards are bounded. Without loss of

generality, we may assume that all the rewards are almost surely in [0, b], with
b > 0. For easy reference we summarize our assumptions on the reward sequence
here:

Assumption A1 Let K > 2, ν1, . . . , νK distributions over reals with support
[0, b]. For 1 ≤ k ≤ K, let {Xk,t} ∼ νk be an i.i.d. sequence of random variables
specifying the rewards for arm k.3 Assume that the rewards of different arms are
independent of each other, i.e., for any k, k′, 1 ≤ k < k′ ≤ K, t ∈ N+, the collec-
tion of random variables, (Xk,1, . . . , Xk,t) and (Xk′,1, . . . , Xk′,t), are independent
of each other.

2.1 The algorithm
Let c ≥ 0. Let E = (Es,t)s≥0,t≥0 be nonnegative real numbers such that for any
s ≥ 0, the function t 7→ Es,t is nondecreasing. We shall call E (viewed as a
function of (s, t)) the exploration function. For any arm k and any nonnegative
integers s, t, introduce

Bk,s,t , Xk,s +

√
2Vk,sEs,t

s
+ c

3bEs,t

s
(3)

with the convention 1/0 = +∞.

3The i.i.d. assumption can be relaxed, see e.g., [9].
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UCB-V policy:
At time t, play an arm maximizing
Bk,Tk(t−1),t.

Let us roughly describe the behaviour of the algorithm. At the beginning (i.e.,
for small t), every arm that has not been drawn is associated with an infinite bound
which will become finite as soon as the arm is drawn. The more an arm k is drawn,
the closer the bound (3) gets close to its first term, and thus, from the law of large
numbers, to the expected reward µk. So the procedure will hopefully tend to draw
more often arms having greatest expected rewards.

Nevertheless, since the obtained rewards are stochastic it might happen that
during the first draws the (unknown) optimal arm always gives low rewards. For-
tunately, if the optimal arm has not been drawn too often (i.e., small Tk∗(t − 1)),
for appropriate choices of E (when Es,t increases without bounds in t for any fixed
s), after a while the last term of (3) will start to dominate the two other terms and
will also dominate the bound associated with the arms drawn very often. Thus the
optimal arm will be drawn even if the empirical mean of the obtained rewards,
Xk∗,Tk∗ (t−1), is small. More generally, such choices of E lead to the exploration of
arms with inferior empirical means. This is why E is referred to as the exploration
function. Naturally, a high-valued exploration function also leads to draw often
suboptimal arms. Therefore the choice of E is crucial in order to explore possibly
optimal arms while keeping exploiting (what looks like to be) the optimal arm.

The actual form of Bk,s,t comes from the following novel tail bound on the
sample average of i.i.d. random variables with bounded support that, unlike previ-
ous similar bounds (Bennett’s and Bernstein’s inequalities), involves the empirical
variance.

Theorem 1. Let X1, . . . , Xt be i.i.d. random variables taking their values in
[0, b]. Let µ = E [X1] be their common expected value. Consider the empirical
expectation X t and variance Vt defined respectively by

X t =

∑t
i=1 Xi

t
and Vt =

∑t
i=1(Xi −X t)

2

t
.

Then for any t ∈ N and x > 0, with probability at least 1− 3e−x,

|X t − µ| ≤
√

2Vtx

t
+

3bx

t
. (4)

Furthermore, introducing

β(x, t) = 3 inf
1<α≤3

( log t

log α
∧ t

)
e−x/α, (5)
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we have for any t ∈ N and x > 0, with probability at least 1− β(x, t)

|Xs − µ| ≤
√

2Vsx

s
+

3bx

s
(6)

hold simultaneously for s ∈ {1, 2, . . . , t}.

Proof. See Section A.1.

Remark 1. The uniformity in time is the only difference between the two asser-
tions of the previous theorem. When we use (6), the values of x and t will be such
that β(x, t) is of order of 3e−x, hence there will be no real price to pay for writing
a version of (4) that is uniform in time. In particular, this means that if 1 ≤ S ≤ t
is a random variable then (4) still holds with probability at least 1 − β(x, t) and
when s is replaced with S.

Note that (4) is useless for t ≤ 3 since its r.h.s. is larger than b. For any
arm k, time t and integer 1 ≤ s ≤ t we may apply Theorem 1 to the rewards
Xk,1, . . . , Xk,s, and obtain that with probability at least 1− 3

∑∞
s=4 e−(c∧1)Es,t , we

have µk ≤ Bk,s,t. Hence, by our previous remark at time t with high probability
(for a high-valued exploration function E) the expected reward of arm k is upper
bounded by Bk,Tk(t−1),t. The user of the generic UCB-V policy has two parameters
to tune: the exploration function E and the positive real number c.

A cumbersome technical analysis (not reproduced here) shows that there are
essentially two interesting types of exploration functions:

• the ones in which Es,t depends only on t (see Sections 3 and 4).

• the ones in which Es,t depends only on s (see Section 5).

2.2 Bounds for the sampling times of suboptimal arms

The natural way of bounding the regret of UCB policies is to bound the number
of times suboptimal arms are drawn. The bounds presented here significantly
improve the ones used in [3]. The improvement is a necessary step to get tight
bounds for the interesting case where the exploration function is logarithmic.

Theorem 2. After K plays, each arm has been pulled once. Let arm k and time
n ∈ N+ be fixed. For any τ ∈ R and any integer u > 1, we have

Tk(n) ≤ u +
∑n

t=u+K−1

(
1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ}

+1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}
)
,

(7)
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hence

E [Tk(n)] ≤ u +
∑n

t=u+K−1

∑t−1
s=u P

(
Bk,s,t > τ

)
+

∑n
t=u+K−1 P

(∃s : 1 ≤ s ≤ t− 1 s.t. Bk∗,s,t ≤ τ
)
.

(8)

Besides we have

P
(
Tk(n) > u

)
≤ ∑n

t=3 P
(
Bk,u,t > τ

)
+ P

(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ
)
.
(9)

Even if the above statements hold for any arm, they will be only useful for
suboptimal arms.

Proof. The first assertion is trivial since at the beginning all arms has an infinite
UCB, which becomes finite as soon as the arm has been played once. To obtain
(7), we note that

Tk(n)− u ≤
n∑

t=u+K−1

1{It=k;Tk(t)>u} =
n∑

t=u+K−1

Zk,t,u,

where

Zk,t,u = 1{It=k; u≤Tk(t−1); 1≤Tk∗ (t−1);Bk,Tk(t−1),t≥Bk∗,Tk∗ (t−1),t}
≤ 1{∃s:u≤s≤t−1 s.t. Bk,s,t>τ} + 1{∃s∗:1≤s∗≤t−1 s.t. τ≥Bk∗,s∗,t}

Taking the expectation on both sides of (7) and using the probability union bound,
we obtain (8). Finally, (9) comes from a more direct argument that uses that the
exploration function ξs,t is a nondecreasing function with respect to t. Consider
an event such that the following statements hold:

{ ∀t : 3 ≤ t ≤ n s.t. Bk,u,t ≤ τ,
∀s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s > τ.

.

Then for any 1 ≤ s ≤ n− u and u + s ≤ t ≤ n

Bk∗,s,t ≥ Bk∗,s,u+s > τ ≥ Bk,u,t.

This implies that arm k will not be pulled a (u + 1)-th time. Therefore we have
proved by contradiction that

{
Tk(n) > u

} ⊂
({∃t : 3 ≤ t ≤ n s.t. Bk,u,t > τ

}

∪{∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ τ
})

,
(10)

which by taking probabilities of both sides gives the announced result.
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3 Expected regret of UCB-V

In this section, we consider that the exploration function does not depend on s
(still, E = (Et)t≥0 is a nondecreasing of t). We will see that as far as the expected
regret is concerned, a natural choice of Et is the logarithmic function and that c
should not be taken too small if one does not want to suffer polynomial regret
instead of logarithmic one. We derive bounds on the expected regret and conclude
by specifying natural constraints on c and Et.

Theorem 3. We have

E[Rn] ≤
∑

k:∆k>0

{
1 + 8(c ∨ 1)En

(
σ2

k

∆2
k

+
2b

∆k

)

+ne−En

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

n∑
t=16En

β
(
(c ∧ 1)Et, t

)}
∆k,

(11)
where we recall that β

(
(c ∧ 1)Et, t

)
is essentially of order e−(c∧1)Et (see (5) and

Remark 1).

Proof. Let E ′n = (c ∨ 1)En. We use (8) with u the smallest integer larger than
8
( σ2

k

∆2
k

+ 2b
∆k

)E ′n and τ = µ∗. The above choice of u guarantees that for any u ≤
s < t and t ≥ 2,

√
2[σ2

k + b∆k/2]Et

s
+ 3bc

Et

s
≤

√
[2σ2

k + b∆k]E ′n
u

+ 3b
E ′n
u

≤
√

[2σ2
k+b∆k]∆2

k

8[σ2
k+2b∆k]

+
3b∆2

k

8[σ2
k+2b∆k]

= ∆k

2

[√
2σ2

k+b∆k

2σ2
k+4b∆k

+ 3b∆k

4σ2
k+8b∆k

]
≤ ∆k

2
,

(12)
since the last inequality is equivalent to (x− 1)2 ≥ 0 for x =

√
2σ2

k+b∆k

2σ2
k+4b∆k

.

For any s ≥ u and t ≥ 2, we have

P(Bk,s,t > µ∗) ≤ P(
Xk,s +

√
2Vk,sEt

s
+ 3bc

Et

s
> µk + ∆k

)

≤ P(
Xk,s +

√
2[σ2

k+b∆k/2]Et

s
+ 3bcEt

s
> µk + ∆k

)
+ P

(
Vk,s ≥ σ2

k + b∆k/2
)

≤ P(
Xk,s − µk > ∆k/2

)
+ P

(Ps
j=1(Xk,j−µk)2

s
− σ2

k ≥ b∆k/2
)

≤ 2e−s∆2
k/(8σ2

k+4b∆k/3),
(13)

where in the last step we used Bernstein’s inequality (see (33)) twice. Summing
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up these probabilities we obtain

t−1∑
s=u

P(Bk,s,t > µ∗) ≤ 2
∞∑

s=u

e−s∆2
k/(8σ2

k+4b∆k/3) = 2
e−u∆2

k/(8σ2
k+4b∆k/3)

1− e−∆2
k/(8σ2

k+4b∆k/3)

≤
(

24σ2
k

∆2
k

+ 4b
∆k

)
e−u∆2

k/(8σ2
k+4b∆k/3) ≤

(
24σ2

k

∆2
k

+ 4b
∆k

)
e−E

′
n , (14)

where we have used that 1 − e−x ≥ 2x/3 for 0 ≤ x ≤ 3/4. By using (6) of
Theorem 1 to bound the other probability in (8), we obtain that

E [Tk(n)] ≤ 1 + 8E ′n
(

σ2
k

∆2
k

+ 2b
∆k

)
+ ne−E

′
n

(
24σ2

k

∆2
k

+ 4b
∆k

)
+

∑n
t=u+1 β((c ∧ 1)Et, t),

which by u ≥ 16En gives the announced result.

In order to balance the terms in (11) the exploration function should be chosen
to be proportional to log t. For this choice, the following corollary gives an explicit
bound on the expected regret:

Corollary 1. If c = 1 and Et = ζ log t for ζ > 1, then there exists a constant cζ

depending only on ζ such that for n ≥ 2

E[Rn] ≤ cζ

∑

k:∆k>0

(
σ2

k

∆k

+ 2b

)
log n. (15)

For instance, for ζ = 1.2, the result holds for cζ = 10.

Proof. The first part follows directly from Theorem 3. The numerical assertion is
tedious. It consists in bounding the four terms between brackets in (11). First it
uses that

• bn is always a trivial upper bound on Rn,

• b(n − 1) is a trivial upper bound on Rn when n ≥ K (since in the first K
rounds, you draw exactly once the optimal arm).

As a consequence, the numerical bound is non-trivial only for 20 log n < n − 1,
so we only need to check the result for n > 91. For n > 91, we bound the
constant term using 1 ≤ log n

log 91
≤ a1

2b
∆k

(log n), with a1 = 1/(2 log 91) ≈ 0.11.

The second term between the brackets in (11) is bounded by a2

( σ2
k

∆2
k

+ 2b
∆k

)
log n,

with a2 = 8 × 1.2 = 9.6. For the third term, we use that for n > 91, we have
24n−0.2 < a3 log n, with a3 = 24

910.2×log 91
≈ 0.21. By tedious computations,

the fourth term can be bounded by a4
2b
∆k

(log n), with a4 ≈ 0.07. This gives the
desired result since a1 + a2 + a3 + a4 ≤ 10.
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As promised, Corollary 1 gives a logarithmic bound on the expected regret
that has a linear dependence on the range of the reward contrary to bounds on
algorithms that does not take into account the empirical variance of the reward
distributions (see e.g. the bound (1) that holds for UCB1).

The previous corollary is well completed by the following result, which essen-
tially says that we should not use Et = ζ log t with ζ < 1.

Theorem 4. Consider Et = ζ log t and let n denote the total number of draws.
Whatever c is, if ζ < 1, then there exist some reward distributions (depending on
n) such that

• the expected number of draws of suboptimal arms using the UCB-V algo-
rithm is polynomial in the total number of draws

• the UCB-V algorithm suffers a polynomial loss.

Proof. We consider the following reward distributions:

• arm 1 concentrates its rewards on 0 and 1 with equal probability.

• the other arms always provide a reward equal to 1
2
− εn.

Arm 1 is therefore the optimal arm. After s̃ plays of the optimal arm, since we
have necessarily Vk,s̃ ≤ 1/4, using b̃ , 3cbζ , we can write for any t ≤ n

B1,s̃,t = X1,s̃ +
√

2V1,s̃ζ log t

s̃
+ b̃ log t

s̃

≤ 1
2

+
(
X1,s̃ − 1

2

)
+

√
ζ log n

2s̃
+ b̃ log n

s̃
.

(16)

On the other hand, for any 0 ≤ s ≤ t, we have

B2,s,t = 1
2
− εn + b̃ log t

s
≥ 1

2
− εn. (17)

So the algorithm will behave badly if with non-negligible probability, for some
s∗ ¿ n, we have B1,s∗,t < 1/2− εn.

n is large enough). To help us choosing s̃ and εn, we need a lower bound on
the deviation of X1,s̃ − 1/2. This is obtained through Stirling’s formula

nne−n
√

2πn e1/(12n+1) < n! < nne−n
√

2πn e1/(12n), (18)
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since for ` such that (s̃ + `)/2 ∈ N, it leads to:

P
(
X1,s̃ − 1

2
= − `

2s̃

)

=
(

1
2

)s̃( s̃
s̃+`
2

)

≥ (
1
2

)s̃ ( s̃
e
)s̃
√

2πs̃e
1

12s̃+1

( s̃+`
2e

)
s̃+`
2 ( s̃−`

2e
)

s̃−`
2
√

π(s̃+`)
√

π(s̃−`)e
1

6(s̃+`) e
1

6(s̃−`)

= 1

(1+ `
s̃
)

s̃+`
2 (1− `

s̃
)

s̃−`
2

√
2s̃

π(s̃2−`2)
e

1
12s̃+1

− 1
6(s̃+`)

− 1
6(s̃−`)

≥
√

2
πs̃

(
1− `2

s̃2

)− s̃
2
(

1− `
s̃

1+ `
s̃

) `
2
e−

1
6(s̃+`)

− 1
6(s̃−`)

≥
√

2
πs̃

e−
`2

2s̃
− 1

6(s̃+`)
− 1

6(s̃−`) .

(19)

Let bxc be the largest integer smaller or equal to x. Introduce κ a constant para-
meter. By summing b√s̃c well chosen probabilities, i.e., the largest probabilities
P
(
X1,s̃ − 1

2
= − `

2s̃

)
for ` ≥ √

2κs̃ log s̃, we get that for some positive constant
C > 0

P
(

X1,s̃ − 1
2
≤ −

√
κ log s̃

2s̃

)
≥ Cs̃−κ. (20)

Let ζ ′ ∈]ζ; 1[ such that nζ′/κ is an integer number. We consider s̃ = nζ′/κ so that
from (16), we obtain

P
(

B1,s̃,t ≤ 1
2
− (
√

ζ ′ −√ζ)
√

log n

2nκ′ + b̃ log n

nκ′

)
≥ Cn−κκ′ . (21)

In view of (17), we take εn =
√

ζ′−√ζ
2

√
log n

2nκ′ such that with probability at least

Cn−ζ′ , we draw the optimal arm no more than s̃ = nζ′/κ times. Up to mul-
tiplicative constants, this leads to an expected number of draws of suboptimal
arms larger than (n − nζ′/κ)n−ζ′ ≈ n1−ζ′ and an expected regret larger than
(n − nζ′/κ)εnn−ζ′ ≈ n1−ζ′ ≈ n1−ζ′−ζ′/κ up to a logarithmic factor. Taking κ
sufficiently large, for ζ < 1, there exists ζ ′ ∈]ζ; 1[ such that 1 − ζ ′ − ζ ′/κ > 0,
so that we have obtained that polynomial expected regret can occur as soon as
ζ < 1.

So far we have seen that for c = 1 and ζ > 1 we obtain a logarithmic regret,
and that the constant ζ could not be taken below 1 (whatever c is) without risking
to suffer polynomial regret. Now we consider the last term in Bk,s,t, which is linear
in the ratio Et/s, and show that this term is also necessary to obtain a logarithmic
regret, since we have:

Theorem 5. Consider Et = ζ log t. Whatever ζ is, if cζ < 1/6, there exist prob-
ability distributions of the rewards such that the UCB-V algorithm suffers a poly-
nomial loss.
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Proof. See Section A.2.

To conclude the above analysis, natural values for the constants appearing in
the bound are the following ones

Bk,s,t , Xk,s +

√
2Vk,s log t

s
+

b log t

2s
.

This choice corresponds to the critical exploration function Et = log t and to
c = 1/6, that is, the minimal associated value of c in view of the previous theorem.
In practice, it would be unwise (or risk seeking) to use smaller constants in front
of the last two terms.

4 Concentration of the regret
In real life, people are not only interested in the expected rewards that they can
obtain by some policy. They also want to estimate probabilities of obtaining much
less rewards than expected, hence they are interested in the concentration of the
regret. This section starts with the study of the concentration of the pseudo-regret,
since, as we will see in Remark 2 p.16, the concentration properties of the regret
follow from the concentration properties of the pseudo-regret.

We still assume that the exploration function does not depend on s and that
E = (Et)t≥0 is nondecreasing.

Introduce

β̃(t) , 3 min
α≥1 M∈N

s0=0<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑
j=0

e−
(c∧1)Esj+t+1

α . (22)

We have seen in the previous section that to obtain logarithmic expected regret,
it is natural to take a logarithmic exploration function. In this case, and also when
the exploration function goes to infinity faster than the logarithmic function, the
complicate sum of (22), up to second order logarithmic terms, is of the order
of e−(c∧1)Et . This can be seen by considering (disregarding rounding issues) the
geometric grid sj = αj with α close to 1. Let bxc still denote the largest integer
smaller or equal to x. The next theorem provides a bound for the tails of the
pseudo-regret.

Theorem 6. Let

vk , 8(c ∨ 1)

(
σ2

k

∆2
k

+ 4b
3∆k

)
, r0 ,

∑
k:∆k>0 ∆k

(
1 + vkEn

)
.
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Then, for any x ≥ 1, we have

P
(
Rn > r0x

) ≤
∑

k:∆k>0

{
2ne−(c∨1)Enx + β̃(bvkEnxc)

}
, (23)

where we recall that β̃(t) is essentially of order e−(c∧1)Et (see (22)).

Proof. First note that

P
(
Rn > r0x

)
= P

{ ∑
k:∆k>0 ∆kTk(n) >

∑
k:∆k>0 ∆k(1 + vkEn)x

}

≤ ∑
k:∆k>0 P

{
Tk(n) > (1 + vkEn)x

}
.

Let E ′n = (c ∨ 1)En. We use (9) with τ = µ∗ and u = b(1 + vkEn)xc ≥ vkEnx.
From (13), we have P(Bk,u,t > µ∗) ≤ 2e−u∆2

k/(8σ2
k+4b∆k/3) ≤ 2e−E

′
nx. To bound

the other probability in (9), we use α ≥ 1 and the grid s0, . . . , sM of {1, . . . , n}
realizing the minimum of (22) when t = u. Let Ij = {sj + 1, . . . , sj+1}. Then

P
(∃s : 1 ≤ s ≤ n− u s.t. Bk∗,s,u+s ≤ µ∗

) ≤
M−1∑
j=0

P
(∃s ∈ Ij s.t. Bk∗,s,sj+u+1 ≤ µ∗

)

≤
M−1∑
j=0

P
(∃s ∈ Ij s.t. s(Xk∗,s − µ∗) +

√
2sVsEsj+u+1 + 3bcEsj+u+1 ≤ 0

)

≤ 3
M−1∑
j=0

e−
(c∧1)Esj+u+1

α = β̃(u) ≤ β̃(bvkEnxc),

which gives the desired result.

When En ≥ log n, the last term is the leading term. In particular, when c = 1
and Et = ζ log t with ζ > 1, Theorem 6 leads to the following corollary, which
essentially says that for any z > γ log n with γ large enough,

P
(
Rn > z

) ≤ C
zζ ,

for some constant C > 0:

Corollary 2. When c = 1 and Et = ζ log t with ζ > 1, there exist κ1 > 0 and
κ2 > 0 depending only on b, K, (σk)k∈{1,...,K}, (∆k)k∈{1,...,K} satisfying that for
any ε > 0 there exists Γε > 0 (tending to infinity when ε goes to 0) such that for
any n ≥ 2 and any z > κ1 log n

P
(
Rn > z

) ≤ κ2
Γε log z
zζ(1−ε)
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Proof. For κ3 > 0 and κ4 > 0 well chosen and depending only on b, K, (σk)k∈{1,...,K},
(∆k)k∈{1,...,K}, Theorem 6 can be written as

P(Rn > κ3Enx) ≤ 2nKe−Enx + Kβ̃(z′),

where z′ = bκ4Enxc. Considering x = z/(κ3En), we obtain

P(Rn > z) ≤ 2nKe−z/κ3 + Kβ̃(z′).

For κ1 , 2κ3 and z > κ1 log n, the first term of the r.h.s is bounded with
2Ke−z/(2κ3), which can be bounded with κ2

log z
zζ for appropriate choice of κ2 (de-

pending only on b, K, (σk)k∈{1,...,K}, (∆k)k∈{1,...,K}). To upper bound β̃(z′) (see
defintion in (22)), we consider a geometric grid of step α = 1/(1− ε), and cut the
sum in β̃ in two parts: for the j’s for which sj ≤ z′, we use

e−
(c∧1)Esj+z′+1

α ≤ e−
Ez′
α = (z′)−ζ(1−ε),

whereas for the j’s for which sj ≤ t, e−
(c∧1)Esj+z′+1

α ≤ e−
Esj
α ≤ e−j log α

α . The first
sum on j’s has at most 1+ (log z′)/ log[1/(1− ε)] terms, whereas the second sum
on j’s is of order of its first term since it is geometrically decreasing. This finishes
the proof.

Since the regret is expected to be of order log n the condition z = Ω(log n) is
not an essential restriction. Further, the regret concentration, although increases
with increasing ζ , is pretty slow. For comparison, remember that a zero-mean
martingale Mn with increments bounded by 1 would satisfy P(Mn > z) ≤
exp(−2z2/n). The slow concentration for UCB-V happens because the first Ω(log(t))
choices of the optimal arm can be unlucky (yielding small regret) in which case
the optimal regret will not be selected any more during the first t steps. Hence, the
distribution of the regret will be of a mixture form with a mode whose position
scales linearly with time and whose decays only at a polynomial rate, which is
controlled by ζ .4 This reasoning relies crucially on that the choices of the optimal
arm can be unlucky. Hence, we have the following result:

Theorem 7. Consider Et = ζ log t with cζ > 1. Let k̃ denote the second optimal
arm. If the essential infimum of the optimal arm is strictly larger than µk̃, then
the pseudo-regret has exponentially small tails. Inversely, if the essential infimum
of the optimal arm is strictly smaller than µk, then the pseudo-regret has only
polynomial tail.

4Note that entirely analogous results hold for UCB1.
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Proof. Let µ̃ be the essential infimum of the optimal arm. Assume that µ̃ > µk̃.
Then there exists µ′ such that µk̃ < µ′ < µ̃. For any arm k, introduce δk =
µ′ − µk. Let us use (9) with τ = µ′ and where u is the smallest integer larger
than 8

(σ2
k

δ2
k

+ 2b
δk

)E ′n. This value of τ makes the last probability in (9) vanish. The
first term is controlled as in the proof of Theorem 6. Precisely, we obtain for
v′k , 8(c ∨ 1)

(σ2
k

δ2
k

+ 2b
δk

)
, r′0 ,

∑
k:∆k>0 ∆k

(
1 + v′kEn

)
and any x ≥ 1

P
(
Rn > r′0x

) ≤ 2elog(Kn)−(c∨1)Enx,

which proves that Rn has exponential tails in this case.
On the contrary, when µ̃ < µk̃, we consider the following reward distributions:

• the optimal arm concentrates its rewards on µ̃ and b such that its expected
reward is strictly larger than µk̃,

• all suboptimal arms are deterministic to the extent that they always provide
a reward equal to µk̃.

Let q be any positive integer. Consider the event:
{
X1,1 = X1,2 = . . . = X1,q = µ̃

}
.

Let c2 , cζ and η , µk̃ − µ̃. On this event, we have for any t ≤ eηq/c2

B1,q,t = µ̃ + c2
log t

q
≤ µk̃.

Besides for any 0 ≤ s ≤ t, we have

B2,s,t = µk̃ + c2
log t

s
> µk̃.

This means that the optimal arm cannot be played more than q times during the
first eηq/c2 plays. This gives a regret and a pseudo-regret of at least ∆k̃

(
eηq/c2−q

)
.

So the pseudo-regret cannot have thinnest tails than polynomial ones.

Remark 2. In Theorem 6 and Corollary 2, we have considered the pseudo-regret:
Rn =

∑K
k=1 Tk(n)∆k instead of the regret R̂n ,

∑n
t=1 Xk∗,t −

∑n
t=1 XIt,TIt (t)

.
Our main motivation for this was to provide as simple as possible formulae and
assumptions. The following computations explains that when the optimal arm is
unique, one can obtain similar contration bounds for the regret. Consider the
interesting case when c = 1 and Et = ζ log t with ζ > 1. By slightly modifying
the analysis in Corollary 2, one can get that there exists κ1 > 0 such that for any
z > κ1 log n, with probability at least 1− z−1, the number of draws of suboptimal
arms is bounded by Cz for some C > 0. This means that the algorithm draws an
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optimal arm at least n − Cz. Now if the optimal arm is unique, this means that
n− Cz terms cancel out in the summations of the definition of the regret. For the
Cz terms which remain, one can use standard Bernstein inequalities and union
bounds to prove that with probability 1−Cz−1, we have R̂n ≤ Rn +C ′√z. Since
the bound on the pseudo-regret is of order z (Corollary 2), a similar bound holds
for the regret.

5 PAC-UCB
In this section, we consider that the exploration function does not depend on t:
Es,t = Es. We show that for appropriate sequence (Es)s≥0, this leads to an UCB al-
gorithm which has nice properties with high probability (Probably Approximately
Correct), hence the name of it. Note that in this setting, the quantity Bk,s,t does not
depend on the time t so we will simply write it Bk,s. Besides, in order to simplify
the discussion, we take c = 1.

Theorem 8. Let β ∈ (0, 1). Consider a sequence (Es)s≥0 satisfying Es ≥ 2 and

4K
∑

s≥7 e−Es ≤ β. (24)

Consider uk the smallest integer such that

uk

Euk
>

8σ2
k

∆2
k

+ 26b
3∆k

. (25)

With probability at least 1− β, the PAC-UCB policy plays any suboptimal arm k
at most uk times.

Proof. See Section A.3.

Let q > 1 be a fixed parameter. A typical choice for Es is

Es = log(Ksqβ−1) ∨ 2, (26)

up to some additive constant ensuring that (24) holds. For this choice, Theorem 8
implies that for some positive constant κ, with probability at least 1 − β, for any
suboptimal arm k (i.e., ∆k > 0), its number of play is bounded by

Tk,β , κ
( σ2

k

∆2
k

+ 1
∆k

)
log

[
K

( σ2
k

∆2
k

+ b
∆k

)
β−1

]
,

which is independent of the total number of plays! This directly leads to the
following upper bound on the regret of the policy at time n

∑K
k=1 Tk(n)∆k ≤

∑
k:∆k>0 Tk,β∆k. (27)
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One should notice that the previous bound holds with probability at least 1−β and
on the complement set no small upper bound is possible: one can find a situation
in which with probability of order β, the regret is of order n (even if (27) holds
with probability greater than 1− β). More formally, this means that the following
bound cannot be essentially improved (unless putting additional assumptions):

E[Rn] =
∑K

k=1 E[Tk(n)]∆k ≤ (1− β)
∑

k:∆k>0 Tk,β∆k + βn

As a consequence, if one is interested to have a bound on the expected regret at
some fixed time n, one should take β of order 1/n (up to possibly a logarithmic
factor):

Theorem 9. Let n ≥ 7. Consider the sequence Es = log[Kn(s + 1)]. For this
sequence, the PAC-UCB policy satisfies

• with probability at least 1 − 4 log(n/7)
n

, for any k : ∆k > 0, the number of

plays of arm k up to time n is bounded by 1 +
(8σ2

k

∆2
k

+ 26b
3∆k

)
log(Kn2).

• the expected regret at time n satisfies

E[Rn] ≤ ∑
k:∆k>0

(24σ2
k

∆k
+ 30b

)
log(n/3). (28)

Proof. See Section A.4.

6 Open problem
When the horizon time n is known, one may want to choose the exploration func-
tion E depending on the value of n. For instance, in view of Theorems 3 and 6,
one may want to take c = 1 and a constant exploration function E ≡ 3 log n. This
choice ensures logarithmic expected regret and a nice concentration property:

P
{

Rn > 24
∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ C

n
. (29)

This algorithm does not behave as the one which simply takes Es,t = 3 log t.
Indeed the algorithm with constant exploration function Es,t = 3 log n concen-
trates its exploration phase at the beginning of the plays, and then switches to
exploitation mode. On the contrary, the algorithm which adapts to the time hori-
zon explores and exploits during all the time interval [0; n]. However, in view of
Theorem 7, it satisfies only

P
{

Rn > 24
∑

k:∆k>0

(
σ2

k

∆k
+ 2b

)
log n

}
≤ C

(log n)C .

which is significantly worse than (29). The open question is: is there an algo-
rithm that adapts to time horizon which has a logarithmic expected regret and a
concentration property similar to (29)? We conjecture that the answer is no.
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A Proofs of the results

A.1 Proof of Theorem 1
The result follows from a version of Bennett’s inequality which gives a high prob-
ability confidence interval for the mean of an i.i.d. sequence:

Lemma 1. Let U be a real-valued random variable such that almost surely U ≤
b′′ for some b′′ ∈ R. Let µ = E [U ], b′ , b′′ − µ, and b′′+ = b′′ ∨ 0. Let U1, . . . , Un

be i.i.d. copies of U , U t = 1/t
∑t

s=1 Us. The following statements are true for
any x > 0:

• with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nE [U2] x + b′′+x/3, (30)

• with probability at least 1− e−x, simultaneously for 1 ≤ t ≤ n,

t(U t − µ) ≤
√

2nVar (U) x + b′x/3. (31)

Proof of Lemma 1. Let v = (Var U)/(b′)2. To prove this inequality, we use Re-
sult (1.6) of Freedman [5] to obtain that for any a > 0

P
(∃t : 0 ≤ t ≤ n and t(U t − µ)/b′ ≥ a

)
≤ ea+(a+nv) log[nv/(nv+a)].

In other words, introducing h(u) = (1 + u) log(1 + u) − u, with probability at
least 1− e−nvh[a/(nv)], simultaneously for 1 ≤ t ≤ n,

t(U t − µ) < ab′

Consider a =
√

2nvx + x/3. To prove (31), it remains to check that

nvh[a/(nv)] ≥ x. (32)

This can be done by introducing ϕ(r) = (1 + r + r2/6) log(1 + r + r2/6)− r −
2r2/3. For any r ≥ 0, we have ϕ′(r) = (1 + r/3) log(1 + r + r2/6) − r and
3ϕ′′(r) = log(1 + r + r2/6) − (r + r2/6)/(1 + r + r2/6), which is nonnegative
since log(1 + r′) ≥ r′/(1 + r′) for any r′ ≥ 0. The proof of (31) is finished since
ϕ(

√
2x/(nv)) ≥ 0 implies (32).

To prove (30), we need to modify the martingale argument underlying Freed-
man’s result. Precisely, let g(r) , (er − 1− r)/r2, we replace

E
[
eλ[U−EU−λg(λb′)Var U ]

] ≤ 1
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by (see e.g., [2, Chap. 2: Inequality (8.2) and Remark 8.1])

E
[
eλ[U−EU−λg(λb′′)EU2]

]
≤ 1.

By following Freedman’s arguments, we get

P
(∃t : 0 ≤ t ≤ n and t(U t − µ) ≥ a

)
≤ min

λ>0
e−λa+λ2g(λb′′)nE[U2].

Now if b′′ ≤ 0, this minimum is upper bounded with

min
λ>0

e−λa+ 1
2
λ2nE[U2] = e

− a2

2nE[U2] ,

which leads to (30) when b′′ ≤ 0. When b′′ > 0, the minimum is reached for
λb′′ = log

( b′′a+nE[U2]
nE[U2]

)
and then the computations are similar to the one developed

to obtain (31).

Remark 3. Lemma 1 differs from the standard version of Bernstein’s inequality
in a few ways. The standard form of Bernstein’s inequality (using the notation of
this lemma) is as follows: for any w > 0,

P
(
Un − µ > w

) ≤ e
− nw2

2Var(U)+(2b′w)/3 . (33)

When this inequality is used to derive high-probability confidence interval, we get

n(Un − µ) ≤
√

2nVar (U) x + 2 b′x
3

.

Compared with (31) we see that the second term here is larger by a multiplicative
factor of 2. This factor is saved thanks to the use of Bennett’s inequality. Another
difference is that Lemma 1 allows the time indices to vary in an interval. This
form follows from a martingale’s argument due to Freedman [5].

Given Lemma 1, the proof of Theorem 1 essentially reduces to an application
of the “square-root trick”. For the first part of the theorem, we will prove a result
slightly stronger since it will be useful to obtain the second part of Theorem 1: for
any x > 0 and n ∈ N, with probability at least 1− 3e−x, for any 0 ≤ t ≤ n,

|X t − µ| <
√

2nVtx
t

+ 3bnx
t2

. (34)

First, notice that if we prove the theorem for random variables with b = 1 then the
theorem follows for the general case by a simple scaling argument.

Let σ denote the standard deviation of X1: σ2 , Var X1, and introduce V ,
E

[
(X1 − EX1)

4
]
. Lemma 1, (31) with the choices Ui = Xi, Ui = −Xi, and
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Lemma 1, (30) with the choice Ui = −(Xi − E[X1])
2 yield that with probability

at least 1− 3e−x, for any 0 ≤ t ≤ n, we simultaneously have

|X t − µ| ≤ σ
√

2nx
t

+ x
3t

(35)

and
σ2 ≤ Vt + (µ−X t)

2 +
√

2nV x
t

. (36)

Let L , nx/t2. We claim that from (35) and (36), it follows that

σ ≤ √
Vt + 1.8

√
L. (37)

Since the random variable X1 takes its values in [0, 1], we necessarily have
σ ≤ 1/2. Hence, when 1.8

√
L ≥ 1/2 then (37) is trivially satisfied, so from now

on we may assume that 1.8
√

L ≤ 1/2, i.e., L ≤ (3.6)−2. Noting that V ≤ σ2, by
plugging (35) into (36) we obtain for any 0 ≤ t ≤ n

σ2 ≤ Vt + 2Lσ2 + 2L
3

σ
√

2L + L2

9
+ σ

√
2L

≤ Vt +
√

Lσ
3.6

+ 2
3×(3.6)2

σ
√

2L + L
9×(3.6)2

+ σ
√

2L

≤ Vt + 1.77
√

Lσ + L
100

,

or σ2 − 1.77
√

Lσ − (Vt + L
100

) ≤ 0. The l.h.s. when viewed as a second order
polynomial in σ has a positive leading term, hence its larger root gives an upper
bound on σ: σ ≤ 1.77

2

√
L +

√
Vt + 0.8L ≤ √

Vt + 1.8
√

L, which finished the
proof of (37). Plugging (37) into (35), we obtain

|X t − µ| ≤ √
2VtL +

[
1.8
√

2 + 1/3
]
L <

√
2VtL + 3L,

which, given the definition of L, ends the proof of (34), and thus the proof of the
first part of Theorem 1.

Let us now consider the second part of the theorem: Fix t1 ≤ t2, t1, t2 ∈ N, let
α ≥ t2/t1. From (34), with probability at least 1 − 3e−x/α, for t ∈ {t1, . . . , t2},
we have

t|X t − µ| <
√

2t2Vtx/α + 3x/α
≤ √

2tVtx + 3x.
(38)

To finish the proof, we use the previous inequality for well chosen intervals
[t1; t2] forming a partition of [3; n]. This last interval starts from 4 since (38) is
trivial for t < 4. Precisely, introduce

β̄(x, n) , 3 min
M∈N

s0=3<s1<···<sM=n
s.t. sj+1≤α(sj+1)

M−1∑
j=0

e−x/α.
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and let s0, . . . , sM be the grid realizing the above minimum. We have

P
(∃t : 1 ≤ t ≤ n s.t. |X t − µ| >

√
2Vtx

t
+ 3x

t

)

≤ ∑M−1
j=0 P

(∃t : sj < t ≤ sj+1 s.t.

t|X t − µ| > √
2tVtx + 3x

)
≤ 3

∑M−1
j=0 e−x/α

= β̄(x, n)
≤ β(x, n),

where the last inequality comes from the use of a geometric grid of step α and a
complete grid {3, 4, . . . , n}. This ends the proof of Theorem 1.

A.2 Proof of Theorem 5

We want to prove that if cζ < 1/6 then there exists a bandit problem such that
UCB-V suffers a polynomial loss.

Let ε be a number in the (0, 1) interval to be chosen later. Consider the fol-
lowing two-armed bandit problem: Let {X1t} be an i.i.d. Bernoulli sequence with
P(X1t = 1) = ε. Let {X2t} be the deterministic sequence given by X2t = ε/2.
Thus, µ∗ = µ1 = E [X11] = ε > ε/2 = E [X21] = µ2, i.e., the first arm is the
optimal one. Note that b = 1.

Since cζ < 1/6, we have δ , 1/6− cζ > 0. Hence we can choose ε in (0, 1)
such that

log(1/(1−ε))
ε

< 1−3δ
1−6δ

. (39)

Indeed, such a value exists since limε→0 log(1/(1− ε))/ε = 1 and (1− 3δ)/(1−
6δ) > 1. Let γ = (1− 3δ)/ log(1/(1− ε)). Note that γ > 0. The following claim
holds then:
Claim: Fix n ∈ N and consider an event when during the first T = dγ log ne
pulls the optimal arm always returns 0. On such an event the optimal arm is not
pulled more than T times during the time interval [1, n], i.e., T1(n) ≤ T .

Proof. Note that on the considered event V1t = 0, X1t = 0 and hence

B1,T1(t−1),t = 3cζ log(t)/T1(t− 1).

Further,
B2,T2(t−1),t = ε/2 + 3cζ log(t)/T2(t) ≥ ε/2.

Let t1 be the time t when arm one is pulled the T -th time. If t1 ≥ n then the claim
holds. Hence, assume that t1 < n. In the next time step, t = t1 + 1, we have
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T1(t− 1) = T , hence

B1,T1(t−1),t = 3c ζ log(t)
T

≤ 3c ζ log(n)
T

≤ 3c ζ
γ

= (1− 6δ) log(1/(1−ε))
2(1−3δ)

< ε
2
,

where the last step follows by (39). Since ε/2 ≤ B2,T2(t−1),t it follows that the
algorithm chooses arm 2 at time step t1 + 1 and T1(t) = T . Since the same
argument can be repeated for t1 + 2, t1 + 3, . . . , n, the claim follows.

Now observe that the probability of the event that the optimal arm returns 0
during its first T pulls is

(1− ε)T ≥ (1− ε)γ log n = nγ log(1−ε) = n−(1−3δ).

Further, when this event holds the regret is at least (n−T )ε/2. Thus, the expected
regret is at least

ε
2
n1−(1−3δ)(1− γ(log n)/n) = ε

2
n3δ(1− γ(log n)/n),

thus finishing the proof.

A.3 Proof of Theorem 8
Without loss of generality (by a scaling argument), we may assume that b = 1.
Consider the event A on which

∀s ≥ 7 ∀k ∈ {1, . . . , K}





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s
+ Es

3s

σk ≤
√

Vk,s + 1.8
√

Es

s√
Vk,s ≤ σk +

√
Es

2s

(40)

Let us show that this event holds with probability at least 1− β.

Proof. To prove the first two inequalities, the arguments are similar to the ones
used in the proof of Theorem 1. The main difference here is that we want the third
inequality to simultaneously hold. We apply Lemma 1 with x = Es, n = s and
different i.i.d. random variables: Wi = Xk,i, Wi = −Xk,i, Wi = (Xk,i − µk)

2

and Wi = −(Xk,i − µk)
2. We use that the second moment of the last two random
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variables satisfies E[(Xk,1 − µk)
4] ≤ σ2

k and that the empirical expectation of
(Xk,i − µk)

2 is

1
s

∑s
i=1(Xk,i − µk)

2 = Vk,s + (Xk,s − µk)
2.

We obtain that for any s ≥ 7 and k ∈ {1, . . . , K}, with probability at least
1− 4e−Es





∣∣Xk,s − µk

∣∣ < σk

√
2Es

s
+ Es

3s

σ2
k ≤ Vk,s + (Xk,s − µk)

2 +

√
2σ2

kEs

s

Vk,s + (Xk,s − µk)
2 ≤ σ2

k + σk

√
2Es

s
+ Es

3s
≤

(
σk +

√
Es

2s

)2

As we have seen in Section A.1, the above first two inequalities give the first two
inequalities of (40). Finally, taking the square root in the above third inequality
gives the last inequality of (40).

Using an union bound, all these inequalities hold simultaneously with proba-
bility at least

1− 4
∑K

k=1

∑
s≥7 e−Es ≥ 1− β.

¥

Remember that Bk,s , Xk,s +
√

2Vk,sEs

s
+ 3Es

s
. Now let us prove that on the

event A, for any s ≥ 1 and k ∈ {1, . . . , K}, we have µk ≤ Bk,s and

Bk,s ≤ µk + 2σk

√
2Es

s
+ 13Es

3s
(41)

Proof. The inequality µk ≤ Bk,s is obtained by plugging the second inequality
of (40) in the first one of (40) and by noting that since Es ≥ 2, the inequality is
trivial for s ≤ 6. Introduce Ls = Es

s
. To prove (41), we used the first and third

inequalities of (40) to obtain

Bk,s ≤ µk + σk

√
2Ls + Ls

3
+
√

2Ls

(
σk +

√
Ls/2

)
+ 3Ls

= µk + 2σk

√
2Ls + 13Ls

3
.

Once more, the inequality is trivial for s ≤ 6.

¥
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Now let us prove that the choice of uk in Theorem 8 guarantees that

µk + 2σk

√
2Euk

uk
+

13Euk

3uk
< µ∗. (42)

Proof. For the sake of lightening the notation, let us drop for a moment the k
indices, so that (42) is equivalent to

2σ
√

2Eu

u
+ 13Eu

3u
< ∆. (43)

Let r = u/Eu. We have

(43) ⇔ r − 13
3∆

> 2σ
∆

√
2r

⇔ r > 13
3∆

and
(
r − 13

3∆

)2
> 8σ2

∆2 r

⇔ r > 13
3∆

and r2 − (
8σ2

∆2 + 26
3∆

)
r + 169

9∆2 > 0

This trivially holds for r > 8σ2

∆2 + 26
3∆

.

By adapting the argument leading to (10), we obtain
{∃k : Tk(∞) > uk

}

⊂
({∃k s.t. Bk,uk

> τ
} ∪ {∃s ≥ 1 s.t. Bk∗,s ≤ τ

})
.

Taking τ = µ∗ and using (42),we get
{∃k : Tk(∞) > uk

}

⊂
({∃k s.t. Bk,uk

> µk + 2σk

√
2Euk

uk
+

13Euk

3uk

}

∪{∃s ≥ 1 s.t. Bk∗,s ≤ µ∗
})

⊂ A.

So we have proved that

P
(∃k : Tk(∞) > uk

) ≤ P(A) ≤ β,

which is the desired result.

A.4 Proof of Theorem 9
Consider the following sequence E ′s = log[Kn(s + 1)] for s ≤ n and E ′s = ∞
otherwise. For this sequence, the assumptions of Theorem 8 are satisfied for β =
4 log(n/7)

n
since

∑
7≤s≤n 1/(s + 1) ≤ log(n/7). Besides, to consider the sequence
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(E ′s)s≥0 instead of (Es)s≥0 does not modify the algorithm up to time n. Therefore
with probability at least 1− β, we have

Tk(n)−1
ETk(n)−1

≤ 8σ2
k

∆2
k

+ 26b
3∆k

,

hence
Tk(n) ≤ 1 +

(8σ2
k

∆2
k

+ 26b
3∆k

)
log[KnTk(n)], (44)

which gives the first assertion.
For the second assertion, first note that since Rn ≤ n, (28) is useful only

when 30(K − 1) log(n/3) < n. So the bound is trivial when n ≤ 100 or when
K ≥ n/50. For n > 100 and K < n/50, (44) gives

Tk(n) ≤ 1 +
(8σ2

k

∆2
k

+ 26b
3∆k

)
log[n3/50] ≤ (24σ2

k

∆2
k

+ 26b
∆k

)
log(n/3),

hence

E[Tk(n)] ≤ 4 log(n/7) +
(24σ2

k

∆2
k

+ 26b
∆k

)
log(n/3) ≤ (24σ2

k

∆2
k

+ 30b
∆k

)
log(n/3).
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